
Preliminary Schedule for the Extremal Combinatorics group:

Sunday

Arrival at the hotel before 12:30.
12:30-14:00 Lunch

15:00 Short introduction/presentation of problems
18:00 Dinner

Monday-Wednesday

7:30-8:30 Breakfast
9:00-17:00 Working in groups of 3-5

12:20-14:00 Lunch
16:45 Presentations of daily progress

18:00 Dinner

Thursday

7:30-8:30 Breakfast
9:00-17:00 Working in groups of 3-5

12:20-14:00 Lunch
14:15 Summary of the progress

Check-out.
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The span-closed sets conjecture

by Sam Adriaensen

A family F of sets is called union-closed if for any two sets A,B ∈ F , their union A ∪ B is
also contained in F . The union-closed sets conjecture is a long-standing conjecture in extremal set
theory, stating that for every finite union-closed family F ̸= {∅}, there exists an element x lying in
at least half of the members of F . Using Shannon’s entropy, it was recently proved that there is an
element x lying in at least 38% of the members of F [1, 2].

Note that there are union-closed families in which no element lies in more than half of its
members, e.g. when is the power set of a finite set.

Typically, a problem in combinatorial set theory has a q-analog. This means that we translate
the problem from a set to an Fq-vector space. The notion of a “subset of size k” is transformed into
a “subspace of dimension k”, and the notion of “union” is replaced by “(linear) span”.

Call a family F of subspaces of V := Fn
q span-closed if for any two subspaces A,B ∈ F , their

span ⟨A,B⟩ is also contained in F . Let
(
V
k

)
q

denote the set of k-dimensional subspaces of V .
Define the quantity f(F) as

f(F) = max
x∈(V1)q

|{A ∈ F ∥x ≤ A}|
|F|

.

Problem 1 (Span-closed sets conjecture). Prove (or disprove) that among all span-closed families
̸= {0} of V = Fn

q , the quantity f(F) is minimised by taking F to be the family of all subspaces of
V .

There are however multiple ways to yield sensible q-analog of the union-closed sets conjecture.
Let [n] denote the set {1, . . . , n} and let 2[n] denote its power set. The union-closed sets conjecture
can be reformulated as follows: For every non-empty finite union-closed family F ⊆ 2[n], there
exists an (n− 1)-element subset U ⊂ [n] containing at most half of the members of F .

Define the quantity g(F) as

g(F) = min
U∈( V

n−1)q

|{A ∈ F ∥A ̸≤ U}|
|F|

.

Problem 2 (Span-closed sets conjecture, second version). Prove (or disprove) that among all non-
empty span-closed families of V = Fn

q , the quantity g(F) is maximised by taking F to be the family
of all subspaces of V .

Note that by switching to orthogonal complements, the second version can be restated as looking
for the 1-dimensional subspace that occurs the least as a subspace of the elements of an intersection-
closed family in Fn

q .
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The maximum number of edges in a K6-minor-free graph of girth 5

by János Barát

We use n for the number of vertices of G, and m for the number of edges. The following is a
fundamental question in extremal graph theory:
How many edges can an n-vertex Kt-minor-free graph have and what do the extremal graphs look
like?

We would like to add a girth condition.
What is the maximum number of edges in a Kt-minor-free graph with n vertices and girth g?

We obtained some results in this direction. In particular for t = 4, 5 and g = 5, see [1, 2].
Aigner-Horev and Krakovski [3] proved that any K6-minor-free graph of girth 6 has at most 3n− 6
edges. We are still mostly interested in the case g = 5.

Problem 1. What is the maximum number of edges in a K6-minor-free graph with n vertices and
girth 5?

This is probably a difficult problem. We have a conjecture. If it is true, then it would have
consequences to list coloring. There is a recent paper, which could be relevant: [4].
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The trifference problem and its generalizations

by Anurag Bishnoi

A set C ⊆ {0, 1, 2}n is called a trifferent code (of length n) if for any three distinct x, y, z in
C there is an index i ∈ [n] such that {xi, yi, zi} = {0, 1, 2}. The trifference problem asks to find
the largest size T (n) of a trifferent code of length n. The exact values of T (n) are only known for
n ≤ 9, and the main questions have been to understand the asymptotic behaviour of this function.
A folklore upper bound of

T (n) ≤ 2(3/2)n

can be proved via a simple recursion of T (n) ≤ 3T (n − 1)/2, while the best lower bound, due to
Körner and Marton from 1988 is

T (n) ≥ (9/4)n/5.

Recently, the upper bound was improved by Bhandari and Khetan [1] to

T (n) ≤ cn−2/5(3/2)n.

The main idea is to first prove that for any subset S of {0, 1, 2}n we have

T (n) ≤ TS(n)3
n/|S|,

where TS(n) is the largest trifferent code restricted to S, and then find a special S for which they
can prove good upper bounds on TS(n). For these upper bounds they use the Turán number of
bipartite graphs.

Problem 1. Give further improvements to the upper bound by improving their analysis or finding
a better S.

Another direction is to look at the generalization of the problem where we study the maximum
size T (n, k) of a C ⊂ {0, 1, 2, }n such that for any three x, y, z in C, there exists at least k indices i
for which {xi, yi, zi} = {0, 1, 2}. It’s clear that for T (n, 1) = T (n) and that T (n, n) = 3. But what
about other k’s in the middle of these extremes?

Problem 2. Determine the asymptotic behaviour of T (n, k) as k varies from 2 to n− 1.

It would also be interesting to look at the linear version of this problem (see for example [2]),
where the code C is restricted to be a vector subspace of Fn

3 .
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Cliques in a graph and its complement

by Hilal Hama Karim

Given a graph G, let N (H,G) denote the number of copies (as a subgraph) of H in G. Let
G denote the complement graph of G, and n denote the number of vertices of G. Starting from
the obvious, counting cliques of size two, N (K2, G) +N (K2, G) =

(
n
2

)
. The next step of counting

triangles comes from the work of Goodman [1]:

N (K3, G) +N (K3, G) =

(
n

3

)
− 1

2

∑
v∈V (G)

deg(v)(n− 1− deg(v)). (0.1)

The main question is that can there be a similar formula for counting larger cliques in a graph
and its complement?

Problem 1. Determine a function f that may depend on n and the degrees or the number of edges
in G, or something else, such that for t ≥ 4

N (Kt, G) +N (Kt, G) =

(
n

t

)
− f.

For values of n below the diagonal Ramsey number R(t, t), there can be graphs with the same
number of edges but different values for the left hand side, showing that in this case f cannot
depend only on the number of edges (besides n). However, one may consider the problem for n
large.

Restriction to regular graphs, or further to fixed regularity degrees, is still interesting. This may
help in determining exact results in generalised regular Turán problems. For instance, a result in
[2] determines the maximum regularity degree, regex(n, T ), among n-vertex regular graphs that do
not contain a tree T on t vertices. Together with this, (0.1) helped in finding the exact result for
the generalized regular Turán number rex(n,K3, Pt), the maximum number of triangles in n-vertex
regular graphs that do not contain a path on t vertices [3].

A variant of this problem is to determine the sum of the number of cliques in G and G that
contain a fixed vertex. For a vertex u ∈ V (G), let Kt(u), and Kt(u) denote the number of t-cliques
that contain u in G and G, respectively. Nair and Vijayakumar [4] resolved the case t = 3. They
showed that if G has m edges, then for every u ∈ V (G),

K3(u) +K3(u) =
∑

v∈N(u)

deg(v)−m+
1

2
(n− deg(u)− 1)(n− deg(u)− 2),

where N(u) is the set of neighbors of u in G.
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Linearity of generalized Turán problems
by Dániel Gerbner

Given graphs H and F and a positive integer n, the generalized Turán number ex(n,H, F ) is the largest number of
copies of H in n-vertex F -free graphs. Alon and Shikhelman [1] determined the graphs F with ex(n,K3, F ) = O(n).
Similar characterization for forests in place of K3 follows from their results. Gerbner and Palmer [3] determined
the graphs F with ex(n,Ck, F ) = O(n). Gerbner [2] determined the graphs F with ex(n,K2,t, F ) = O(n). What
about other graphs, in particular larger cliques? We can also replace linearity by some other bound. What are the
graphs F with ex(n,K3, F ) = O(n2)? What are the graphs F with ex(n,K3, F ) = o(n2)? In general, for any H we
know what graphs F have ex(n,H, F ) = o(n|V (H)|) by another result of Alon and Shikhelman, and we also know the
graphs F with ex(n,H, F ) = o(n) (which are the same as graphs with ex(n,H, F ) = O(1) by unpublished results of
Gerbner and Methuku.
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Counting fixed perimeter polygons
Kenneth Moore

One of Erdős’s most famous open problems is to bound the number of unit distance pairs that
may be spanned by n points in the plane. A variation of this that has been studied is bounding
the number of unit-perimeter triples, which is also difficult. We suggest two explorations in this
direction.

Problem 1. What is the maximum number of convex k-gons with perimeter 1 spanned by n points
in the plane?

Take an ellipse focussed at (0, 0) and (1
4
, 0), with major axis length 1

2
. Place

⌊
n
2

⌋
−1 points below

the x-axis on the ellipse, and
⌈
n
2

⌉
−1 above. This yields Ω(n2) unit perimeter convex quadrilaterals

from n points, and similar constructions follow for any even k. The trivial lower bound is therefore
Ω(n⌊k/2⌋). A better lower bound is known for k = 3, the main ideas coming from [2], and later
improvements from [1]. These two papers also explain how to achieve the best known upper bound
of Oε(n

9/4+ε) for k = 3 using point-curve incidence bounds, and this technique can be applied for
larger k as well. It is currently unclear how to use this technique to show anything as strong as
O(nk−1) however.

Alternatively, sum all distances between pairs of points in the k-tuples. We refer to this sum as
the ‘total distance’ of a k-tuple.

Problem 2. What is the maximum number of k-tuples with total distance 1 spanned by n points in
the plane?

References
[1] R. Goenka, K. Moore, & E.P. White, Improved Estimates on the Number of Unit Perimeter

Triangles, Discrete Comput. Geom., 2023.
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On graphs without cycles of length 0 modulo k

by Yandong Bai, Binlong Li

For two integers k > ℓ ⩾ 0 satisfying that kZ+ ℓ contains even integers, what is the maximum
number of edges in an n-vertex graph containing no cycles of length ℓ mod k. By confirming a
conjecture proposed by Burr and Erdős [5] in 1976, Bollobás [2] proved that such a graph can
contain at most a linear number of edges. Define cℓ,k to be the smallest constant such that every
n-vertex graph with cℓ,k · n edges contains a cycle of length ℓ mod k. For k > ℓ ⩾ 3, Sudakov and
Verstraëte [9] showed that ex(k,Cℓ)

k
⩽ cℓ,k ⩽ 96 · ex(k,Cℓ)

k
, where ex(k, Cℓ) is the maximum number of

edges in a k-vertex graph containing no cycles of length ℓ. It follows that for even ℓ ⩾ 4 determining
cℓ,k is as hard as the famous extremal problem of determining the Turán number of the even cycle
Cℓ. To our best knowledge, precise values of cℓ,k are only known for k ⩽ 4.

Theorem 1. For 4 ⩾ k > ℓ ⩾ 0, the following results hold.

• c0,2 =
3
2
.

• c0,3 = 2. Chen and Saito [3].

• c1,3 =
5
3
. Bai, Li and Pan [1].

• c2,3 = 3. Dean et al. [4]; Saito [8].

• c0,4 =
19
12

. Győri et al. [7].

• c2,4 =
5
2
. Gao et al. [6].

Here we propose the following problem for possible discussion with the workshop participants.

Problem 1. Whether the following statements hold or not for k ⩾ 5:

(1) c0,k = k − 1 for odd k; the complete bipartite graph Kk−1,n−k+1 is an extremal graph.

(2) c0,k = k−1
2

for even k; if (k − 2)|(n − 1) then any graph whose blocks are Kk−1 is an extremal
graph.

(3) c1,k =
k
2

for odd k; if (k − 1)|(n− 1) then any graph whose blocks are Kk is an extremal graph.

(4) c2,k = k for odd k; the complete bipartite graph Kk,n−k is an extremal graph.

(5) c2,k =
k+1
2

for even k; if k|(n− 1) then any graph whose blocks are Kk+1 is an extremal graph.
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Turán problems for edge-ordered paths

Gaurav Kucheriya

Definition 1. An edge-ordered graph is a finite simple graph G together with a linear order on its
edge set E. The edge-order is given by an injective labeling L : E → R. For the purpose of this
writeup, we focus on edge-ordered paths, denoted by PL

k , on k > 1 vertices whose edge order is given
by the labeling L.

An isomorphism between edge-ordered graphs must respect the edge-order. We say that the edge-
ordered graph G contains another edge-ordered graph H, if H is isomorphic to a subgraph of G
otherwise we say that G avoids H.

For a positive integer n and an edge-ordered graph H, let the Turán number ex<(n,H) be the
maximal number of edges in an edge-ordered graph on n vertices that avoids H. Fixing the forbidden
edge-ordered path PL

k , ex<(n, PL
k ) is a function of n and we call it the extremal function of PL

k .

A systematic study of the Turán problem for edge-ordered graphs was initiated by Gerbner,
Methuku, Nagy, Pálvölgyi, Tardos and Vizer in [3]. We are interested in the following problem:

Problem 1. Bounds on ex<(n, P
L
6 ), where L ∈ {14523, 14532, 15423, 21453}.

The best upper bound on ex<(n, P
L
6 ) for L ∈ {14523, 14532, 15423, 21453} is established in [1].

Theorem 2. ex<(n, P
L
6 ) = O(n · 2O(

√
logn)) for L ∈ {14523, 14532, 15423, 21453}.

The following theorem is from an upcoming paper [2]. Here, Kucheriya and Tardos proved an
upper bound on the extremal function for the edge-ordered path on 6 vertices with the labeling
13254.

Theorem 3. ex<(n, P
13254
6 ) = O(n log2 n).

Also, [3] established a lower bound of n log n for many edge-ordered paths which includes, in
particular, the path P 1342

5 . Moreover from [3] we have ex<(n, P
1342
5 = O(n log2 n).

Problem 2. Can we determine ex<(n, P
1342
5 ), in asymptotic?
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Prescribed intersection numbers in planar sets

Zoltán Lóránt Nagy

Let us consider point sets in a finite projective plane Πq of order q. (Πq might be desarguesian,
up to our taste.)

Definition 1. Let f : L → N be a function which assigns a non-negative integer to every line ℓ ∈ L
of a projective plane Πq of order q. Here we do not require that the plane Πq is desarguesian. An
f -avoiding set S in Πq is a point set where for each line ℓ ∈ L, |S ∩ ℓ| ≠ f(ℓ) holds.

For f -avoiding set S in Πq, we have the following theorem.

Theorem 2 (Héger, Nagy). There exists an f -avoiding set in every projective plane Πq for every
function f .

Problem 1. Suppose that on each line ℓ ∈ L, a set of forbidden values is given by a function
f ∗ : L → 2N.
Determine the maximum value M for which the following holds. For every function f ∗ : L → 2N

which satisfies |f ∗(ℓ)| ≤ M := M(q) for all ℓ, there exists an f ∗-avoiding set in Πq.

M = 1 gives back the previous result.



Small subgraphs with given min degree

Zoltán Lóránt Nagy

Erdős, Faudree, Rousseau and Schelp proved the following.

Theorem 1 (Erdős, Faudree, Rousseau and Schelp [3]). Every graph G on n ≥ k− 1 vertices with
at least (k − 1)n−

(
k
2

)
+ 1 edges contains a subgraph with minimum degree at least k.

Specializing to k = 3, this yields that an n-vertex graphs on 2n− 2 edges have 3-cohesive sets.
This result has been strengthened in the following two directions.

Theorem 2 (Alon, Friedland and Kalai [1]). Let p be a prime power and G be a graph having
average degree d > 2p− 2 and maximum degree ∆(G) ≤ 2p− 1. Then G has a p-regular subgraph.

This celebrated result was obtained by a clever application of a polynomial method, later called
Combinatorial Nullstellensatz. Observe that for k = p, a dense enough graph G contains not only
a subgraph with min degree k but also a subgraph which is k-regular.

Lisa Sauermann recently proved the following strengthening of the theorem of Erdős et al.

Theorem 3 (Sauermann [4]). For every k there exists an ε := εk > 0 such that for every graph G
on n vertices with at least (k− 1)n−

(
k
2

)
+2 edges contains a subgraph on at most (1− ε)n vertices

with minimum degree at least k.

Thus once we have only one more edges, we will find a considerably smaller subgraph with the
properties. What if we have much more edges, how small subgraph can we find then with min
degree k?

Problem 1. Determine the best possible λd,k constant, depending on d and k, for which the following
holds. Let G be a graph on n vertices with average degree d > 2k − 2. Then there is a subgraph
H ⊂ G on at most (λr,t + o(1))n vertices with minimum degree δ(H) ≥ k.

In a problem variant, one might impose conditions on the maximum degree as well, just like in
the AFK theorem.
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Grid drawings of the complete bipartite graph

by Cory Palmer

A three dimensional grid drawing of a graph G is a placement of its vertices at integer lattice
points so that the edges (when drawn as straight-line segments) are pairwise non-crossing.

The complete graph Kn has a grid drawing in [n]×[2n]×[2n] by placing the vertices i = 1, 2, . . . , n
on the moment curve

(i, i2 mod p, i3 mod p)

for a fixed prime p between n and 2n. Because no four of these points lie on the same plane, such
a straight-line drawing has no crossing edges.

For a grid drawing in [a]× [b]× [c] where a ≥ b ≥ c, the volume is abc and the aspect ratio is a/c,
i.e., the ratio of largest and smallest sides. A conjecture of Pach, Thiele and Tóth [1] asks if every
graph of maximum degree 3 has a grid drawing of volume O(n). A recent paper of Balogh and
White [3] used a nice probabilistic argument to show that volume O(n log n) is enough. Actually
more is proved: max degree 3 can be replaced with D-degenerate.

The goal here is to find efficient grid drawings of the complete bipartite graph Kn,n. If we draw
one class of Kn,n as the points (i, 0, 0) and the other class as the points (0, a, b) where a and b are
relatively prime, we get

Proposition 1 (Pach, Thiele, Tóth [1]). There is a grid drawing of Kn,n into a grid of dimensions
O(n)×O(

√
n)×O(

√
n).

This gives a grid drawing of Kn,n of volume O(n2). By another result of Pach, Thiele, Tóth [1],
this is optimal (in the order of magnitude). However, the aspect ratio is O(

√
n), which may be

open to improvement.

Problem 1. Find a grid drawing of Kn,n with aspect ratio less than
√
n.

Minimizing the largest dimension is another reasonable direction.

Problem 2. Find the smallest m = m(n) such that there is a a grid drawing of Kn,n in [m]× [m]×
[m].

There are further nice problems by Cohen et al [2], but I don’t know their status. This would
require some literature review.
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Hyponontiling Wang tiles

by Dömötör Pálvölgyi

Call a finite collection of tiles that can tile the plane if we have to use each tile at least once
tiling.

Problem 1. Is there a collection of at least 3 tiles that is not tiling, but such that after removing
any one tile from it we get a tiling collection?

For example, a set of two non-compatible, tiling singleton tiles is such a collection. I intentionally
didn’t define what I mean by tile because I’m interested in all sorts of constructions - it can be
Wang tiles or your favorite geometric connected or disconnected polygonal or (simply) connected
region with translations or rotations. It is easy to see that on a line we cannot have such a collection
of at least 3 Wang tiles.

Remark. I have also posed this problem on Mathoverflow a couple of month ago.



Nonrepetitive nonhomogenous partition regularity

by Dömötör Pálvölgyi

Problem 1. Is it true that for every k for every k-coloring of the natural numbers there are naturals
a1, . . . , a2l for some l ≥ 2 such that a1 + a3 = 2a2 +2, a2 + a4 = 2a3 +2, ..., a2l−2 + a2l = 2a2l−1 +2
and the color of ai and al+i are the same for every i?

Motivation. Such a sequence is called a repetition. Nonrepetitive colorings have been studied a
lot, going back to the Thue sequence. Recently, a variant of the problem was raised for Euclidean
spaces at EuroComb’23 by Barsse, Gonçalves, Rosenfeld (https://journals.muni.cz/eurocomb/
article/view/35550). This is an attempt to solve some questions left open with a trick from
this classic paper of P Erdős, R.L Graham, P Montgomery, B.L Rothschild, J Spencer, E.G Straus
(https://doi.org/10.1016/0097-3165(73)90011-3). That is where the +2 comes from, without
which the ai’s would form an arithmetic progression, so the statement would be true by van der
Waerden, even giving all monochromatic ai’s. We cannot hope to get all monochromatic ai’s when
the +2 is there, as shown by Erdős et al. There might also be some relation to partition regularity.

Remark. I have also posed this problem on Mathoverflow a couple of month ago.



A favorite problem of mine:
Even Cut Conditions vs Cut Conditions

Nika Salia

Cut Condition (CC): A graph G satisfies the cut condition if, for every partition V (G) = A∪B,
the number of edges between A and B, denoted e(A,B), satisfies e(A,B) ≥ min{|A|, |B|}.

The minimal edge graph satisfying CC is a star.
Even Cut Condition (ECC): A graph G, with an even number of vertices, satisfies the cut con-
dition if, for every partition V (G) = A∪B where |A| = |B|, it holds that e(A,B) ≥ min{|A|, |B|} =
v(G)
2

.
Faudree, Gyárfás and Lehel [1] posited that restricting the maximum degree ∆(G) < v(G)− 1

of a graph with CC results in a different minimal edge count:

e(G) ≥ 3

2
n+O(1);

This conjecture was validated by Jobson, Kézdy, and Lehel [2] through a simple yet elegant
proof involving the decomposition of the graph into 2-connected blocks and analyzing the resultant
weighted tree. Note that, the optimal construction is not 2-connected.

Theorem 1 ([2], Conjectured by [1]). Assume a graph G with ECC and no universal vertex, then

e(G) ≥ 3

2
n− 4.

Open Question: Is ECC sufficient to achieve a similar minimal edge count? Recent findings
by Jobson, Kézdy, and Lehel [2] demonstrated that every 2-connected graph with ECC and without
a universal vertex has at least 3

2
n− 2 edges.1

This problem, particularly with the condition ∆(G) < 100, remains mistery to me, despite
extensive collaboration and efforts.
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Baby project: Planar Saturation

Nika Salia

Recently Clifton and Salia [1] introduced plane-saturated ratio.

Definition 1. A plane graph H is a plane-saturated subgraph of a planar graph G if, when any
edge (potentially introducing new vertices) is added to H, it either introduces a crossing or causes
the resulting graph to no longer be a subgraph of G.

For a graph G, we define the plane-saturation ratio (G) as the minimum value of e(H)
e(G)

over all
plane-saturated subgraphs H of G.

For example, the plane-saturation ratio of a tree or a cycle is one. Let Gk1,k2 denote the class
of planar graphs where at most k1 vertices of degree 1 have the same neighborhood and at most k2
vertices of degree 2 have the same neighborhood.

Theorem 2. For a positive integer k1 and a non-negative integer k2 with (k1, k2) ̸= (1, 0), (2, 0),
every planar graph G ∈ Gk1,k2satisfies

(G) >
1

9 + k1 + 6k2
.

Furthermore, for all non-negative integers k1 and k2 and every positive ϵ, there exists a graph
Gε ∈ Gk1,k2 such that

(Gϵ) <
1

9 + k1 + 6k2
+ ϵ.

Corollary 3. Any twin-free planar graph G satisfies (G) > 1/16.

They conjectured,

Conjecture 1. For non-negative integers k1, k2, any graph G ∈ Gk1,k2 satisfies

(G) >
1

9 + k1 + 6k2
.

This is the best possible bound due to Construction 2 [1]. Of greatest interest is the case
k1 = k2 = 0, where Conjecture 1 would give the following.

Conjecture 2. For a planar graph G with minimum degree at least 3,

(G) > 1/9.

We can also impose further conditions on the plane-saturated subgraph.

Problem 3. What is the smallest possible value of e(H)
e(G)

where G is planar and H is a plane-saturated
subgraph of G with no isolated vertices? (i.e. one is not allowed to embed vertices without edges)

As e(G) < 3v(G) and the minimal degree condition on H gives e(H) ≥ v(H)
2

= v(G)
2

, we always
have e(H)

e(G)
> 1

6
(We also have a page proof for 8

45
). Our best-known construction in this setting

comes from Example 4 which gets arbitrarily close to 1
5
.

Example 4. Let G2n+5 be a twin-free planar graph on 2n + 5 vertices consisting of a matching of
size n, two vertices u1 and u2 adjacent to every vertex of the matching, and a triangle v1v2v3, with
additional edges v1u1 and v2u2; see the left graph in Figure 1.

Let H2n+5 be the plane graph formed by G7 and a matching of size n− 1 embedded in the plane
as in the right graph in Figure 1. The graph H2n+5 is a plane-saturated subgraph of G2n+5.

Problem 4. Which maximal planar graph Gn with n vertices maximizes (Gn)?



. . . . . .

Figure 1: On the left, graph G2n+5 and on the right, graph H2n+5 from Example 4.
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On properly colored spanning trees in edge-colored complete graphs

Shenggui Zhang

Let T0 be a fixed tree. We use T (n, T0) to denote the collection of n-vertex trees that are subdi-
visions of T0. We say that an edge-colored graph is mono-C3-free if it contains no monochromatic
triangles. The following is from a preprint paper of Li, Lu, Su and Zhang [1].

Theorem 1. Let T0 be a tree of k edges and let G be a mono-C3-free edge-colored Kn with n ≥
(k + 2)!. Then there exists a tree T ∈ T (n, T0) such that G contains a PC copy of T .

In the same paper, they made the following stronger conjecture and confirmed the conjecture
when T0 is a star.

Conjecture 1. Let T0 be a fixed tree. Then there is a function f(T0) such that every mono-C3-free
edge-colored Kn with n ≥ f(T0) contains a PC copy of T for each tree T ∈ T (n, T0).

Problem 2. Can we verify the above conjecture for other trees?
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The Extremal Number of Traces of Graphs

by Casey Tompkins

Given two hypergraphs H and F , we say that H contains F as a trace if there is a set S ⊆ V (H)
such that {e ∩ S : e ∈ E(H)} contains a sub-hypergraph isomorphic to F .

This notion originates with the classical Sauer–Shelah–Perles theorem about shattering sets.
Recently, in the same vein as notions like expansions, suspensions, and Berge copies of graphs,
people have been interested in the case when F is a graph and the underlying hypergraph is
uniform.

Let the extremal number for forbidding a graph F as a trace in an r-uniform hypergraph be
denoted by exr(n, TF ). In the case when F is a k-clique and r < k, exr(n, TKk) was determined
for large n by Mubayi and Zhao [1] and exactly by Pikhurko [2]. The case k ≤ r is less understood.
There is a conjecture of Mubayi and Zhao (see Gerbner [3] for some progress).

In the case of r = 3 and F = K2,t, there are asymptotic results (as both t and n go to infinity)
by Luo and Spiro [4]. My first problem concerns the case when F = C4. For this case Luo and Spiro
proved an upper bound of 5

6
n3/2 + o(n3/2) and this was improved by Gerbner [3] to 3

4
n3/2 + o(n3/2).

The best lower bound is 1
2
n3/2 + o(n3/2) with the construction being appending a fixed vertex to

each edge of an extremal C4-free graph (note one can do a tiny bit better by also taking a vertex
disjoint set of triangles in the C4-free graph as hyperedges).

Problem 1. Determine ex3(n, TC4) asymptotically.

My second problem concerns the case when F is a path (or more generally a tree). Let Pk be
the path of length k. For Berge paths the extremal number is well understood for all k and r [6].
When k > r, the extremal construction for Berge paths is taking disjoint hypergraph cliques on k
vertices. For trace paths in the r = 3 case we can take one additional vertex in each clique. Is this
optimal?

Problem 2. Determine ex3(n, TPk) asymptotically.

Note that an argument of Salia shows that we at least have an upper bound of a constant times
n (for any tree as well). There is one other paper on trace graphs due to Qian and Ge [5]. Notably,
they observed that for trace stars K1,t when r = 3, rather than just considering disjoint cliques of
maximum size, it is better to take a clique of size one larger and delete a Steiner system from each
clique. However, this does not work for avoiding trace paths.
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Problem on the number of Maximal Independent Sets

by Zeyu Zheng

A maximal independent set in graph G refers to an independent set I in G such that there does
not exist v ∈ V (G) \ I for which I ∪ {v} is independent. A k-maximal independent set refers to a
maximal independent set of size k. We denote the number of maximal independent sets in G by
mis(G), and the number of k-maximal independent sets in G by misk(G).

The study of the number of maximal independent sets was initiated independently by Miller,
Muller in [3], and Moon, Moser in [4]. They proved the following result
Theorem 1 (Miller-Muller [3], Moon-Moser [4]). Let G be a graph on n vertices. If n ≥ 2, then

mis(G) ≤


3n/3 n ≡ 0 mod 3

4 · 3(n−4)/3 n ≡ 1 mod 3

2 · 3(n−2)/3 n ≡ 2 mod 3

,

where the bound is achieved if and only if G is a disjoint union of 3-cycles and at most two edges.
Wood has provided a new and short proof of the theorem in [6].
Hujter and Tuza considered mis(G) when G is a triangle-free graph. They proved

Theorem 2 (Hujter-Tuza [2]). Let G be a triangle-free graph on n vertices. If n ≥ 4, then

mis(G) ≤

{
2n/2 n ≡ 0 mod 2

5 · 2(n−5)/2 n ≡ 1 mod 2
,

where the bound is achieved if and only if G is a disjoint union of a matching and at most one
3-cycle.

Nielsen first studied misk(G) in [5], and he proved
Theorem 3 (Nielsen [5]). Let G be a graph on n vertices and let 1 ≤ k ≤ n. Then

misk(G) ≤
⌊
n

k

⌋k−(n mod k)⌈
n

k

⌉n mod k

,

where the bound is achieved if and only if G is a disjoint union of ⌊n/k⌋-cliques and ⌈n/k⌉-cliques.
Very recently, He, Nie, Spiro considered misk(G) when G is a triangle-free graph and k ≤ 4 in

[1]. They proved
Theorem 4 (He, Nie, Spiro [1]). Let G be a triangle-free graph on n vertices. For n ≥ 8,

mis2(G) ≤
⌊
n

2

⌋
,

mis3(G) = O(n),

mis4(G) = O(n2),

where the first bound is achieved if and only if G is a comatching of order n.
Our problem concerns misk(G) when G is a triangle-free graph and k = Θ(n).

Problem 1. Let G be a triangle-free graph on n vertices. Let k be an integer in [2n/5, n/2]. Is it
true that

misk(G) ≤ 25k−2n · 5n−2k,

and the bound is achieved if and only if G is a disjoint union of a (5k− 2n)-matching and (n− 2k)
5-cycles?
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