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!Extremal combinatorics with geometric connections  07.21 - 07.25.2025.
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Ranges of two-distance graphs
by Péter Agoston

Suppose that a graph has edges coloured by red and blue and its vertices can be represented by
distinct points of the plane such that a pair connected by a red edge always corresponds to a pair of
points with distance 1 and a pair connected by a blue edge always corresponds to a pair of points
with distance d for some fixed d. We call such a graph (along with the colouring) a (1, d)-graph
and if there exists a colouring and a d for which a graph is a (1, d)-graph, we call it a two-distance
graph. Also, for a (red-blue) edge-bicoloured graph, let its range be the set of numbers d for which
it is a (1, d)-graph (see an illustration of the notion in Figure [1)).
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Figure 1: Examples of edge-bicoloured graphs with

ranges {\/g}’ [%7_{_00)’ (0,2]\ {1} and {1,2,3,4} (from Figure 2 TWO Vect01js connected by a
left to right) grid, which is a crucial element of the

constructions in Theorem

Theorem 1. As a simple consequence of the Tarski-Seidenberg theorem, the range of an edge-
bicoloured graph is always a semialgebraic set (in R, that is a set whose only boundary points are
finitely many algebraic numbers). I proved [1] that any semialgebraic set in R is in fact the range
of some edge-bicoloured graph with the condition that the set has a positive lower bound and a finite
upper bound.

Problem 1. Can we construct edge-bicoloured graphs for all semialgebraic sets in R without the
boundedness limitations?

Problem 2. What if the points representing different vertices do not have to be distinct?

Note that the constructions used in the proof of Theorem [If do not work for any of the variants
above: one of the reasons is that these constructions heavily rely on the fact that in any graph,
one can assure that a pair of vertices has the same vector as another pair of vertices by connecting
these pairs by a grid (see Figure [2)).

Problem 3. What are the possible ranges if the colouring of the edges is not given in advance?

Problem 4. Can we generalize the result in some other way (more than two distances, more than
two dimensions)?
References
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Ordered Ramsey numbers of paths

by Martin Balko

An ordered graph G< is a pair (G, <) where G is a graph and < is a total ordering of its vertices.
The ordered Ramsey number R-(G<) is the minimum N € N such that every 2-coloring of the edges
of the ordered complete graph K5 on N vertices contains a monochromatic copy of G<. That is,
we want to find G' as a monochromatic subgraph with a fixed order of vertices; see Figure

Figure 1: Pairwise non-isomorphic ordered cycles on four vertices. The ordered Ramsey numbers
are R.(Cs) =14, R.(Cp) = 10, and R-(Cc) = 11. The Ramsey number of (unordered) Cy is 6.

Let R(G) be the Ramsey number of G. It is easy to see that R(G) < R.(G<) for each vertex-
ordering R. of G. We also have R.(G<) < R.(K;) = R(K,) and thus ordered Ramsey numbers
are always finite and at most exponential in the number of vertices.

In the 1980s, Chvatal, Rodl, Szemerédi, and Trotter [4] showed that the Ramsey number R(G)
of every n-vertex graph G with constant maximum degree is linear in n. In sharp contrast to this
result, Balko, Cibulka, Kral, and Kyn¢l [2] and, independently, Conlon, Fox, Lee, and Sudakov [3]
showed that there are ordered matchings M;s on n vertices with R<(M,S) superpolynomial in n.
In particular, these results give R (P=) > nflogn/loglogn) for some ordering P of a path P,. It is
that every ordered path P on n vertices satisfies R (P;) < nOUosn),

The growth rate of the ordered Ramsey numbers of G< decreases significantly if we bound the
interval chromatic number of G<, which is the minimum number of intervals the vertex set of G<
can be partitioned into so that there is no edge of G= within one of the intervals. It is known that
the ordered Ramsey number R_(P<) of any ordered path P< on n vertices with interval chromatic
number 2 is at most O(n?®) while the best known lower bound is Q((n/logn)?) and was actually
proved for ordered matchings. Geneson, Holmes, Liu, Neeidinger, Pehova, and Wass [5] asked
whether this can be improved.

Problem 1 ([5]). Is it true that R-(P<) < O(n?) for every ordering P< of the path on n vertices
with interval chromatic number 27

The quadratic estimate is trivial for ordered matchings. This problem can be considered with
various modifications (lower bound, larger interval chromatic number, other sparse ordered graphs,
and so on). There are many open problems in ordered Ramsey theory that we can also consider;
see a recent survey [1].
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Ramsey non-nested matching

by Janos Barat

We consider the complete graph on the ordered vertex set of the first n positive integers, denoted
as [n]. We refer to an edge zy assuming also z < y. Two independent edges xy and uv are nested
fr<u<v<yoru<xz<y<wv. Aset F of edges are non-nested if any two independent edges
of F' are non-nested. We also 2-color the edges by red and blue. A subgraph S is monochromatic
if all edges of S are red or all edges are blue.

Problem 1. Does every 2-colored ordered complete graph on [3n — 1] contains a monochromatic
non-nested matching of size n?

It is easy to see that on 4n—2 vertices, one can always find a monochromatic non-nested matching
of size n. This question grew out of our research on the twisted drawing of the complete graph [2].
Plane (non-crossing) subgraphs of the twisted drawing correspond to non-nested subgraphs. We
proved the following for spanning trees:

Theorem 1. In every 2-coloring of the ordered complete graph on n vertices, there exists a monochro-
matic non-nested spanning tree.

This is a subcase of a more general problem. Simple drawings are drawings of graphs in which
the edges are Jordan arcs and each pair of edges shares at most one point (a proper crossing or a
common endpoint).

Problem 2. Is there a monochromatic plane spanning tree in every 2-colored simple drawing of the
complete graph?

This holds for geometric graphs [3] and cylindrical drawings [1].
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Small diameter covers

by Janos Barat

We 2-color the edges of a graph GG by red and blue. A subgraph S is monochromatic if all edges
of S are red or all edges are blue. Recently, Gyarfas and Sarkozy proved the following

Theorem 1. For any 2-coloring of the edges of a graph G with a(G) = 2, the vertices of G can be
covered by two monochromatic subgraphs of diameter at most 4.

Problem 1. Is there a 2-coloring of the edges of a graph G with a(G) = 2 such that we cannot
cover V(G) by two monochromatic subgraphs Gy and Gy each of diameter at most 37

For general «a, they proved

Theorem 2. For any 2-coloring of the edges of a graph G, the vertices of G can be covered by
|3a/2| monochromatic components, each with diameter at most 4.

Problem 2. Can we improve this upper bound on the number of monochromatic components?
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Circuits on planar points

by Janos Barat, Zoli Nagy

Two years ago at Emléktabla, the group of Janos Barat, Andrzej Grzesik, Attila Jung, Zoli
Nagy, Domotor Palvolgyi worked on a cycle cover problem of Nika Salia. It could be reformulated
to multicolor Hamiltonain cycles as well, as follows.

Problem 1. Let C be a set of colors. We assign a subset of C to every edge of a complete graph K,
n > 3, such that

e for each color c € C, the edges colored ¢ induce a clique,

e for any set of vertices X C V(K,) of size at least two, there exist at least | X| colors assigned
to at least one edge of the clique induced by X .

The obtained colored multigraph contains a rainbow Hamiltonian cycle.

For the results and background we refer to [I]. Some interesting geometric questioned popped
up, which can be considered as applications of the original graph-theoretic problem and its variant.

Problem 2. Given n points and n halfplanes in the plane such that for every k > 2 for any k
points there are at least k halfplanes that contain at least two of them, can we order the points and
halfplanes py, Hy, pa, Ha, . . ., P, Hy, such that p;, piy1 € H; fori € {1,2,....,n—1} and p,,p1 € H,?

Another question is the following.

Problem 3. Consider n points and n (directed) lines in the plane such that for any k points there
are at least k — 1 lines, which intersect the convex hull of the k points, and ask if we can order the
points and lines py, 11, pa,la, ... pn,ln such that p; and p;11 are separated by ;7 Additionally, can
we even demand that p; should be on the left, and p;y1 on the right side of the directed line [; ¢

References
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Bisections of graphs

by Simona Boyadzhiyska

This problem is taken from a recent paper of Ma and Wu [5].

All graphs are finite, simple, and undirected. For a given graph G and a subset A C V(G), we
write G[A] for the subgraph induced by A. We will be interested in problems of the following type:
given a graph G satisfying some property, is there a partition A L B of the vertex set V(G) such
that the graphs G[A] and G[B] and the bipartite graph between A and B satisfy certain desirable
properties?

A classic result from graph theory shows that, for every graph G with minimum degree at
least 2k — 1, there exists a partition AU B of V(G) such that every vertex has degree at least k to
the opposite part. Thomassen [7] considered a similar problem where we are interested in degrees
within each vertex’s own part. More precisely, he showed the existence of a function f(k) such
that, for every graph G with minimum degree at least f(k), there is a partition A U B such that
every vertex has at least k neighbors in its own part; this function f(k) was determined to be equal
to 2k + 1 by Stiebitz [6]. It is natural to also wonder whether it is possible to require that each
vertex have many neighbors both in its own part and in the opposite part. This was proven to be
false by Kiithn and Osthus [4], but a number of relaxations are known to be true. These results,
in addition to being reasonably natural, also have some applications, for example to problems in
structural graph theory. More about these types of problems and their history can be found for
instance in [4, 5] and the references therein.

Here we are interested in partitions where the sizes of the parts are as equal as possible, that is,
partitions A Ll B such that | |[A| — |B| |< 1. We call such a partition a bisection. Inspired by the
aforementioned results, one might hope to find a bisection where each vertex has degree at least
(roughly) deg(v)/2 to the opposite side. Refuting a stronger conjecture of Bollobas and Scott [I,
Ji, Ma, Yan, and Yu [3] conjectured that every graph G has a bisection in which every vertex v has
degree at least deg(v)/2 — ¢ to the opposite side (here ¢ > 0 is an absolute constant). The best
known general results in this direction are due to Ma and Wu [5] and show that we can always
achieve deg(v)/4 — o(1) in each of the two settings.

. . deg(v
Theorem 1. Every graph G has a bisection such that every vertex v has at least % — o(deg(v))

neighbors in the opposite part and a bisection such that every vertex v has at least degT(v) —o(deg(v))
neighbors in its own part.

Naturally, it would be extremely interesting to improve this result and replace the constant 1/4
by 1/2, even in this somewhat weaker asymptotic setting. More specifically, Ma and Wu formulated
the following problem.

Problem 1 ([5, Question 19]). Is there a function f(k) = 2k + o(k) such that every graph with
minimum degree at least f(k) has a bisection where each vertex has at least k neighbors in its own
part, as well as a bisection where each vertex has at least k neighbors in the opposite part?

A related problem that is worth considering is concerned with connectivity instead of minimum
degrees. Recall that a graph G on at least k+ 1 vertices is k-connected if, for every subset S C V(G)
of size at most k — 1, removing S leaves a connected graph, that is, the graph G[V(G) — S] is
connected.

Thomassen [7] showed that there exists a function f(s,t) such that any f(s,¢)-connected graph G
has a partition A Ll B such that G[A] is s-connected and G[B] is t-connected. The bounds on this
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function were later improved for example by Hajnal [2]. It would be interesting to determine whether
a similar statement holds for bisections.

Problem 2 (|5, Question 22|). Is there a function h(t) such that every h(t)-connected graph G has
a bisection AU B such that both G[A] and G|B] are t-connected? If so, what bounds can we obtain?

Naturally, the above question can also be considered in the asymmetric setting, as in the original
result of Thomassen.
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Monochromatic and rainbow monotone paths

by Andrea Freschi

For every n € Z*, we write [n] to denote the set of the first n positive integers. We say a path
T1Ty . .. xs with vertices in [n] is monotone if x; < 9 < -+ < 5. Given an edge-colouring of the
complete graph with vertex set [n], an (-flash is a monochromatic monotone path with ¢ edges.
Similarly, a k-rainbow is a rainbow monotone path with k edges. We let f(¢, k) be the smallest
n € ZT such that every edge-colouring of the complete graph with vertex set [n| yields either an
(-flash or a k-rainbow.

Lefmann, R6dl and Thomas proposed the following conjecture.

Conjecture 1 (Lefmann, Rédl and Thomas [3]). For every k,¢ € Z+ we have f({,k) = ¥~ + 1.

The following construction shows the conjecture is sharp. Label the vertices of [(*~1] with strings
{1,2,...,0}* ! in lexicographic order. For every z,y € [n] with x < ¥, colour the edge zy with
colour i € [k — 1] so that the ith bit of the string associated to z is strictly smaller than the ith bit
of the string associated to y. It is easy to check that such edge-colouring does not yield an ¢-flash
nor a k-rainbow.

Lefmann, Rédl and Thomas proved that the conjecture is true provided /¢ is substantially larger
than k. This was recently improved by Girao et al.

Theorem 1 (Girao, lllingworth, Michel, Savery and Scott [I]). For all € > 0, there exists C. > 0
such that if € > C.k*(1og k)%, then J(€,k) = (71 4 1.

Conversely, the conjeture remains open when ¢ is small compared to k. Lefmann, Rodl and
Thomas verified the conjecture for £ < 2 and k£ < 4. The case ¢ = 3 is still open and of interest.

Problem 2. Show that f(3,k) = 3"+ 1.

Girao et al. [I] also introduced a natural generalisation of Conjecture [1| to tournaments. Recall
that a tournament is a complete graph whose edges are assigned an orientation. A walk xqxs ... x4
within a tournament is oriented if the edge z;x; ;1 is oriented from z; to x;y 1, for every i. Given
an edge-colouring of a tournament, an /-flash is a monochromatic oriented walk with ¢ edges!T]
Similarly, a k-rainbow is a rainbow oriented walk with k edges. We let t(¢, k) be the smallest
n € Z% such that every edge-colouring of an n-vertex tournament yields either an ¢-flash or a
k-rainbow.

Conjecture 3 (Girao, Illingworth, Michel, Savery and Scott [I]). For every k,{ € Z* we have
tl, k) =01+ 1.

Note that the special case of Conjecture [3| where the tournament is transitive corresponds pre-
cisely to Conjecture 1, Conjecture |3|is wide open for any ¢ > 2 and k > 3.

Problem 4. Show that t(2,k) = 271 4 1.

In [I] the authors state that resolving Problem {| would immediately imply an analogue of
Theorem [1] for (¢, k), using their proof methods.

It is worth to remark that researchers have also proved upper bounds for f(¢, k) and ¢(¢, k) that
hold for every k,¢ € Z*, see [2] and [1].

!By ¢ edges, we mean that the walk has the form z125 ... 24,1 where an edge may appear multiple times along
the walk.
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The Anti-Ramsey number of perfect matching in k-graphs

by Nina Kamcev, Tadej Petar Tukara

The anti-Ramsey number ar(n, k, M) of an s-matching M; is the smallest integer ¢ such that

)

any (surjective) c-colouring of the complete n-vertex k-graph K contains a rainbow s-matching.

We propose the following conjecture of Guo, Lu and Peng.

Problem 1. For some € = €(k), there is n such that for n < ks(1+ ),

(k(sfkl)fl) + 2, n € (ks,ks(1+¢)),
ar(n, k, M) = (k(sfkl)fl) + (k/§—1) + 2, n = ks, k even,
() + 4 42 n— kb odd

The conjecture is proved for & = 3 by Guo, Lu and Peng[I], and we suggest proving it for
arbitrary k and n = ks (perfect matchings). We believe that the case n = ks is the most interesting
because of the surprising lower-bound construction (see below) which distinguishes it from all other
cases. Problem [2]is an elementary problem which we think implies Problem [I] Before stating it,
let us discuss the problem more closely.

The lower bound ar(n, k, M) > (k(sfkl )71) + 1 comes from the following construction proposed
by Ozkahya and Young. If G is an M,_;-free k-graph (e.g. a clique on k(s — 1) — 1 vertices), then

ko

one can colour GG injectively, and KP \ G with a new colour, say ‘*’ to obtain a lower bound of

ar(n, k, M) > ex(n, k, Ms_1) + 1. (0.1)

For n = ks, Guo, Lu and Peng found a better construction. We summarise this construction for
k = 3, which is also tight: let W = {n,n — 1,n — 2,n — 3}. Colour the edges in [n] \ W injectively
(note that these edges also form the maximal M, ;-free hypergraph). Then introduce three now
colours, cs = cyn\s for S C W with |S| = 2, and colour each e with eNW = S by cg. The remaining
edges all get colour *. This construction uses three more colours than due to Ozkahya and
Young.

The following is an elementary problem which should imply Problem [I but this implication
should certainly be checked.

Problem 2. Let W be a set of size k + 1, and let P(W) denote the family of all subsets of W,
excluding O and W. Let f : P(W) — N be a colouring such that for any partition Sy U Sy U--- 1S,
of W,

Hf(sl)v f(S2)7 te 7f(St)}| S t—1.

Then the tmage of f contains at most

{(k/;“_l) +1, k even,
1
2

(i) + 1,k odd

colours.

Remark n > ks(14€). There is a close connection between ex(n, k, Mj), the extremal number of
M; (i.e. the Erdés matching conjecture), and the corresponding anti-Ramsey problem, as indicated
by . However, for larger n there is another competing construction for ex(n, k, M), so the
problem gets perhaps more complex.
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An Ore-type theorem for Berge cycles in hypergraphs

by Nina Kamcev

Ore’s theorem is a strengthening of Dirac’s theorem. It states that if a graph G has the property
that d(u) 4+ d(v) > |V(G)| for any two non-adjacent vertices u and v, then G is Hamiltonian.

There are numerous hypergraph extensions of Dirac’s theorem, as cycles and degrees can be
defined in multiple ways. Ore’s theorem is less explored, and Li, Lu and Luo recently proposed the
following problem on Berge cycles [1].

A Berge cycle of length ¢ is a collection of ¢ distinct edges ey, es,...,6; € E(H) and t distinct
vertices vy, vg, ..., vy € V(H) such that {v;,v;11} C e; for every i € [t], where v;1; = v;. A
Hamiltonian Berge cycle of a hypergraph H is a Berge cycle with ¢ = n.

The 2-shadow (or shadow ) of a hypergraph H, denoted by OH, is the simple 2-uniform graph
with V(OH) = V(H) and wv € E(OH) if and only if {u,v} C e for some e € H.

Problem 1. Let r > 3 be a fized integer. There exists dy = do(r) and ng = ng(r) such that for
every n > ng the following holds: if H is an n-vertex r-uniform hypergraph such that every pair of
nonadjacent vertices u,v € V(H) satisfies

don(u) + dop(v) = 1 + do,
then H contains a Hamiltonian Berge cycle.

Li, Lu and Luo proved the conjecture for r = 3, but they also conjectured that in this case, the
statement should hold with dy = 1. They remark that their methods do not seem to address the
case r > 4.

If true, the statement would be sharp, by considering a complete n — 1-vertex hypergraph with
an additional vertex of degree 1.
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Covering the permutohedron by hyperplanes

by Gyula Karolyi

Consider those points in the n-dimensional space whose coordinates form a permutation of the
first n positive integers. The elements of this set P, are the vertices of a convex (n — 1)-dimensional
polytope called the permutohedron (spelled also as permutahedron) IT,,_;. This polytope has many
fascinating properties and can be used to illustrate various concepts in geometry, combinatorics and
group theory. An almost cover of a finite set in the affine space is a collection of hyperplanes that
together cover all points of the set except one. An application of the polynomial method yields the
following analogue of the Alon-Fiiredi theorem [I]; see [2].

Theorem 1. Every almost cover of the vertices of 11,1 consists of at least (Z) hyperplanes. This
bound is sharp.

In comparison, all vertices of II,,_; are contained in just one hyperplane Hy of equation fy(z) =
Z?zl T; — (";rl) = 0, and even when II,,_; is embedded into R"~!, its vertices can be covered by n

hyperplanes.
Problem 1. How many affine hyperplanes different from Hy are needed to cover all points of P, ?

It is clear that the hyperplanes of equation z; =i, 1 < ¢ < n cover P,. Each of them contains
exactly (n — 1)! points of P,, and their intersections with P, are pairwise disjoint. The same is
true for the hyperplanes of equation x; = 1. If n > 4 is even, then one can do even better: The
hyperplanes of equation 1 +z; = n+1, 2 < 5 < n cover F,. Each of them contains exactly
n(n — 2)! points of P,, and their intersections with P, are pairwise disjoint. We believe that these
examples are extremal in the following sense.

Conjecture 2. Suppose that the vertexr set of I1,,_1 is contained in the union of the hyperplanes
H,,... H, different from Hy. If n is odd, then m > n. If n > 4 is even, then m > n — 1.

Consider a hyperplane H not parallel to Hy, it intersects Hy in a 1-codimensional affine subspace.
To cover P, by n or less such hyperplanes one needs to find such an H which intersects P, in at
least (n — 1)! points. H has an equation of the form f(x) = 0, where f is a linear polynomial, in
this case we write H = H(f). Then H(g) N Hy = H(f) N Hy if and only if there exist a, § € R,
a # 0 such that ¢ = af + Bfy. Apart from such equivalence, it seems that H(f) intersects P,
in more than (n — 1)! points if and only if n is even and f = x; + x; — (n + 1) for some i # j.
|H(f) N P,| = (n—1)! occurs in each dimension for f = z; —z; — 1, and also for f = z; + z; — n,
f=zi+x;—(n+1), f=x,+2x; — (n+2) when n is odd. From these examples one can construct
various economical hyperplane covers of P,. For example, the hyperplanes of equation z, = 1,
xn—x; = 1,1 <i<n-—1cover P, for every n, whereas the hyperplanes of equation 21 = (n+1)/2,
1 +xj=n+1 2<j<ncover P, when n is odd.

Conjecture 3. If n is odd, then every hyperplane different from Hy contains at most (n—1)! points
of P,.

Were this true, it would easily imply Conjecture [2]
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Zarankiewicz problem for polygon visibility graphs

by Balazs Keszegh

Given a simple polygon P and two points p,q € P we say that p and ¢ are mutually visible
with respect to P (or that they ‘see’ each other), if the straight-line segment pq is disjoint from the
exterior of P. The wvisibility graph of P consists of vertices that correspond to the vertices of P and
edges that correspond to pairs of mutually visible vertices.

Problem 1. Does every n-vertex K -free polygon visibility graph have Oy(n) edges?

Induced subgraphs of polygon visibility graphs are equivalent to curve wvisibility graphs which
are visibility graphs of points on a Jordan curve. Two vertices in such a graph are adjacent if the
straight-line segment between their corresponding points is disjoint from the exterior of the curve.
Du and McCarty [3] mention the following open problem which is a generalization of the above
problem:

Problem 2 ([3]). Does every n-vertex K;;-free curve visibility graph have Oy(n) edges?

With Ackerman [I] we proved various almost-linear upper bounds for both cases and linear
upper bounds in some special cases. On the other hand we showed that the answer is false for the
even more general class of curve pseudo-visibility graphs. See also the survey of Davies et al. [2]
for other related problems.
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Balanced tricolor hexagon free colorings

by Zoltan Loréant Nagy

Definition 1. A balanced tricolor hexagon is a Cg edge-colored with 3 colors, in which opposite
edges are colored with the same color.

Problem 1. Is it true that if n € N is large enough that there exists a 1-factorisation (a.k.a. proper
(2n — 1)-coloring of the edge set) of Ks, with the following property: it does not contain balanced
tricolor hexagons.

A variant of this just asks for infinitely many values of n, or a dense subset A C N where it
holds for all n € A.

Context:

An analogue of this problem asks for the existence of a 1-factorisation of Ks, that does not con-
tain balanced bicolor quadrilaterals. (Perfect 1-factorisations work fine, for instance, where a 1-
factorisation is perfect if every pair of 1-factors of the factorization induces a Hamiltonian cycle;
see e.g. [].)

Motivation: to prove a Conjecture of Fiiredi and Ruszinké [I] on the linear Turan number of
grids exl(f;z(n, G3x3) grids; if the answer for Problem is affirmative, I can deduce the statement of
the conjecture.

Closely related: Erddés-Brown-Sos girth problem, and a conjecture of Linial, which can be
seen as 1-factorization problem in a bipartite setting. Linial defines a cycle in a Latin square L to
be a set of rows A, a set of columns B, and a set of symbols C, with |A| + |B| + |C| > 3, such that
the A x B subarray of L contains at least |A| + |B| 4+ |C| — 2 symbols in the set C. He defines the
girth of a Latin square L to be the minimum of |A| + |B| + |C| over all such cycles in L. These
definitions are motivated by the Brown-Erd6s—Sés problem in extremal hypergraph theory, and in
particular by an old conjecture of Erd&s on the existence of high-girth Steiner triple systems, which
we recently proved in [3].

Conjecture 2 (Linial, proven in [2] by Kwan, Sah, Sawhney, & Simkin). If N > N, then there
exists an N x N Latin square without “cycles” shorter than g.
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Chromatic number of Davenport-Schinzel graph

by Domotor

Problem 1. Given a finite collection of planar segments, define a graph whose vertices are the
segments and uv is an edge if segments u and v intersect such that there is no segment directly
under their intersection point, i.e., on the vertical downward halfline starting at w N wv. Is the
chromatic number of this graph bounded?

It is known that such a graph, whose edges correspond to the complexity of the lower en-
velope, can have a slightly superlinear number of edges; see https://en.wikipedia.org/wiki/
Davenport-Schinzel_sequence. The connection to Davenport-Schinzel sequences gives the fol-
lowing almost equivalent reformulation.

Problem 2. Given a sequence of symbols, with no A..B..A..B pattern, define a graph whose vertices
are the letters and AB is an edge if the letters A and B are somewhere adjacent. Is the chromatic
number of this graph bounded?


https://en.wikipedia.org/wiki/Davenport-Schinzel_sequence
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Small Teaching Sets

by Domotor
This is a long-standing open problem:

Problem 1. If the VC-dimension of a family F is d, then is there a set ' € F and a set of O(d)
elements, X = {x1,..., %0y} such that in the restriction of F to X no other set is mapped to F'’s
image?

The best bound that is known is that there is an X of size O(d?). For a summary of results, and
why the greedy algorithm doesn’t work, see Lower Bounds for Greedy Teaching Set Constructions by
Spencer Compton, Chirag Pabbaraju, Nikita Zhivotovskiy https://arxiv.org/abs/2505.03223.
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Poset saturation

by Domotor

For a finite poset P, a family F of subsets of [n] is called P-saturated if it does not contain
an induced copy of P, yet adding any other set to F creates such a copy. The minimum size of
a P-saturated family is denoted by sat*(n,P). The star is there because sat(n, P) stands for non-
induced saturation, but that is less interesting. Somewhat selfishly, I recommend Balazs Keszegh,
Nathan Lemons, Ryan R. Martin, Domotor Palvolgyi, Balazs Patkos: Induced and non-induced
poset saturation problems https://arxiv.org/abs/2003.04282 as an introduction.

My favorite open problems about this are the following.

Problem 1. Is it decidable for a poset P whether sat*(n, P) is bounded or not?

We know almost nothing about this, except that certain glueing operations don’t change bound-
edness; see Gluing Posets and the Dichotomy of Poset Saturation Numbers by Maria-Romina Ivan,
Sean Jaffe https://arxiv.org/abs/2503.12223.

However, the following is still open.

Problem 2. Is sat*(n, Py x Py) bounded if and only if sat*(n, P;) and sat*(n, Py) are both bounded?

Here P, P; means that the poset P; is over the poset P; (or maybe the other way around, right
now I don’t remember).

Problem 3. For which k is it true that if we take the poset of k independent chains on two elements,
kCy, then sat*(n, kCy) is bounded?

It was shown in Poset saturation of unions of chains by Shengjin Ji, Balazs Patkos, Erfei Yue
https://arxiv.org/abs/2505.23128 that this is bounded for all £ = (Qtt) +1, while unboundedness
is only known for £ = 2; the best lower bound is 3”; L proved in Induced Saturation of the Poset
2C5 by Ryan R Martin, Nick Veldt https://arxiv.org/abs/2408.14648.

Problem 4. Is sat*(n, P) = O(1) or ©(n) for every poset P?

Here from below the best bound is 2(y/n) (see The induced saturation problem for posets by
Andrea Freschi, Simén Piga, Maryam Sharifzadeh, Andrew Treglown https://arxiv.org/abs/
2207.03974) while from above only O(n) is known, where ¢ = ¢(P) (see A Polynomial Upper
Bound for Poset Saturation by Paul Bastide, Carla Groenland, Maria-Romina Ivan, Tom Johnston
https://arxiv.org/abs/2310.04634). Of particular interest is the so-called diamond poset, for
which very recently a lower bound of "T“ was proved; see The Saturation Number for the Diamond
is Linear by Maria-Romina Ivan, Sean Jaffe https://arxiv.org/abs/2507.05122.
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Planar Lattices and Equilateral Odd-gons
by Méaté Vizer

Theorem 1 (Ball, 1973). The square lattice Z* does not contain an equilateral n-gon if n is odd.
The lattice Z* contains a convex equilateral n-gon if n is even.

Definition 2. A planar lattice L is called an integral lattice if for every x,y € L, the inner product
T -y 15 an integer.

Definition 3. For a planar lattice L, let D(L) denote the area of a fundamental parallelogram of
the lattice L. The square-free part of D(L)? is denoted by v(L).

Theorem 4 (Maehara). A planar lattice L contains a convex equilateral n-gon for some n # 4 if
and only if L is similar to an integral lattice.

Theorem 5 (Maehara). Every planar integral lattice L contains a convex equilateral n-gon for
every even n > 4. A planar integral lattice L contains an equilateral n-gon for some odd n > 3 if
and only if v(L) = 3 (mod 4).

Theorem 6 (Machara). For a planar lattice L, the following three are equivalent:
1. L contains an equilateral triangle.
2. L contains a convex equilateral n-gon for every n > 3.

3. L is similar to an integral lattice L' with v(L") = 3.

Theorem 7 (Ilino, Sakiyama). Let n > 3 be an odd number. If a planar integral lattice L contains
an equilateral n-gon, not necessarily convex, then n > p for every prime factor p of v(L).

Problem 1. Let n be an odd integer with n > 3. Find the condition on a planar lattice L so that
L contains an equilateral n-gon.

For small values of n, this problem has been solved with the help of computer-aided searches:

Theorem 8. Let n be an odd integer with 3 < n < 29. For a planar lattice L, the following three
conditions are equivalent:

1. L contains an equilateral n-gon.
2. L contains a convex equilateral k-gon for every integer k > n.

3. L is similar to an integral lattice L' such that v(L') =3 (mod 4) and the largest prime factor
p of v(L') satisfies p < n.

Problem 2. Find a non-computer-aided proof of the above theorem.
However, for larger values of n, a complete answer remains unknown.

Conjecture 3. The above theorem holds for all odd integers n > 3.
Additional problem for planar lattices:

Problem 4. Is the existence of a conver and a non-convexr equilateral n-gon in a planar integral
lattice always equivalent? That is, does the existence of one imply the existence of the other for all
n and all planar integral lattices? What about non-integral lattices?
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On the order of intersecting hypergraphs
by Méaté Vizer
Definition 1. The order of a hypergraph H is the number of non-isolated vertices in H, denoted
by Ord(H). A hypergraph is called intersecting if every pair of distinct hyperedges has a non-empty

intersection. A hypergraph H is called \-intersecting if every pair of distinct hyperedges shares
exactly A vertices.

Theorem 2 (Cambie, Kim, Lee, Liu, Tran). Let k, A € N with A < k and H be a A-intersecting
k-uniform hypergrah that is not a sunflower. Then

Ord(H) < %(k — N2+ Ok — A2+ (k — \)?).

Moreover, this bound is asymptotically tight when A = o(k).

There is a similar notion of sunflower for intersecting hypergraphs, namely trivial intersecting
hypergraphs, in which all edges share a common vertex. Note that being a non-trivial intersecting
k-graph is a stricter condition than being a non-sunflower.

Problem 1. For fixed \ and sufficiently large k, is it true that a non-trivial A-intersecting k-uniform

hypergraph has order bounded by (1 + 0(1))% ?
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Erdés—Szekeres with colored pairs

by Ji Zeng

Let f(n) be the smallest number N such that within any N points in the plane in general
position with their pairs colored red or blue, there exists n points in convex position with their
pairs all having the same color.

Problem 1. Give proper estimate of f(n).

Let R(P,, P,, Py, Py, K4) be the 3-uniform vertex-ordered Ramsey number for an n-path
in the first color or the second color, a 4-path in the third color or the fourth color, and a 4-

clique in the fifth color. I can encode the geometric and chromatic information to argue that
f(n) < R(P,, P,, Py, Py, Ky). I can also argue that R(P,, P,, Py, Py, K4) < 90(n?logn)

Problem 2. Is is true that R(P,, P,, K4) < 200 ?

2n74) —

Let me remark that the ErdGs—Szekeres cup-cap theorem is essentially R(P,, P,) = (n72

20 - Of course we can also pivot the direction and work on variations of this problem.



