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Abstract We classify the resolution graphs of weighted homogeneous sur-
face singularities which admit rational homology disk smoothing. The
nonexistence of rational homology disk smoothings is shown by symplectic
geometric methods, while the existence is verified via smoothings of neg-
ative weights. In particular, it is shown that a starshaped plumbing tree
gives rise to a weighted homogeneous singularity admitting a rational ho-
mology disk smoothing if and only if the Milnor fillable contact structure
of the link admits a rational homology disk weak symplectic filling.
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1 Introduction

The rational blow–down procedure (intorduced by Fintushel and Stern [5] and
extended by Park [12]) turned out to be one of the most effective operations for
constructing exotic smooth 4–manifolds. In this procedure the tubular neigh-
bourhood of a collection of 2–spheres — with intersection patters given by a
linear plumbing tree, with framings given by the continued fraction coefficients

of − p2

pq−1
for some relatively prime p > q > 0 — is replaced by a rational

homology disk, i.e., with a 4–manifold with boundary which has rational ho-
mology isomorphic to H∗(D

4; Q). (Let G denote the set of all linear plumbing
chains considered above.) It was a natural question to seek for generalization of
this method for other plumbing trees. Seiberg–Witten theoretic considerations
suggested to focus on negative definite plumbing trees (which therefore give
rise to surface singularities) and require that the rational homology disk is a
smoothing of the singularity. In [14] the restrictions on the combinatorics of the
plumbing tree implied by the existence of such a smoothing were explored. The
graphs satisfying the combinatorial constraints have been identified, but the
question of which graphs actually give rise to singularities admitting rational
homology disk smoothing has been left open.

The link YΓ of a singularity SΓ with resolution graph Γ is determined by the
plumbing graph, and according to [3] the 3–manifold YΓ admits a (up to con-
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tactomorphism) unique contact structure, its Milnor fillable contact structure

ξΓ given by the 2–plane field of complex tangencies on YΓ as a link of SΓ . Any
smoothing of the singularity SΓ provides a Stein filling of the Milnor fillable
contact 3–manifold (YΓ, ξΓ). In [14] the more general question of exploring the
existence of weak symplectic rational homology disk fillings of the Milnor fill-
able contact structures on minimal negative definite plumbing trees have been
treated, and the same conclusion has been drawn for the combinatorics of these
trees as for surface singularities with rational homology disk smoothings. The
complete answer for the geometric question remained open.

In this paper we provide the complete classification of those plumbing trees
which are minimal, negative definite, starshaped, the central vertex v has fram-
ing at most one less in absolute value than its valency and (a) there is a surface
singularity with this given resolution graph which admits rational homology disk
smoothing, or (b) the Milnor fillable contact structure (YΓ, ξΓ) corresponding
to the plumbing tree admits a weak symplectic rational homology disk filling.
To state the precise result, we need a few definition.

Definition 1.1 A singularity SΓ is called Seifert if the link of the singularity
is a Seifert fibered 3–manifold over the sphere. SΓ is small Seifert if the link
is a small Seifert fibered 3–manifold, i.e., it admits a Seifert fibration over S2

with exactly three singular fibers.

In particular, for example all weighted homogeneous singularities are Seifert
singularities. A singularity is Seifert if and only if it admits a resolution graph
which is a starshaped tree, and the vertices correspond to rational curves. SΓ

is small Seifert if the central vertex (the unique vertex of valency > 2) in a
minimal good resolution is of valency 3.

Definition 1.2 Define QHD3 as the set of all graphs given by Figures 1(a)
through (g) and Figures 2(a) through (e). (In Figure 1(a) p, q, r ≥ 0, in (b)
p ≥ 1, q, r ≥ 0, in (c) q, r ≥ 0, in (d) r ≥ 1, q ≥ 0, in (e) p ≥ 1, q ≥ 0, in (f)
q ≥ 0 while in (g) p, r ≥ 1 and q ≥ 0. In Figure 2 n ≥ 2 for (a), (b) and (c)
and n ≥ 1 for (d), (e) and (f).)

Remark 1.3 Graphs given in Figure 1(a) form the set W of [14]; Figures 1(b)
and (c) form N while the collection of (d), (e), (f) and (g) were called M in
[14]. The graphs of Figure 2(a) are in the class A of [14], the ones of the form
(b) and (c) are in B and (d), (e) and (f) are in C . (For the definition of these
classes of graphs see Subsection 2.3.)
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Figure 1: The graphs defining the class QHD3 of plumbing graphs. In (a) p, q, r ≥ 0,
in (b) p ≥ 1, q, r ≥ 0, in (c) q, r ≥ 0, in (d) r ≥ 1, q ≥ 0, in (e) p ≥ 1, q ≥ 0, in (f)
q ≥ 0 while in (g) p, r ≥ 1 and q ≥ 0.

According to [6] singularities corresponding to the resolution trees in QHD3 are
all taut, that is, the resolution graph uniquely determines the analytic structure
of the singularity. With this terminology in place, the first main result of the
paper is

Theorem 1.4 Suppose that SΓ is a small Seifert singularity with link YΓ .
Assume that Γ is a minimal good resolution graph of SΓ , which is therefore a
negative definite tree with three branches. Then the following three statements
are equivalent:

(1) The singularity SΓ admits a rational homology disk smoothing.

(2) The Milnor fillable contact structure on YΓ admits a weak symplectic
rational homology disk filling.

(3) The graph Γ is in QHD3 .
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Figure 2: The graphs defining the class QHD3 of plumbing graphs. n ≥ 2 for (a), (b)
and (c) and n ≥ 1 for (d), (e) and (f).

For starshaped diagrams with more than three branches the analytic type of the
singularity typically is not determined by the graph itself, hence the formulation
of our result needs a little more care.

Definition 1.5 Define QHD4 as the union of all graphs given by Figure 3(a),
(b) and (c) for n ≥ 2 in each case.
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Figure 3: The graphs (with n ≥ 2) defining the class QHD4 of plumbing graphs

With these preliminaries in place, we are ready to state the second main result
of the paper:

Theorem 1.6 Suppose that Γ is a minimal, starshaped plumbing tree with
at least four branches, and the framing of the central vertex is less than −2.
Then the following statements are equivalent.
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(1) There is a Seifert singularity SΓ with resolution graph Γ which admits a
rational homology disk smoothing;

(2) The Milnor fillable contact structure on YΓ admits a weak symplectic
rational homology disk filling; and

(3) The graph Γ is in QHD4 .

Remarks 1.7 (a) The assumption on the framing of the central vertex is not
essential in the singularity theoretic part of the theorem: a surface singularity
with rational homology disk smoothing must be rational, hence the assumption
on the central framing should be satisfied. Consequently, the equivalence of (1)
and (3) holds without the assumption on the central framing. In the symplectic
topological result (regarding the rational homology disk fillings of the Milnor
fillable contact structure), however, our methods do not work unless the addi-
tional hypothesis on the central framing is assumed. It is reasonable to expect,
though, that the Milnor fillable contact structures on 3–manifolds defined by
negative definite four–legged plumbing trees with central framing (−2) do not
admit rational homology disk weak fillings.

(b) For any Γ ∈ QHD4 there is a weighted homogeneous singularity which
admits a rational homology disk smoothing.

(c) According to [6] the analytic type of the singularity SΓ with Γ ∈ QHD4 is
determined by the analytic type of the central curve in the resolution. It is still
an open question whether for a fixed Γ ∈ QHD4 there is a unique singularity
with the given resolution graph admitting a rational homology disk smoothing,
or there are more analytically distinct such singularities.

A possible interpretation of Theorems 1.4 and 1.6 is that for weighted homo-
geneous singularities smoothing theory and symplectic topolology behaves in
a parallel manner, at least as far as existence of rational homology disk fill-
ing/smoothing goes. This interpretation fits in the line of current results; no-
tice the similarity with the result of Némethi and Popescu-Pampu [10], where a
natural bijection between smoothings and minimal symplectic fillings of cyclic
quotient singularities has been established.

The idea of the proof of the main results can be summarized as follows. Recall
from [14] that if a starshaped graph defines a singularity with rational homology
disk smoothing, or gives rise to a Milnor fillable contact structure with a weak
symplectic rational homology disk filling, then the valency of the central vertex
is 3 or 4. (For a precise formulation of this result, see Theorem 2.11.) If this
valency is 3, then there are three triply infinite families (called W,M and
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N in [14], cf. Remark 1.3) where each member defines a singularity with the
required smoothing. In addition, there are three further families (A,B, C in
[14], cf. also Subsection 2.3) which contain all further such 3–legged graphs.
We will systematically examine all 3–legged element of these further families,
show that for most of them the associated Milnor fillable contact structure
does not admit a weak symplectic rational homology disk filling, and for those
we cannot exclude the existence of such a filling, we construct the rational
homology disk smoothing of the singularity. The nonexistence proofs rely on
symplectic geometric results (notably on McDuff’s result regarding symplectic
manifolds containing symplectic spheres of self–intersection (+1)) and tedious
combinatorial arguments. In principle these arguments could be extended to
examine other symplectic fillings, but the combinatorics (which is already quite
delicate for the case of rational homology disk fillings) can become too complex
to handle. In proving the existence of the smoothing we will apply a result of
Pinkham, formulated in Theorem 2.9, cf. also [14, Section 8.1]. In the 4–legged
case we only have to examine the families A,B and C , and the adaptation of
the same strategy as above, in fact, provides the result.

The paper is organized as follows. In Section 2 the symplectic geometric pre-
liminaries used in the proofs of the main results are listed, together with a quick
outline of the ideas employed in the later arguments. Section 3 deals with small
Seifert singularities, i.e. with those singularities which have starshaped minimal
good resolution graphs with three branches. In Section 4 we address the general
case of Seifert singularities. Finally in Section 5 (for the sake of completeness)
we recall the existence of the smoothings for graphs in classes W,M,N , which
were already discussed in [14].

Acknowledgements: AS was supported by the Clay Mathematics Institute
and by OTKA T49449. Both authors acknowledge support by Marie Curie
TOK project BudAlgGeo. We would like to thank Jonathan Wahl for many
useful correspondances.

2 Preliminaries

2.1 Symplectic geometric preliminaries

Our results rely on the following fundamental theorem due to McDuff.

Theorem 2.1 (McDuff, [8]) Let (M,ω) be a closed symplectic 4-manifold. If
M contains a symplectically embedded 2-sphere L of self-intersection number
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1, then M is a rational symplectic 4-manifold. In particular, M becomes a
the complex projective plane after blowing down a finite collection of symplectic
(−1)-curves away from L .

Remark 2.2 Since a symplectic (+1)–sphere in a symplectic 4–manifold ad-
mits a concave neighborhood, the above statement is equivalent to the fact that
the unique tight contact structure ξst on the 3–sphere S3 admits a unique min-
imal symplectic filling, which is diffeomorphic to the 4–disk [4]. In the present
context the form given by Theorem 2.1 is more convenient for us, since it allows
to consider curves intersecting L in M .

The following two lemmas are based on the above theorem of McDuff and are
proved in [1]:

Lemma 2.3 ([1, Lemma 2.13]) Let (M,ω) be a closed symplectic 4-manifold
containing a symplectically embedded 2-sphere L of self-intersection number
1 and a collection of symplectically immersed 2-spheres C1, . . . , Ck . Suppose
that J is a tame almost complex structure for which L , C1 . . . , Ck are pseu-
doholomorphic. Then there exists at least one J -holomorphic (−1)-curve in
M − L unless L · Ci > 0 and Ci · Ci = (L · Ci)

2 for all i .

Lemma 2.4 ([1, Lemma 2.5]) Let M be a closed symplectic 4-manifold con-
taining a symplectically embedded 2-sphere L of self-intersection number 1.
If C is an irreducible singular or higher genus pseudoholomorphic curve in M ,
then C · L ≥ 3. In particular there are no irreducible singular or higher genus
pseudoholomorphic curves in M − L .

This lemma has the following simple

Corollary 2.5 Let M be a closed symplectic 4-manifold containing a sym-
plectically embedded 2-sphere L of self-intersection number 1. Then there is
no cycle of pseudoholomorphic spheres in the complement L .

Proof If such a cycle existed, by gluing adjacent components around the nodes
we would be able to construct an embedded pseudoholomorphic curve of genus
1 which would contradict Lemma 2.4.

The next lemma easily follows from McDuff’s Theorem 2.1.
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Lemma 2.6 Let M be a closed symplectic 4-manifold containing a symplec-
tically embedded 2-sphere L of self-intersection number 1. Then there is no
symplectically embedded sphere of nonnegative self intersection number in the
complement of L .

Proof Since M is rational, it follows that b+
2 (M) = 1, immediately implying

the lemma.

Lemma 2.7 Suppose that C ⊂ CP2 is a J –holomorphic curve for some almost
complex structure J , in homology [C] = d[CP1] and C has at least two singular
points. Then d ≥ 4.

Proof The line passing through two singular points intersects C with mulit-
plicity at least 4, providing the result.

We record here the following fact which we will apply repeatedly in the sequel:
By the adjunction formula, a pseudoholomorphic rational curve representing the
class 3[CP1] in CP2 must be either immersed with exactly one node (that is a
point where two branches of the curve intersect transversely) or it must have
exactly one nonimmersed point which is necessarily a (2, 3)-cusp singularity.
(Here a pseudoholomorphic curve in a 4-manifold is said to have a (2, 3)-cusp
singularity if there is a parametrization around the singular point in which the
curve has the form (z2, z3) + O(4), see [9].) In conclusion, the link of a curve
around its singular point is either connected (and is the trefoil knot) or has two
components (and is the Hopf link).

2.2 Outline of the proofs

The heart of the proofs of Theorem 1.4 and Theorem 1.6 is the implication
(2) ⇒ (3) in each case. The strategy in both cases is as follows.

Suppose that Γ is a graph of the type considered in Theorem 1.4 or Theorem 1.6.
Let YΓ denote the associated plumbed 3-manifold and ξΓ the unique Milnor
fillable contact structure on YΓ . According to [14], if (YΓ, ξΓ) admits a sym-
plectic rational homology disk filling then Γ must be in W∪N ∪M∪A∪B∪C .
Since the singularities corresponding to graphs in W ∪N ∪M admit rational
homology disk smoothings (cf. [14] or Section 5), the corresponding links ad-
mit symplectic rational homology disk fillings. Hence we only need to consider
graphs in A∪B ∪ C satisfying the hypotheses of Theorem 1.4 or Theorem 1.6.
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Let Γ be a graph in A ∪ B ∪ C satisfying the hypotheses of Theorem 1.4 or
Theorem 1.6. The first step is to find an appropriate strong concave filling
of (YΓ, ξΓ). To find such a concave filling, we apply a standard topological
construction, which in fact applies for any starshaped plumbing graph and
which we recall presently. Suppose that Γ is a starshaped plumbing graph
with s legs ℓ1, . . . , ℓs and with central framing b . Suppose that the framing
coefficients along the leg ℓi are given by the continued fraction coefficients of
− ni

mi

< −1. Consider then the ’dual’ graph Γ′ which is starshaped with s legs
ℓ′1, . . . , ℓ

′
s , central framing −b − s , and the framings along the leg ℓ′i are given

by the continued fraction coefficients of − ni

ni−mi
. Let WΓ and WΓ′ denote the

corresponding plumbing 4–manifolds. In the following lemma we formulata a
well–known simple fact, cf. also [7, 14].

Lemma 2.8 Suppose that Γ is a negative definite starshaped plumbing tree,
and Γ′ is its dual tree constructed above. The boundary of WΓ is orientation
preserving diffeomorphic to the link YΓ while ∂WΓ′ = −YΓ . In addition, WΓ ∪
WΓ′ is a 4–manifold diffeomorhic to CP2#mCP2 for some positive integer m .

Proof (sketch) Consider the Hirzebruch surface with zero–section of self–
intersection b (and hence with infinity–section of self–intersection −b). Fix s

distinct fibers of the CP1–fibration and blow up the intersection points of these
fibers with the infinity–section. After the appropriate repeated blow–ups we
can identify in the resulting rational surface a configuration of curves intersect-
ing each other according to Γ, and it is easy to see that the complementary
curves will intersect each other according to Γ′ . Since the curves intersecting
according to the graph Γ admit a strong convex neighbourhood, with the Milnor
fillable contact structure as induced structure on the boundary, the complement
(diffeomorphic to WΓ′ ) provides a strong concave filling of (YΓ, ξΓ). Since the
complement is also a tubular neighbourhood of a configuration K of curves ,
we will refer to WΓ′ as the compactifying divisor.

Suppose that X is a rational homology disk weak symplectic filling of (YΓ, ξΓ).
Since YΓ is a rational homology 3-sphere, we can perturb the symplectic struc-
ture on X in a neighbourhood of the boundary so that it becomes a strong
symplectic filling of (YΓ, ξΓ). We glue X and WΓ′ along YΓ to obtain a closed
symplectic 4-manifold Z . Notice that this is the point where symplectic meth-
ods do apply, while holomorphic techniques do not necessarily work anymore:
by gluing the filling (even if it admits complex analytic structures) to the com-
pactifying divisor we cannot necessarily glue the complex structures together.
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Let k denote the number of irreducible components of the compactifying divisor
K . Then since WΓ′ is a regular neighbourhood of K , we have that b2(WΓ′) = k .
Since X is a rational homology disk, it follows that b2(Z) = k .

In all cases that we consider, it turns out that K (after possibly a sequence of
blow downs) contains a component which is a sphere that is embedded in WΓ′ ⊂
Z with self intersection number (+1). Let L denote one such component. By
McDuff’s Theorem 2.1 we conclude that Z is a rational symplectic 4-manifold
and hence diffeomorphic to CP2#(k−1)CP2 . By McDuff’s Theorem, for generic
almost complex structure J , in the complement of L we can find k−1 disjoint
embedded symplectic 2-spheres with self intersection number −1 (we will refer
to these as symplectic (−1)-curves) and that after blowing these down we obtain
CP2 . However, we would like to understand how the other components of K

descend under the blowing down map. We thus proceed as follows.

We choose a tame almost complex structure J on Z with respect to which
all the curves in K are pseudoholomorphic. (In fact, we can assume that
J is integrable on WΓ′ .) We assume that J is generic among those almost
complex structures for which K is J –holomorphic. Appealing to Lemma 2.3
we can find a pseudoholomorphic (−1)-curve E in Z disjoint from L . By
perturbing the almost complex structure J if necessary, we can assume that
E intersects each component of K transversely and does not pass through any
point where two or more components of K pass. We then blow down E . By [11,
Lemma 4.1] we can find a tame almost complex structure J ′ on the blown down
manifold Z ′ with respect to which the images of all the components of K are
pseudoholomorphic. We will again be in the situation where we have a closed
symplectic 4-manifold containing a symplectically embedded 2-sphere of self–
intersection number 1 and a collection of symplectically immersed 2-spheres.
We can thus again appeal to Lemma 2.3 and find a pseudoholomorphic (−1)-
curve E′ in Z ′ . Note that E′ may be a component of K ′ , the image of the
configuration K under the blowing down map. By suitably perturbing the
almost complex structure, we can arrange that E′ intersects each component
of K ′ − E′ transversely and it does not pass through any point where two or
more components of K ′ −E′ pass. We then blow down E′ . Proceeding in this
way, repeatedly blowing down (−1)-curves whose existence is given by Lemma
2.3, we must eventually obtain CP2 together with a symplectically embedded 2-
sphere of self intersection number 1 and a collection of symplectically immersed
2-spheres. Since we are assuming that X is a rational homology disk, it follows
that we must obtain CP2 after k−1 blow downs and the configuration K must
descend to a valid configuration in CP2 . This places strong restrictions on the
combinatorial structure of K : all components of K which are disjoint from
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L must be blown down at some point of this procedure (so in particular they
must become (−1)–curves), while a component K0 of K intersecting L must
become a J –holomorphic submanifold of CP2 of degree K0 ·L . This condition,
for example, determines the homological square of the image of K0 in CP2 , and
for low degrees it also determines the topology of the result. For most graphs
Γ we will reach a homological contradiction at some point of this procedure,
showing the nonexistence of the hypothesized rational homology disk filling X .

The graphs that we are not able to rule out with the above strategy correspond
precisely to those which are in the lists defining QHD3 and QHD4 . For these
graphs we find certain curve configurations in CP2 , which in turn (after appro-
priate repeated blow–ups) provide configurations of curves in CP2#(|Γ′|−1)CP2

intersecting each other according to the dual graph Γ′ , and this fact, by the
following result of Pinkham, shows that the singularities do admit rational ho-
mology disk smoothings.

Theorem 2.9 ([13, Theorem 6.7]) Let Z be a smooth projective rational
surface, and D ⊂ Z a union of smooth rational curves whose intersection dual
graph is Γ′ . Assume

rk H2(D; Z) = rk H2(Z; Z).

If Γ is the graph of a rational singularity, then one has a rational homology disk
smoothing of a rational weighted homogeneous singularity with resolution dual
graph Γ , and the interior of the Milnor fiber of the smoothing is diffeomorphic
to Z − D .

2.3 The families A,B and C

The inductively defined three families A,B, C of graphs found in [14] will play
a cental role in our subsequent arguments. For the sake of completeness, we
recall the definition of these families below.

Let us define A as the family of graphs we get in the following way: start
with the graph of Figure 4(a), blow up its (−1)–vertex or any edge emanating
from the (−1)–vertex and repeat this procedure of blowing up (either the new
(−1)–vertex or an edge emanating from it) finitely many times, and finally
modify the single (−1)–decoration to (−4). Depending on the number and
configuration of the chosen blow–ups, this procedure defines an infinite family
of graphs. Define B similarly, when starting with Figure 4(b) and substituting
(−1) in the last step with (−3), and finally define C in the same vein by starting
with Figure 4(c) and putting (−2) instead of (−1) in the final step.
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(a) (b)

(c)

−3 −1 −3

−3

−4 −1 −4

−2

−2 −1 −6

−3

Figure 4: Nonminimal plumbing trees giving rise to the families A,B and C

Remark 2.10 Figure 5 gives a pictorial description of what we mean by blow-

−1 −ak−a1
. . . . . .

−a2 −ak−1

→
(a). . . . . .

−2 −ak−a1

−1

. . .. . .

−a2 −ak−1

−a1 −1
. . . . . .

−a2 −ak−1

−ak →
. . .

−(a1 + 1) −1 −2
. . .. . .

−a2 −ak−1

−ak

. . .(b)

Figure 5: The blow–up of (a) a (−1)–vertex and (b) an edge emanating from a
(−1)–vertex

ing up a (−1)–vertex (Figure 5(a)) and an edge emanating from a (−1)–vertex
(Figure 5(b)). Notice that in the plumbing 4–manifold both operations corre-
spond to blowing up the (−1)–sphere defined by the vertex, either in a generic
point or in an intersection with another sphere of the plumbing configuration.
A graph in A,B or C is a starshaped three–legged graph if and only if in the
defininig procedure we always blow up edges (and never vertices), and is four–
legged if and only if we start by blowing up the central vertex, and then never
blow up a vertex after we blew up an edge. That is, we blow up vertices n
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times, and then we only blow up edges.

The starting point of the proofs of Theorems 1.4 and 1.6 rests on the main result
of [14] which can be summarized as follows. With the definition of W,M,N
given in Remark 1.3 and of G given in the first paragraph of Section 1, we have

Theorem 2.11 ([14]) Suppose that Γ is a minimal, negative definite plumbing
tree. If it gives rise to a surface singularity SΓ admitting a rational homology
disk smoothing, or if the Milnor fillable contact structure on the corresponding
plumbing 3–manifold YΓ admits a rational homology disk filling then Γ is in
G ∪W ∪N ∪M∪A ∪ B ∪ C .

Remark 2.12 The method of the proof of the main results of the present
paper make use of the fact that the singularities under examination are Seifert,
that is, the resolution graphs are starshaped. The existence question of ra-
tional homology disk smoothings/fillings for singularities with non-starshaped
resolution graphs is still open; we hope to return to this question in a future
project.

3 Small Seifert singularities

By Theorem 2.11 we only need to consider three–legged graphs in W ∪ N ∪
M ∪ A ∪ B ∪ C . As it is shown in Section 5 (cf. also [14]), singularities cor-
responding to the plumbing trees in W ∪N ∪M do admit rational homology
disk smoothings (and therefore the Milnor fillable contact structures admit ra-
tional homology disk fillings). Therefore in determining three–legged graphs
with rational homology disk smoothings (or fillings of the corresponding Milnor
fillable contact structure) we only need to examine the three–legged graphs in
A∪B ∪ C . The discussion will be given for each of these classes separately; for
technical reasons we start with the case of graphs in C .

3.1 3–legged graphs in the family C

Recall that graphs in C are defined by repeatedly blowing up the basic config-
uration shown by Figure 4(c) and then replacing the (−1)–framing with (−2).
To get 3–legged graphs, we only blow up edges emanating from the (−1)–
vertex. There are three cases we distinguish depending on which edge we blow
up in the first step in the basic example. The index of the subfamily records
the (negative of the) framing the first blown up edge points to.
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The family C6

Consider the generic member of the family C6 depicted in Figure 6(a). As a
particular case of Theorem 1.4 we will show

Theorem 3.1 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 6(a). Then the following three statements are equivalent:

(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 6(a) we have b = b1 = . . . = bn−1 = −2
and bn = −n − 5 for some positive integer n .
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Figure 6: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family C6

Remark 3.2 Notice that we do not use the full power of Theorem 2.11:
although the theorem implies some delicate relation among the coefficients
b1, . . . , bn of the graph of Figure 6(a), we will only use the fact that the two
other legs are of length one and the framings are −2 and −3. The similar
weaker result would be sufficient in all the subcases considered in the present
and the next sections.

Before turning to the proof of the above result, we start with listing some general
observations. The dual graph (after possibly blowing up the edge emanating
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from the central vertex towards the long leg until the central framing becomes
−1) has the shape given by Figure 6(b). Blowing down the central vertex
together with the two (−2)’s (encircled by the dashed circle in Figure 6(b)), we
arrive to the diagram of Figure 6(c); here the curves are symbolized by arcs, and
the intersection of two arcs means that the two corresponding curves intersect
each other. The resulting (+1)–curve will be denoted by L , while the curves of
the long leg (with framings c1, . . . , ck ) will become D,C2, . . . , Ck , respectively.
The tangency between D and L is a triple tangency. Since bn ≤ −6, it is easy
to see that k ≥ 4. Notice also that ci ≤ −2 once i ≥ 2 and c1 is negative. By
gluing this compactifying divisor to a potentially existing rational homology
disk filling X we get a closed symplectic manifold Z with b2(Z) = k + 1.
The symplectic 4–manifold Z obviously contains a symplectic (+1)–sphere
(symbolized by the horizontal line L), hence by McDuff’s Theorem 2.1 we
can repeatedly blow down k exceptional divisors in the complement of the
(+1)–sphere. Since the curves C2, . . . , Ck in the chain are disjoint from the
(+1)–curve and are homologically essential, we must blow them down, while
the curve D will descend to a cubic curve in CP2 . (Since the resulting cubic
curve will be the image of a rational curve, it necessarily must contain a singular
point.) The above observations together with Lemma 2.3 imply therefore that
there is a unique additional (−1)–curve E in Z for the chosen almost complex
structure, which we have to locate in the diagram. Since J –holomorphic curves
intersect positively, the geometric intersections in these cases can be computed
via homological arguments.

Proposition 3.3 Under the above circumstances the exceptional divisor E

must intersect the curve D and the last curve (with framing ck ) in the chain
in one point each. Consequently, the framings should satisfy ci = −2 for
i = 2, . . . , k and c1 = −k + 3.

Proof Let JK denote the nonempty set of tame almost complex structure
on Z with respect to which all the curves of KΓ = L ∪ D ∪ C2 ∪ . . . Ck are
pseudoholomorphic. Choose an almost complex structure J which is generic
in JK . If we blow down all J -holomorphic (−1)-curves away from L , we can
show that the chain C2, . . . , Ck are transformed into configurations of curves
which can be sequentially blown down. An elementary computation shows that
X being a rational homology disk implies that there must be precisely one
(−1)-curve E in the complement of L that are not contained in the chain
C2, . . . , Ck . The (−1)–curve E must intersect the semicircular curve D at
least once, since (as D intersects the (+1)–curve L) D will become a cubic
curve in CP2 . Since the resulting cubic curve is the image of a rational curve, it
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must admit a singular point, which cannot be achived by blowing down curves
which intersect D at most once. By Corollary 2.5 the curve E cannot intersect
the long chain twice. With a similar argument we can see that it can intersect
the chain only in its endpoints: if it intersects the chain in a curve C which
is not at one of its ends, then blowing down E we get a curve C ′ which now
intersects D and two further curves in the chain. When we blow down C ′ , the
two neighbours will pass through the same point of D . When blowing down
one of these neighbours, the other one will become tangent to D . After a slight
perturbation and a further blow–down we get a transverse double point on
D , and the other neighbour of C will descend to a curve passing through the
double point. A slight perturbation of the almost complex structure and the
blow–down of this other neighbour will create a further singular point, which
fact (with the aid of Lemma 2.7) now provides the desired contradiction.

If E intersects the chain on its end near D , then after the second blow–down
D developes a transverse double point singularity, and the further blow–downs
then create more singular points (in the spirit of the argument above), leading
to a curve which cannot represent three–times the generator in the complex
projective plane. Hence the only possibility for the (−1)–curve E is to intersect
the chain at its farther end, and intersect D once. In order to blow down all
the curves in the chain we must have ci = −2 for i = 2, . . . , k , and since
the self–intersection of D will become 9 after all the blow–downs, we derive
c1 = −k + 3. With this last observation the proof is complete.

The above lemma then implies that the only possible dual configuration which
can correspond to a rational homology disk filling is given (with n = k − 4)
by Figure 7(b). After blowing down all the curves disjoint from L we get a
configuration consisting of a cubic curve with a transverse double point and a
tangent line to it at one of its inflection points, cf. Figure 7(d).

Lemma 3.4 The configuration of curves given by the graph Γ′ of Figure 7(b)
does exist in CP2#(|Γ′| − 1)CP2 . Consequently the singularity with resolution
graph given by Figure 7(a) admits a rational homology disk smoothing.

Proof Take the singular cubic specified by the degree–3 homogeneous equation
f(x, y, z) = y2z − x3 − x2z in CP2 and consider the line {z = 0} intersecting
it in one of its inflection points [0 : 1 : 0]. This verifies the existence of the
configuration of Figure 7(d) in CP2 . By reversing the blow–down procedure,
the existence of the configuration of Figure 7(b) in the appropriate blow–up of
CP2 is proved. By [13, Theorem 6.7] of Pinkham (cf. also Theorem 2.9) the
existence of the rational homology disk smoothing is then verified.
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Figure 7: The one-parameter family in C6 with rational homology disk filling

Proof of Theorem 3.1 Since a smoothing of a singularity always provides a
weak filling of the Milnor fillable contact structure of the link, the implication
(1) ⇒ (2) easily follows. Proposition 3.3 then (after determining Γ from Γ′

given in the proposition) provides (2) ⇒ (3). Finally, Lemma 3.4 implies
(3) ⇒ (1), concluding the proof.

Remarks 3.5 (a) The scheme of the proof of the other cases (for the three–
and four–legged graphs in A,B and C will be very similar, although the ad hoc
arguments given in Proposition 3.3 will significantly vary.

(b) Notice that we did not use Theorem 2.11 in its full power; we only needed
that the graphs we are examining have two legs of lenght one, on which the
framings are (−2) and (−3). This will be a recurring theme again.

(c) In the nonexistence argument we only used homological considerations re-
garding self–intersections and intersection numbers, with the only exception
regarding smoothness of the curves to be blown down and the sinularity of the
resulting cubic curve.
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(d) The number of additional (−1)–curves we had to locate was dictated by the
fact that the filling is a rational homology disk. For fillings with richer homology
theory, similar method applies, although the combinatorial argument will get
more involved as the number of (−1)–curves increases. In our subsequent
discussions we will meet examples where two or three such curves are needed
to be located.

(e) The existence of the curve configuration in CP2 is a truly geometric prob-
lem, which admits a very simple solution in this case, and can be rather com-
plicated for other cases, cf. Lemma 4.11, for example.

(f) It is fairly straightforward to see that the family of graphs within C6 for
which the rational homology disk smoothing exist is given by the defining pro-
cedure of C when we always blow up the edge emanating from the (−1)–vertex
which connects it with the leaf.

The family C3

The generic member of this family is given by Figure 8(a), together with the
dual graph and the result of the triple blow–down.
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Figure 8: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family C3

Theorem 3.6 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 8(a). Then the following three statements are equivalent:
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(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and with

(3) for the graph Γ given by Figure 8(a) either b = b1 = . . . = bn−1 = −2
and bn = −n − 2 for some positive integer n , or b = b1 = . . . = bn−4 =
bn−2 = bn−1 = −2, bn−3 = −3 and bn = −n−1 for some positive integer
n ≥ 4.

By gluing the compactifying divisor given by Figure 8(c) to a potentially ex-
isting rational homology disk filling X we get a closed symplectic manifold Z ,
and a simple count shows that b2(Z) = k + 4. The symplectic 4–manifold
Z obviously contains a symplectic (+1)–sphere (symbolized by the horizontal
line L), hence by McDuff’s Theorem 2.1 we can repeatedly blow down k + 3
exceptional divisors in the complement of the (+1)–sphere. Since the curves
C2, . . . , Ck in the chain and B1, B2 (hanging off the vertical (−1)–curve G)
are disjoint from the (+1)–curve and are homologically essential, we must blow
them down. This means that there are two further curves E1 and E2 which
we have to locate in the diagram. For a generic almost complex structure these
curves will be (−1)–curves. Since both B1 and B2 have to be blown down
(being disjoint from the (+1)–curve), one of them must intersect one of the
(−1)–curves, say E1 . Since the complement of the (+1)–curve does not con-
tain homologically essential spheres with nonnegative square, E2 then cannot
intersect any of the Bi .

Proposition 3.7 Under the above circumstances the existence of a rational
homology disk smoothing X implies that E2 intersects D and Ck , and E1

either intersects B1 and D or B2 and C1 . The self–intersections in these two
cases are c1 = −k and c2 = . . . = ck = −2 or c1 = −k + 3, c2 = −5 and
c3 = . . . = ck = −2.

Proof Case I: Suppose that E1 ·B1 > 0. After three blow–downs the vertical
curve G becomes a (+1)–curve, so it cannot be blown down any further: in
CP2 it will be a curve intersecting the (+1)–curve once, hence it will be a line
with self–intersection (+1). Therefore, to prevent further blow–downs along
the points of the vertical curve, E1 must be disjoint from the long chain. So
E2 must intersect the long chain, and since the whole chain must be blown
down, the simple adaptation of Proposition 3.3 gives that the only possibility
for E2 is the one given by Figure 9(c). Notice that the images of G and D

must intersect each other three times after all curves have been blown down,
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which can be achieved only if E1 intersects D exactly once. (Recall that E2

must stay disjoint from G.) This argument shows that the only possibility for
E1 and E2 (under the assumption E1 ·B1 > 0) is given by the dashed lines of
Figure 9(c). The blow–down porcess then dictates the values of ci , leading us
to the configuration given by Figure 9. (Here we take k = n + 1.)
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Figure 9: A one-parameter family in C3 with rational homology disk filling

Case II: Suppose now that E1 · B2 > 0. Then after three blow–downs the
vertical curve G becomes a 0–curve, so either (a) E2 intersects G or (b) E1

intersects a further (−1)–curve in the chain (after it has been partially blown
down). If E1 intersects B2 and E2 intersects G then none of the Ei intersect
the chain, and since the chain is nonempty, this provides a contradiction.

Therefore E1 should intersect the long chain, and it should intersect it in the
last curve to be blown down from there. E1 cannot intersect D , since otherwise
after blowing down E1 , then repeatedly B1, B2 the intersection of G and D
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would be at least four, which contradicts the fact that a line and a cubic in CP2

intersect three times. This shows that E2 has to intersect the chain (and start
the sequence of blow–downs) and it also has to intersect D to get a singularity
on it. Furthermore, we also know that E2 must be disjoint from G. The
argument of Proposition 3.3 shows that E2 must intersect the long chain at its
farther end and also D , as depicted (with k = n + 1) in Figure 10. As usual,
the framings are dictated by the fact that all curves in the complement of the
(+1)–curve must be blown down.
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Figure 10: A further one-parameter family in C3 with rational homology disk filling

Lemma 3.8 The configuration of curves given by the graph Γ′ either of Fig-
ure 9(b) or of 10(b) do exist in CP2#(|Γ′| − 1)CP2 . Consequently the singular-
ities with resolution graphs given by Figure 9(a) or 10(a) do admit a rational
homology disk smoothings.

Proof For Case I of Proposition 3.7 above the required configuration clearly
exists: consider a cubic with a transverse double point and its tangent at one of
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its inflection point as in the proof of Lemma 3.4, and add a further line through
the inflection point which is transverse there, but is tangent to the cubic in a
further point. The singular cubic given by equation f(x, y, z) = y2z − x3 − x2z

in CP2 and the line {z = 0} together with {x + z = 0} (intersecting the cubic
in the inflection point [0 : 1 : 0] and being tangent to it at [−1 : 0 : 1]), for
example, is such a choice.

In Case II of Proposition 3.7 the configuration of the cubic and the two lines
(one tangent at an inflection point, the other passing through the inflection
point and the transverse double point) clearly exists: take the two curves as
in the proof of Lemma 3.4 and add {x = 0} (the line passing through the
inflection point [0 : 1 : 0] and the transverse double point [0 : 0 : 1] of the
cubic).

These configurations (after the appropriate blow–ups) embed the dual graphs
in the appropriate rational surfaces, hence Pinkham’s result Theorem 2.9 shows
that the rational homology disk smoothings exist.

Proof of Theorem 3.6 As in the proof of Theorem 3.1, the implication (1) ⇒
(2) follows from the general principle that a smoothing of a singularity always
provides a weak filling of the Milnor fillable contact structure on the link. After
determining Γ from its dual graph Γ′ , Proposition 3.7 provides (2) ⇒ (3),
while Lemma 3.8 implies (3) ⇒ (1), concluding the proof.

Remark 3.9 Once again, we get the first family described in Theorem 3.6 by
starting with the graph defining the family C and always blowing up the edge
from the (−1)–vertex which connects it with the leaf.

The construction of the second family of Theorem 3.6 is slightly unusual: in
the blow–up procedure creating elements of C3 we always blow–up the edge
connecting the (−1)–vertex with the leaf, except in the last blow–up, when we
blow up the other edge emanating from the (−1)–vertex. After this unusual
move we substitute the (−1)–framing with (−2) and arrive to the graphs de-
picted by Figure 10. Notice that this graph already appears in the family M ,
compare with Figure 1(d) with q = n − 4 and r = 3.

The family C2

The generic case in this family is shown by Figure 11(a).

Theorem 3.10 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 11(a). Then the following three statements are equivalent:
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Figure 11: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family C2

(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 11(a) either b = b1 = . . . = bn−1 = −2
and bn = −n − 1 for some positive integer n , or b = b1 = . . . = bn−5 =
bn−3 = bn−2 = −2, bn−4 = bn−1 = −3 and bn = −n − 1 for some n ≥ 5
or b = b1 = . . . = bn−5 = bn−3 = bn−2 = bn−1 = −2, bn−4 = −4 and
bn = −n − 1 for some n ≥ 5.

The usual simple calculation shows that by assuming the existence of a rational
homology disk filling for (YΓ, ξΓ) we have to locate two (−1)–curves in the
diagram, which we will call E1 and E2 . Since the curves A2, A3 and A4 must
be blown down at some point in the blow–down procedure, one of the (−1)–
curves (say E1 ) should intersect A2 ∪ A3 ∪ A4 .

Proposition 3.11 In the situation under examination the existence of a ra-
tional homology disk filling imples that E2 intersects D and Ck , while E1

either intersects A2 and D or A4 and C2 or A4 and C3 . The framings in the
three cases are given by c1 = −k − 1 and c2 = . . . ck = −2, or c1 = −k + 3,
c2 = −5, c3 = −3 and c4 = . . . = ck = −2, or c1 = −k + 3, c3 = −6 and
c2 = c4 = . . . ck = −2.
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Proof Notice first that E1 cannot intersect A3 (otherwise we will have a self–
intersection 0 curve in the complement), hence we have two cases to examine.

Case I: Suppose that E1 intersects A2 , i.e., E1 ·A2 > 0. In this case, after four
blow–downs, the self–intersection of A1 becomes 1, which cannot go any higher,
since in CP2 the curve A1 will become a line. Therefore E1 must be disjoint
from the chain and E2 must be disjoint from all the Ai ’s. In order the image of
A1 to intersect D (three times) E1 must intersect D . Since E2 is disjoint from
all the Ai ’s, and it starts the blow–down of the chain, and is responsible for the
singularity on D , the usual argument presented in the proof of Proposition 3.3
locates it. In conclusion, the only possibility is shown (with k = n) in Figure 12,
together with the framings dictated by this (one-parameter) family. After the
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Figure 12: A one-parameter family in C2 with rational homology disk filling
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repeated blow–downs we arrive to a curve configuration involving a singular
cubic with two tangent lines in its two inflection points.

Case II: Suppose now that E1 intersects A4 . After the repeated blow–downs
of E1 , A4, A3 and A2 , the self–intersection of A1 will increase to (−1). In
order to increase it to +1 we have a number of possibilities.

(i) E1 · Ci = 0, i.e., E1 is disjoint from the chain. In this case E2 must
intersect A1 and also the last curve we blow down in the chain. Since then
there is no further curve starting the blow–down of the chain, this can happen
only if the chain has a single element. If E2 is disjoint from D , then after the
blow–downs D remains smooth, which is a contradiction. Therefore E2 must
intersect D . Blowing down E2 and then the element in the chain we get that
the result of A1 passes through D three times. Therefore E1 must be disjoint
from D . Computing the self–intersections, however, we see that the curve with
framing c1 (giving rise to D which will become of self–intersection 9) must
have self–intersection c1 = +1 in the dual graph, which is a contradiction.

(ii) Assume now that E1 intersects the chain in the curve we will blow down
last. This implies that E2 should intersect A1 , but since the blow–down of E1

(together with the last curve in the chain) increases the self–intersection of A1

by two, E2 must be disjoint from the chain. Therefore once again, the chain
must be of lenght one. Performing the blow–downs we conclude that D remains
smooth and the image of D and A1 will intersect each other only twice, hence
this case does not occur.

(iii) Finally, it can happen that E1 intersects the chain in the penultimate
curve to blow down. Then E2 should be disjoint from the Ai ’s, and since
the singularity on D cannot be caused by blowing down E1 , we need that E2

intersects D . The usual argument given in the proof of Proposition 3.3 shows
the position of E2 , leading to two configurations, depending on whether the
last curve to blow down is next to D or one off. The resulting possibilities
(with k = n) are given by Figures 13 and 14.

Lemma 3.12 The configuration of curves given by the graph Γ′ either of
Figure 12(b), of 13(b) or of 14(b) do exist in CP2#(|Γ′| − 1)CP2 . Consequently
the singularities with resolution graphs given by Figure 12(a), 13(a) or 14(a)
do admit a rational homology disk smoothings.

Proof In Case I of Proposition 3.11 consider the cubic and one tangent already
studied in the the proof of Lemma 3.4, together with the tangent line {y− (x+
8

9
z)
√

3i = 0} passing through another inflection point [−4

3
: −i 4

3
√

3
: 1] of
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Figure 13: A further one-parameter family in C2 with rational homology disk filling

y2z − x3 − x2z . (It is not hard to see that the further two inflection points of
the curve y2z − x3 − x2z are [−4

3
: ±i 4

3
√

3
: 1].)

In Case II of Proposition 3.11 we need a nodal cubic, with a tangent in one
of its inflection points and a tangent to one of its branch at its nodal point.
The cubic and the tangent at the inflection point can be chosen as in the proof
of Lemma 3.4, and the additional tangent can be chosen to be {x = y} or
{x = −y}.

Having these curves in CP2 the rest of the proof is identical to the previous
cases, e.g. in Lemma 3.4: the appropriate blow–ups embed the dual graphs in
the right blow–ups of CP2 and then the application of Pinkham’s Theorem 2.9
completes the argument.

Proof of Theorem 3.10 Once again, the implication (1) ⇒ (2) follows from
the general principle that a smoothing of a singularity always provides a weak
filling of the Milnor fillable contact structure on the link. After converting the
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Figure 14: One more one-parameter family in C2 with rational homology disk filling

dual graph Γ′ to Γ, Proposition 3.11 provides (2) ⇒ (3), while Lemma 3.12
implies (3) ⇒ (1), concluding the proof.

Remark 3.13 As before, the graphs found in Case I of Proposition 3.11 are
constructed by the usual strategy of always blowing up the edge connecting the
(−1)–vertex with the leaf. The graphs in Case II are constructed in a slightly
unusual manner: In constructing the plumbing graph for the first case (depicted
by Figure 13) we blow up the edge emanating from the (−1)–vertex pointing
to the leaf, except in the penultimate blow–up, where we choose the other
edge, but for the last blow–up we choose the edge connecting the (−1)–vertex
with the neighbour of the leaf. In the second case the graph is constructed by
repeatedly blowing up the edge connecting the (−1)–vertex with the leaf, and
then in the penultimate step we blow up the other edge, and finally we blow
up the edge which is not connecting the (−1)–vertex to the neighbour of the
leaf. The resulting two one-parameter families are given by the figures. Notice
again, that these graps already appeared in our previous lists as members of
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the family M , compare with Figure 1(g) with p = 1, r = 3 and q = n − 5,
and Figure 1(f) with p = 4 and q = n − 5.

3.2 Graphs in A

For three–legged graphs in A there is no need for further subdivisions since the
legs in this case are symmetric. As usual, the generic member of the family is
shown by Figure 15(a).

Theorem 3.14 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 15(a). Then the following three statements are equivalent:

(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 15(a) b = b1 = . . . = bn−2 = −2,
bn−1 = −4 and bn = −n − 2 for some positive integer n .

The usual simple count shows that if we assume the existence of a rational ho-
mology disk filling, then we have to find two (−1)–curves E1, E2 , cf. Figure 15.
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Figure 15: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family A
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Proposition 3.15 In this case the curve E2 intersects D and Ck , while E1

intersects either A and C3 or A and C2 . The corresponding framings in both
cases c1 = −k + 3, c3 = −3 and c2 = c4 = . . . ck = −2.

Proof The curve A must intersect one of the (−1)–curves, say E1 . If E2

also intersects A , then only one of them (say E2 ) can intersect the long chain,
and only in the last curve to be blown down, so we cannot start the blow–
down process on the chain unless it is of length one. We show that this case
never occurs. In fact, to create the singularity on D , the (−1)–curve E2 must
intersect it, and so by blowing down E2 and the unique element in the chain, we
get that the resulting A and D will intersect each other three times, hence E1

must be disjoint from D . The self–intersection of the resulting singular cubic
(which must be equal to 9) is c1 + 8, implying that c1 = 1, which contradicts
the fact that it should be negative. Therefore E2 cannot intersect A , and so it
must intersect the long chain, and to create the singular point on D it must also
intersect that curve. The usual argument already discussed in Proposition 3.3
shows that E2 can intersect the chain only in Ck . In order to raise the self–
intersection of A from (−2) to 1 we need that E1 intersect the chain in the
penultimate curve to be blown down. Since after the blow–downs the image
of A will pass through the singular point of D , E1 must be disjoint from D .
The two (very similar) possibilities for the (−1)–curves (differing only in the
position of the E1–curve) are shown (with k = n + 3) by Figures 16(c) and
(d), where also the (one-parameter family of) framings are indicated.

Lemma 3.16 The configuration of curves given by the graph Γ′ of Fig-
ure 16(b) do exist in CP2#(|Γ′| − 1)CP2 . Consequently the singularities with
resolution graphs given by Figure 16(a) do admit a rational homology disk
smoothings.

Proof By adding {x = y} (or {x = −y}) to the two curves we chose in
the proof of Lemma 3.4 we get the configuration of curves in CP2 depicted
in Figure 16(e). The appropriate blow–up sequence then shows that the dual
configuration embeds in the appropriate rational surface, hence the application
of Pinkham’s Theorem 2.9 concludes the proof.

Proof of Theorem 3.14 As usual, the implication (1) ⇒ (2) follows from
general principles while Proposition 3.15 (after converting the dual graph back
to Γ) provides (2) ⇒ (3). Finally Lemma 3.16 implies (3) ⇒ (1).
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Figure 16: The one-parameter family in A with rational homology disk filling

Remark 3.17 The graphs found in this case are constructed by the usual
strategy of always blowing up the edge connecting the (−1)–vertex with the
leaf.
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3.3 Graphs in B

Similarly to the case of C , the study of the family B falls into two subcases,
depending on the choice of the first blow–up.

The family B4

The generic member of this family (together with the dual graph and the con-
figuration of curves after three blow–downs) is shown in Figure 17.
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Figure 17: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family B4

Theorem 3.18 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 17(a). Then the following three statements are equivalent:

(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 17(a) b = b1 = . . . = bn−2 = −2,
bn−1 = −3 and bn = −n − 3 for some positive integer n .

The usual count of curves shows that we need to locate two (−1)–curves in
order to show the existence of a rational homology disk filling. As usual, these
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two curves will be denoted by E1 and E2 . It is clear that one of them, say E1 ,
must intersect G in order to increase its self-intersection to 1.

Proposition 3.19 Under the above hypotheses, the existence of a rational
homology disk filling implies that E2 intersects D and Ck , while E1 intersects
G and C2 . The corresponding framings are c1 = −k + 3, c2 = −3 and
c3 = . . . ck = −2.

Proof If E2 also intersects G then both must be disjoint from the chain,
hence it cannot be blown down. Therefore we might assume that E2 is disjoint
from G, and therefore E1 must intersect the chain in the last curve to be
blown down. The curve E1 must be disjoint from D , since if E1 intersects D

then after two blow–downs the curves resulting from G and D will intersect
at least four times, giving a contradiction. Therefore E1 must be disjoint from
D , hence E2 intersects the configuration of curves as it is found in the proof
of Proposition 3.3. The only possibility is then shown (with k = n + 3) by
Figure 18, together with the possible framings.

Lemma 3.20 The configuration of curves given by the graph Γ′ of Fig-
ure 18(b) does exist in CP2#(|Γ′| − 1)CP2 . Consequently the singularities
with resolution graphs given by Figure 18(a) do admit a rational homology
disk smoothings.

Proof The configuration of curves shown by Figure 18(d) obviously exists in
CP2 : the cubic and the tangent line (in an inflection point) is chosen as in
the proof of Lemma 3.4, and if we add the line {x = 0} to them, we get the
desired configuration. Blowing this configuration up, we arrive to an embedding
of the dual curve configuration, which by Pinkham’s Theorem 2.9 implies the
existence of a rational homology disk smoothing.

Proof of Theorem 3.18 As usual, the implication (1) ⇒ (2) follows from
general principles while Proposition 3.19 provides (2) ⇒ (3). Finally Lemma 3.20
implies (3) ⇒ (1).

Remark 3.21 The graphs found in this case are constructed by the usual
strategy of always blowing up the edge connecting the (−1)–vertex with the
leaf.
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Figure 18: The one-parameter family in B4 with rational homology disk filling

The family B2

The graphs (with their duals, and the curve configuration we get by the three
blow–downs) are shown by Figure 19.

Theorem 3.22 Suppose that the singularity SΓ admits resolution dual graph
given by Figure 19(a). Then the following three statements are equivalent:

(1) SΓ admits a rational homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 19(a) b = b1 = . . . = bn−2 = −2,
bn−1 = −3 and bn = −n − 1 for some positive integer n .

The usual curve count shows that for identifying a rational homology disk filling
we must find three (−1)–curves E1, E2, E3 in the diagram. Suppose that E1
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intersects G.
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Figure 19: The generic graph, its dual, and the configuration of curves after 3 blow–
downs in the family B2 .

Proposition 3.23 Under the circumstance described above, from the exis-
tence of a rational homology disk filling it follows that the curve E3 intersects
D and Ck , E2 intersects C2 and A1 and E1 intersects G, D and A2 . In this
case the framings should satisfy c1 = −k+1, c2 = −3 and c3 = . . . = ck = −2.

Proof Since G has self–intersection (−1) and it intersects the line L once,
its self–intersection must increase to 1, hence either E2 intersects G or E1

intersects either A2 or the chain.

Case I: E2 · G > 0. In this case both E1 and E2 must be disjoint from A2

and the chain, hence E3 intersects both A2 and the chain. Also, since G and
A1 will intersect after the blow–down, E1 or E2 (say E1 ) must intersect A1 .
After blowing down the Ei ’s and A2 , the self–intersection of A1 is already
zero, hence E3 can intersect the chain in the last curve to blow down, which
is possible only if the chain is of length one. If E3 is disjoint from D then (in
order A1 to intersect D three times) E1 must intersect D twice, and hence
(in order to avoid G · D > 3) the curve E2 must be disjoint from D . Now
we can easily see that the self–intersection of D increases to c1 + 8 after all
the blow–downs have been preformed, and since it should be equal to 9, we
deduce that c1 = 1, contradicting the fact that c1 is negative. If E3 intersects
D then after blowing down E3, A2 and the unique element in the chain we get
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a singularity on D , and A1 intersects D three times. Therefore E1 should be
disjoint from D and E2 can intersect it only once, implying that G · D = 2,
providing a contradiction. This shows that Case I, in fact, cannot occur.

Case II: Suppose that E2 · G = 0, therefore E1 intersects either the chain or
A2 . Suppose first that E1 intersects the chain (in the last curve to be blown
down). Simple calculation shows that if E1 · D = 0 then after all the blow–
downs G · D < 3, and if E3 · D = 1 then (again, after all the blow–downs)
G·D > 3, both contradicting the fact that the intersection number of a line and
a cubic in CP2 is equal to three. If E1 intersects A2 (and hence is disjoint from
the chain) then both E2, E3 must be disjoint from G, and one of them (say
E2 ) intersects A1 . To increase the self–intersection of A1 , the curve E2 should
intersect the chain in the last curve to be blown down. Since the image of G

will intersect D , we see that E1 ·D = 1. This implies that after blowing down
E1 and A2 , the curve A1 will intersect D once, therefore E2 cannot intersect
D (since it would add three to A1 · D ). Now the usual argument from the
proof of Proposition 3.3 shows that E3 starts the blow–down of the chain, and
it also intersects D in one point, leading to the configuration depicted (with
k = n + 1) in Figure 20, where also the necessary framings are indicated.

Lemma 3.24 The configuration of curves given by the graph Γ′ of Fig-
ure 20(b) do exist in CP2#(|Γ′| − 1)CP2 . Consequently the singularities with
resolution graphs given by Figure 20(a) do admit a rational homology disk
smoothings.

Proof The nodal cubic curve with the tangent at one of its inflection points has
been given in the proof of Lemma 3.4 already. Adding to it the line {x+z = 0},
which intersects the cubic curve once transversally (in the point [0 : 1 : 0]) and
once tangentially (in [−1 : 0 : 1]) and the line {y = 0} joining this tangency
[−1 : 0 : 1] with the node [0 : 0 : 1], we get a configuration, from which
appropriate repeated blow–ups provide an embedding of the dual configuration
into a rational surface such that Pinkham’s Theorem 2.9 applies and shows the
existence of the required smoothings.

Proof of Theorem 3.22 As usual, the implication (1) ⇒ (2) follows from
general principles while Proposition 3.23 provides (2) ⇒ (3). Finally Lemma 3.24
implies (3) ⇒ (1).

Remark 3.25 The graphs found in this case are constructed by the usual
strategy of always blowing up the edge connecting the (−1)–vertex with the
leaf.
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Figure 20: The one-parameter family in B2 with rational homology disk filling

After this long preparation we are ready to the give the proof of one of the main
results of the paper.

Proof of Theorem 1.4 Consider a small Seifert singularity SΓ . Since a
smoothing of SΓ provides a weak symplectic filling of the Milnor fillable contact
structure (YΓ, ξΓ) of the link, the implication (1) ⇒ (2) follows.

Now suppose that (2) holds for SΓ . According to Theorem 2.11 then Γ ∈
W ∪ N ∪ M ∪ A ∪ B ∪ C . Since W ∪ N ∪ M ⊂ QHD3 by definition (as
the graphs of Figure 1), we only need to consider graphs in A ∪ B ∪ C . The
combination of (2) ⇒ (3) of Theorems 3.1, 3.6, 3.10, 3.14, 3.18 and 3.22 verifies
the implication (2) ⇒ (3) of Theorem 1.4.
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Finally, if Γ ∈ QHD3 is in W ∪ N ∪ M then [14] (cf. also Section 5) shows
that the corresponding singularity admits a rational homology disk smoothing.
If Γ ∈ QHD3 is given by one of the diagrams of Figure 2 then one of the
implications (3) ⇒ (1) of Theorems 3.1, 3.6, 3.10, 3.14, 3.18 or 3.22 verifies the
implication (2) ⇒ (3) of Theorem 1.4.

Notice that by a result of Laufer [6] all the graphs in QHD3 are taut: according
to [6] a three–legged graph is taut if (a) the framing of the central vertex is ≤ −3
or (b) the framing of the central vertex is −2 and at least two arms of the graph
are of length one. With this last observation the proof is complete.

4 Seifert singularities

Next we turn to the examination of generic Seifert singularities. According
to the main result of [14], however, if a Seifert singularity admits a rational
homology disk smoothing (or the Milnor fillable contact structure on its link
admits a rational homology disk filling) then the valency of the central vertex
is at most four. The three–legged case was analyzed in the previous section,
so now we will focus on the case of four–legged graphs. Once again, it follows
from [14] that we only need to consider graphs in A ∪ B ∪ C .

The family C

We start by considering the four-legged graphs in the family C . The generic
four-legged member Γ of C is given in the first diagram of Figure 21, with the
dual graph given by Figure 21(b).

Theorem 4.1 Suppose that Γ is a plumbing graph as in Figure 21(a). Then
the following three statements are equivalent:

(1) There is a singularity SΓ with resolution graph Γ which admits a rational
homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 21(a) b = −3, b1 = . . . = bn−1 = −2
and bn = −n for some integer n ≥ 2.

Again, before starting the proof we list a few useful observations. After three
blow downs we obtain the configuration K depicted in the third picture in
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Figure 21: The four-legged graphs in C

Figure 21. The horizontal (+1)-curve will be denoted L and the two curves
which are triply tangent to L will be denoted F and D , with D being the
innermost curve. Also the chain of (−2)-curves connected to the curve F

will be denoted B1, . . . , B4 , with B1 intersecting F and the chain of curves
intersecting D will be denoted C2, . . . , Ck , with C2 intersecting D . Suppose
that X is a symplectic rational homology disk filling of (YΓ, ξΓ). As before,
let WΓ′ denote a regular neighbourhood of K for the dual graph Γ′ and let Z

denote the result of gluing X with WΓ′ . Then Z will be a closed symplectic
4-manifold containing the configuration K . We will blow down (−1)-curves
disjoint from L to obtain (CP2, L) with the images of F and D being cubics.

Let JK denote the nonempty set of tame almost complex structure on Z with
respect to which all the curves of K are pseudoholomorphic. Choose an al-
most complex structure J which is generic in JK . If we blow down all J -
holomorphic (−1)-curves away from L , we can show that the strings B1, . . . , B4

and C2, . . . , Ck are transformed into configurations of curves which can be se-
quentially blown down. An elementary homological computation shows that
(since X is a rational homology disk) there must be precisely two (−1)-curves,
say E1 and E2 , in the complement of L that are not contained in the strings
B1, . . . , B4 and C2, . . . , Ck . Since the string B1, . . . , B4 must be transformed
into a configuration which can be sequentially blown down after blowing down
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E1 and E2 , it follow that at least one of these (−1)-curves must intersect
B1∪· · ·∪B4 . Assume, without loss of generality, that E1 intersects B1∪· · ·∪B4 .

Proposition 4.2 By assuming the existence of the rational homology disk
filling X we get that E1 intersects D , F and B4 , while E2 intersects D and
Ck . The framings then are given by c1 = −k − 2 and c2 = . . . = ck = −2.

Proof If E1 ·B2 = 1 or E1 ·B3 = 1, then blowing down E1 and then sequen-
tially blowing down the images of B2 and B3 leads to a (+1)-curve (the image
of B1 or B4 ) in the complement of L contradicting Lemma 2.6. Hence we can
assume that either E1 · B1 = 1 or E1 · B4 = 1.

Case I: Suppose that E1 ·B1 = 1. Note first that E1 ·F = 0. Indeed, suppose
that E1 · F ≥ 1. If E1 · F > 1, then blowing down E1 would lead to a point
on the image F ′ of F under the blowing down map through which at least two
branches of F ′ pass. Also the intersection number of the image B′

1 of B1 and
F ′ will be at least three. By perturbing the almost complex structure slightly,
we can assume that B′

1 and F ′ intersect transversely. Then blowing down B′
1

we see that the image F ′′ of F ′ will have two singularities, which by Lemma 2.7
contradicts the fact that F ′′ will eventually blow down to a cubic in CP2 . A
similar contradiction arises if E1 ·F = 1, after blowing down both E1 and B′

1 .
There are now two possibilities: E1 ·(C2∪· · ·∪Ck) = 1 or E1 ·(C2∪· · ·∪Ck) = 0.
Note that E1 · (C1 ∪ · · · ∪ Ck) > 1 is impossible by Corollary 2.5.

IA. E1 · (C2 ∪ · · · ∪ Ck) = 1.

Suppose that E1 ·Ci = 1. After blowing down E1 and then sequentially blowing
down the images of B1, . . . , B4 observe that the image C ′

i of Ci will be 4-fold
tangent to the image F ′ of F . Perturbing the almost complex structure, we
may assume that C ′

i intersects F ′ transversely. Eventually C ′
i will get blown

down and this will create a singularity on the image of F that is not allowed for
a cubic in CP2 , since the link of its singularity has four components, providing
the desired contradiction.

IB. E1 · (C2 ∪ · · · ∪ Ck) = 0.

We have E1 ·D = 0 or E1 ·D = 1 (E1 ·D > 1 is not allowed as blowing down
E1 , then perturbing the almost complex structure so that B′

1 , the image of
B1 , and D′ , the image of D , intersect transversely and then blowing down B′

1

would create two nodes on the image of D′ , contradicting Lemma 2.7). After
blowing down E1 and then sequentially blowing down the images of B1, . . . , B4 ,
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the intersection number of the images F ′ and D′ of F and D , respectively, will
be either 3 or 7. Now, by arguing as in the proof Proposition 3.3, we can show
that E2 must intersect the last curve Ck in the string C2, . . . , Ck and the curve
D′ . E2 must also intersect F ′ , otherwise, after the blowing down process has
been carried out, the image of F ′ would be nonsingular, which is impossible for
a cubic in CP2 . In fact, it is necessary that E2 · F ′ = 2, otherwise the image
of F ′ will either be smooth or have the wrong type of singularity. Also it is
necessary that the string C2, . . . , Ck be empty, otherwise, after blowing down
E2 , when the image of Ck is collapsed a further singularity will be introduced
in the image of F ′ . Now the condition that D′ get blown to a rational cubic
in CP2 forces us to have E2 · D′ = 2. Blowing down E2 , we see now that
the intersection number of the images of D′ and F ′ will be either 7 or 11
(depending on E1 · D = 0 or 1), which is impossible for a pair of irreducible
cubic curves in CP2 . In conclusion, we got that E1 ·B1 leads to contradiction,
hence we can consider

Case II: E1 · B4 = 1. As before, we distinguish two cases according to the
intersection of E1 with the chain C2 ∪ . . . ∪ Ck .

IIA. E1 · (C2 ∪ · · · ∪ Ck) = 1.

Suppose that E1 · Ci = 1. Note that E1 · F = 0, otherwise the image of F

after completing the blowing down process would have more than one singular
points. For a similar reason, E1 ·D must also be 0. We now divide E1 ·Ci = 1
into three cases.

(i) Suppose that i = 2, i.e., E1 intersects the chain in the curve intersecting D .
Blow down E1 , then sequentially blow down the images of B4, . . . , B1 and then
the images of C2, . . . , Cl until the resulting string C ′

l+1
, . . . , C ′

k attached to D′ ,
the image of D , is minimal, that is, contains no (−1)-curves. Let F ′ denote
the image of F . Then F ′ · D′ = l + 2, where 0 ≤ l ≤ k . First suppose that
l < k . Then, by arguing as in the proof of Proposition 3.3, one can show that
E2 must intersect the last curve C ′

k of the string C ′
l+1

, . . . , C ′
k and the curves

F ′ and D′ , each once transversally. Now blow down E2 and then sequentially
blow down the images of C ′

k, . . . , C
′
l+1

. Then the images of F ′ and D′ will be
nodal curves and for the intersection number of them to be 9 we require that
k = 3. However to make the self-intersection number of the image of F ′ equal
9 we require that k = 4. This contradiction show that the case l < k cannot
occur. Now suppose that l = k . Then to introduce singularities of the right
type into the images of the curves F ′ and D′ we require that E2 · F ′ = 2 and
E2 ·D′ = 2. A simple check now shows that, as before, to make the intersection

40



number of the images of F ′ and D′ 9 we require k = 3 and to make the image
of D′ have self-intersection number 9 we require k = 4, again a contradiction.

(ii) Suppose next that 2 < i < k (k ≥ 4). Blow down E1 , then sequentially
blow down the images of B4, . . . , B1 . Suppose first that the image C ′

i of Ci

under the blowing down map is not a (−1)-curve. Then, arguing as in the proof
of Proposition 3.3, one can show that E2 must intersect the last curve Ck in
the string attached to D and it must necessarily intersect F ′ , the image of F .
It follows that i = 2, otherwise, after blowing down E2 and then sequentially
blowing down the images of Ck, . . . , C1 , the image of F ′ would have more than
one singularity, contradicting Lemma 2.7 Since i > 2 is assumed, we reached
a contradiction. Thus C ′

i must be a (−1)-curve. Now blow down C ′
i . Note

that the images of the curves Ci−1 and Ci+1 must be the last two curves, in
some blowing down process, of the string attached to D to get blown down,
otherwise the image of F ′ after completing the blowing down process will have
more than one singular point, a contradiction. Now there are two cases to
consider: E2 · F ′ = 0 or E2 · F ′ = 1.

Suppose that E2 · F ′ = 0. Then it is easy to see that after the blowing down
process has been carried out, the image of F ′ will have self-intersection number
8, which contradicts the fact that F should blow down to a cubic in CP2 .

Suppose that E2 ·F ′ = 1. Then E2 must be disjoint from the string attached to
D . In order to make D singular, E2 ·D must necessarily be 2. It is now easy to
check that, after carrying out the blowing down process, the intersection number
of the images of the curves F and D will be less than 9, which contradicts the
fact that they should blow down to a pair of cubics in CP2 .

(iii) Finally assume that i = k (k ≥ 3). Blow down E1 , then sequentially blow
down the images of B4, . . . , B1 and then the images of Ck, . . . , Cl+1 until the
resulting string C ′

1, . . . , C
′
l attached to D′ (the image of D ) is minimal. If a

nonempty string remains, then, as before, E2 must intersect the last curve C ′
l in

the string and the curves F ′ , the image of F , and D′ , each once transversally.
Then blowing down E2 and then the image of C ′

l , we find that l must be 2,
otherwise the image of F ′ , after completing the blowing down process, would
have more than one singular point, contradicting the fact that it must be a
cubic in CP2 . It follows that the intersection number of the images of F ′ and
D′ , after completing the blowing down process, will be 8, contradicting the
fact that they should blow down to a pair of cubics in CP2 .

If l = 1, that is the whole string attached to D gets sequentially blown down
after blowing down E1 , then one can check that the intersection numbers of
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E2 and the images of F ′ and D′ must both be 2. Again it follows that, after
completing the blowing down process, the intersection numbers of the images
of F ′ and D′ will be 8, a contradiction. Therefore we finish IB. and conclude
that

IIB. E1 · (C2 ∪ · · · ∪ Ck) = 0.

We claim that E1 · F = 1. To see this, suppose, for a contradiction, that
E1 ·F = 0. Then we have E1 ·D = 0 or 1. Blow down E1 and then sequentially
blow down the images of the curves B4, . . . , B1 . Then the image F ′ of F will
still be smooth. It is thus necessary to have E2 · F ′ = 2, otherwise the image
of F will be smooth or have the wrong type of singularity. But then the
string C2, · · · , Ck must be empty, otherwise E2 would have to intersect it and
thus blowing down would create additional singular points on the image of F ,
a contradiction. It follows that, after completing the blowing down process,
the intersection number of the images of F and D will be less than 9, a
contradiction. This verifies E1 · F = 1

Now blowing down E1 and then sequentially blowing down the Bi , we find that
the image of F becomes a rational curve with a single nodal point and having
self-intersection number 9. It follows that E2 cannot intersect F and that E1

must intersect D once transversally. Let F ′ , D′ denote the images of F and
D , respectively, after blowing down E1 and the Bi . It is then easy to check
that F ′ ·D′ = 9. Now the only possibility for E2 , by the argument in the proof
of Proposition 3.3, is that E2 · Ck = 1 and E2 · D = 1. For each value of k ,
the blowing down process now fixes c and c1, . . . , ck , which (with k = n − 1)
must be as in Figure 22(a).

Lemma 4.3 There does exist a configuration of curves in CP2 having the
intersection pattern given in Figure 22(b). Consequently, there are singularities
with resolution graphs given in Figure 22(a) which admit rational homology disk
smoothings.

Proof Let L be the line {z = 0} in CP2 and let R1 and R2 be the cubics given
by the equations f1(x, y, z) = y2z−x3−x2z and f2(x, y, z) = y2z+ 1

2
xyz+yz2−

9

8
x3−2x2z−xz2 , respectively. The curves R1 and R2 are rational nodal cubics

with nodes at [0 : 0 : 1] and [−2

3
: −1

3
: 1], respectively. It is easy to check that

both R1 and R2 are triply tangent to L at the point [0 : 1 : 0] and are also
triply tangent to each other at [0 : 1 : 0] and have intersection multiplicity 6
at the point [0 : 0 : 1]. Therefore the existence of the configuration of curves
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Figure 22: The one-parameter family of 4-legged graphs in C with rational homology
disk filling

depicted by Figure 22(d) is verified, from which the appropriate sequence of
blow–ups shows the existence of the embedding of curves with intersections
given by the graph Γ′ of Figure 22(b) in CP2#(|Γ′| − 1)CP2 . The existence
of the smoothing of a singularity with resolution graph of Figure 22(a) then
follows from Pinkham’s Theorem 2.9.

Proof of Theorem 4.1 As before, the implication (1) ⇒ (2) follows from
general principles, (2) ⇒ (3) is a direct consequence of Proposition 4.2 and
(3) ⇒ (1) is implied by Lemma 4.3.

Remark 4.4 The graphs found in this case are constructed by the usual strat-
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egy of always blowing up the edge connecting the (−1)–vertex with the leaf.

The family B

We next consider four-legged graphs in the family B : the generic four-legged
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Figure 23: The 4-legged graphs in B

member of this family is given by picture in Figure 23 with the dual graph in
the second picture.

Theorem 4.5 Suppose that Γ is a plumbing graph as in Figure 23(a). Then
the following three statements are equivalent:

(1) There is a singularity SΓ with resolution graph Γ which admits a rational
homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 23(a) b = −3, b1 = . . . = bn−2 = −2,
bn−1 = −3 and bn = −n for some integer n ≥ 2.

After three blow downs we obtain the configuration K depicted in the third
picture in Figure 23. Suppose that Z is the closed symplectic 4-manifold we get
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by gluing the compactifying divisor WΓ′ (containing K ) to a rational homology
disk symplectic filling of (YΓ, ξΓ). Then it is easy to check that there must be
three (−1)-curves, say E1, E2, E3 , not contained in the strings B1, B2 and
C2, . . . , Ck , such that, after blowing down these three (−1)-curves, the images
of the curves in the strings B1, B2 and C2, . . . , Ck can be sequentially blown
down and in the process F and D will be transformed to a pair of cubics in
CP2 and the images of G and L will be lines.

Since in the blowing down process the string B1, B2 will eventually transformed
into a string which can be sequentially blown down, one of the (−1)-curves
E1, E2, E3 , must intersect B1 ∪ B2 . Renumbering the curves if necessary, we
may assume that this curve is E1 .

Proposition 4.6 Under the hypothesis of the existence of a rational homology
disk filling, we get that E1 intersects D , F and B2 , E2 intersects F , G and
C2 , while E3 intersects D and Ck . The corresponding framings are given as
c1 = −n − 1, c2 = −3 and c3 = . . . = ck = −2.

Proof Note that E1 must be disjoint from G, otherwise blowing down E1 and
then sequentially blowing down the images of B1 and B2 the image of G would
be either singular or would have self-intersection number 2, which contradicts
the fact that G should blow down to a line in CP2 . Since one of the Ei must
necessarily intersect G we may assume that E2 · G = 1. We now consider the
two possibilities: E1 · Bi = 1 for i = 1, 2.

Case I: E1 · B1 = 1.

The curve E1 must necessarily be disjoint from F , otherwise the image of F

after completing the blowing down process would have more than one singular
point which is impossible for a cubic in CP2 . We consider the two possibilities:
E1 · (C2 ∪ · · · ∪ Ck) = 1 or E1 · (C2 ∪ · · · ∪ Ck) = 0.

IA. E1 · (C2 ∪ · · · ∪ Ck) = 1.

Suppose that E1 ·Ci = 1. Note that the image of Ci must be the last curve of
the string attached to D to get blown down, since blowing down the the image
of Ci will make the image of F singular so that if there are any remaining
curves in the string then these will create additional singularities on the image
of F when they are blown down, a contradiction.

Suppose that E2 · (C2 ∪ · · · ∪ Ck) = 0. Then the condition that G blows down
to a (+1)-curve in CP2 , forces us to have E3 · G = 1. But then necessarily
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E3 · (C2 ∪ · · · ∪ Ck) = 0. Thus the string C2, . . . , Ck must have length 1. Now
E2 and E3 must necessarily intersect F , each once transversally, otherwise the
intersection number of the images of F and G will not be 3. It is also necessary
that the intersection number of one of E2 or E3 and D be 2 and the other
be 0 to meet the requirements that the image of D be singular and that the
images of D and G have intersection number 3. But then after completing the
blowing down process we will find that the images of D and F have intersection
number 7, a contradiction.

Suppose that E2 · (C2 ∪ · · · ∪Ck) = 1. Note that E2 must necessarily intersect
Ci , the last curve in the string to get blown down, otherwise the image of G

after repeatedly blowing down will have self-intersection number greater than
1, a contradiction. Note also that E2 must be disjoint from F , otherwise
blowing down the image of Ci will lead to a triple point on the image of F , a
contradiction. Now consider the (−1)-curve E3 . If E3 intersects C2∪· · ·∪Ck ,
then E3 will be disjoint from F . In such a case, after completing the blowing
down process, the image of F will be a 7-curve, a contradiction. If E3 is
disjoint from C2 ∪ · · · ∪ Ck , then E3 · F can be 0 or 1. In either case, after
completing the blowing down process, the image of F will have self-intersection
number at most 8, again a contradiction. This argument concludes the analysis
of the case E1 · (C2 ∪ · · · ∪ Ck) = 1.

IB. E1 · (C2 ∪ · · · ∪ Ck) = 0.

Suppose that E2 · (C2 ∪ · · · ∪ Ck) = 0. As before, it implies that E3 · G = 1.
It follows that E1, E2, E3 will be disjoint from C2 ∪ · · · ∪ Ck . But this means
that the string must be empty, which is never the case.

Suppose that E2 · (C2 ∪ · · · ∪ Ck) = 1. Then E2 must intersect the last curve
of the string to get blown down. Also we must necessarily have E3 · G = 0. If
E3 is disjoint from C2∪ · · ·∪Ck , then the string must have length 1. It follows
that, after completing the blowing down process, the intersection number of the
images of D and G will be either 2 or 4, depending on whether E2 ·D = 0 or
1, a contradiction in both cases. So we may assume that E3 ·(C2∪· · ·∪Ck) = 1.
Note that the only way an appropriate singularity on the image of D can arise
is if E3 ·D = 1. It follows that we must have E3 ·Ck = 1 and E2 ·C2 = 1. Note
also that we necessarily have E2 · F = 1, otherwise the intersection number of
the images of F and G will not be 3. If E3 ·F = 0, then, after completing the
blowing down process, the intersection number of the images of F and D will
be at most 8, a contradiction. If E3 ·F = 1, then after completing the blowing
down process, the the intersection number of the images of F and G will be 4,
again a contradiction. This last observation concludes the discussion of Case I
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and shows that E1 · B1 = 1 is not possible.

Case II: E1 · B2 = 1.

Again we consider the two possibilities: E1 · (C2 ∪ · · · ∪ Ck) = 1 or E1 · (C2 ∪
· · · ∪ Ck) = 0.

IIA. E1 · (C1 ∪ · · · ∪ Ck) = 1.

Note that E1 ·F = 0, otherwise when the image of Ci is eventually blown down
the image of F will develop more than one singularity, a contradiction. For a
similar reason we also have E1 ·D = 0. Suppose that E1 ·Ci = 1. We consider
the possibilities for i .

(i) i = 2. Suppose that E2 · (C2 ∪ · · · ∪ Ck) = 0. Then the condition that the
image of G, after completing the blowing down process, be a (+1)-curve forces
us to have E3 · G = 1 and E3 · (C2 ∪ · · · ∪ Ck) = 0. Also, the condition that
the images of F and D have nodes and that the intersection numbers of the
images of F and G, and D and G be 3 forces us to have E2 ·F = 2, E2 ·D = 0
and E3 · F = 0, E3 · D = 2, or vice-versa. Finally, the condition that F have
self-intersection number 9 forces us to have k = 4. But then it follows that the
intersection number of the images of F and D , after completing the blowing
down process, will be 6, a contradiction.

Suppose that E2 · (C2 ∪ · · · ∪Ck) = 1. Then E2 will intersect the last curve of
the string to get blown down. Note that E2 ·D = 0, otherwise, after completing
the blowing down process, the intersection number of the images of D and G

will be greater than 3, a contradiction. Similarly E2 ·F = 0. Note also that E3

is necessarily disjoint from G. Thus if E3 is also disjoint from the string or from
D , it follows that the intersection number of D and G after completing the
blowing down process will be 2, a contradiction. Thus E3 necessarily intersects
the string and D . In fact, we require that E3 · Ck = 1. Now the condition
that the image of F have a singularity forces us to have E3 · F = 1. Also, the
condition that the image of F have self-intersection number 9 forces us to have
k = 4. However, if k = 4, then the intersection number of the images of F and
D , after completing the blowing down process, will be 10, a contradiction.

(ii) 2 < i < k (k ≥ 3). If E2 · (C2 ∪ · · · ∪ Ck) = 0, then, as before, we
require that E3 ·G = 1, E3 · (C2 ∪ · · · ∪ Ck) = 0. It follows that we must have
k = 4, otherwise, after completing the blowing down process, the image of F

will either have a singularity of multiplicity greater than two or will have more
than one singular point, neither of which is permitted for a cubic in CP2 . Now
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the condition that the images of F and G have intersection number 9 forces
us to have E2 ·F = E3 ·F = 1. But then the image of F , after completing the
blowing down process, will have self-intersection number 10, a contradiction.
Thus E2 · (C2 ∪ · · · ∪Ck) = 1 and E2 intersects the last curve of the string that
gets blown down. Note that, as in the previous case, E2 · F = 0, E2 · D = 0.

Suppose that Ci · Ci = −4. Then the image of Ci will be a (−1)-curve, after
blowing down E1 and then sequentially blowing down the images of B2, B1 . It
follows that the images of Ci−1, Ci+1 must be the last two curves of the string
attached to D to get blown down. Since E2 · (C2 ∪ · · · ∪ Ck) = 1, note that,
as before, we require E3 · (C2 ∪ · · · ∪ Ck) = 1, E3 · D = 1. It follows that we
must have E3 · Ck = 1. Note that E3 · F = 0, otherwise the image of F after
completing the blowing down process would have more than one singular points,
a contradiction. Now, after completing the blowing down process, we find that
the intersection number of the images of D and F will be 8, a contradiction.

Suppose that Ci ·Ci < −4. Then after blowing down E1 and then sequentially
blowing down B2, B1 , the image of Ci will not be a (−1)-curve. As before, we
can show that E3 ·Ck = 1, E3 ·D = 1. The condition that F become singular
forces us to have E3 ·F = 1. Now after completing the blowing down process we
see that the F will have more than one singularity, since i21, a contradiction.

(iii) i = k (k ≥ 3). If E2 · (C2 ∪ · · · ∪ Ck) = 0, then, as before, we require
that E3 · G = 1, E2 · (C2 ∪ · · · ∪ Ck) = 0. To obtain the correct types of
singularities on the images of F and D and to meet the requirement that the
intersection numbers of the images of F and G, and D and G, after completing
the blowing down process, be 3, we require that E2 · F = 2, E3 · F = 0 or
E2 · F = 0, E3 · F = 2 and likewise for D . It follows that after completing the
blowing down process the intersection number of the images of F and D will
be 8, a contradiction. So E2 · (C2 ∪ · · · ∪ Ck) = 1 and E2 intersects the last
curve of the string that gets blown down.

Suppose that E3 ·(C2∪· · ·∪Ck) = 0 or E3 ·D = 0. Then since E3 ·G = 0, after
completing the blowing down process the intersection number of the images of
D and G will be 2, a contradiction. So E3 · (C2∪· · ·∪Ck) = 0 and E3 ·D = 1.
Similarly we can check that E3 · F = 1.

Suppose that E3 · Cj = 1 for j < k . Blow down E1, E2, E3 and then sequen-
tially blown down the images of B2, B1 . Note then that, after the images of
Ck, Ck−1, . . . , Cj have been sequentially blown down, the image of F will be-
come singular. Also after the images of Cj, Cj−1, . . . , C2 have been sequentially
blown down the image of D will become singular. Since the images of F and
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D should have exactly one singularity, the image of Cj must necessarily be the
last curve of the string to get blown down. It follows that j must be 2. It is
now easy to check that, after the blowing down process has been completed,
the intersection number of the images of F and D will be 8, a contradiction.

Suppose that E3 ·Ck = 1. Then once the image of Ck is blown down the image
of F will become singular. It follows that k must be 2, contrary to assumption.

2B. E1 · (C2 ∪ · · · ∪ Ck) = 0.

If E2 ·(C2∪· · ·∪Ck) = 0, then we must have E3 ·G = 1, E3 ·(C2∪· · ·∪Ck) = 0.
It follows that the string C2, . . . , Ck must be empty, which is never the case.
So E2 · (C2 ∪ · · · ∪ Ck) = 1 and E2 intersects the last curve that gets blown
down. We thus necessarily have E3 · G = 0.

Suppose that E1 · F = 0. If E2 · F = 0 also, then the only way that the
image of F can have the correct type of singularity is if E3 · F = 2 and
E3 · (C2 ∪ · · · ∪Ck) = 0. But then, after completing the blowing down process,
we find that the intersection number of the images of F and G will be 2, a
contradiction. So E2 ·F = 1. There are now two ways that the image of F can
have the correct type of singularity: if E3 ·F = 1 and E3 · (C2∪· · ·∪Ck) = 1 or
if E3 ·F = 2 and E3 · (C2 ∪ · · · ∪Ck) = 0. In the former case, after completing
the blowing down process, the intersection number of the images of F and G

will be 4, a contradiction. In the latter case, after completing the blowing down
process, the intersection number of the images of D and G will be either 2 or
4 depending on whether E2 · D = 0 or 2, a contradiction in either case.

Suppose that E1 ·F = 1. If E2 ·F = 0, then, after completing the blowing down
process, the intersection number of the images of F and G will be either 2 (if
E3 ·F = 1 and E3 ·(C2∪· · ·∪Ck) = 1) or 1 (if E3 ·F = 0 or E3 ·(C2∪· · ·∪Ck) =
0), a contradiction in either case. So E2 · F = 1. Note now that if E3 · F = 1,
then the self-intersection number of the image F , after completing the blowing
down process, will be greater than 9, which is not possible for a cubic in CP2 .
So E3 · F = 0. Also if E2 · D = 1, then, after completing the blowing down
process, the intersection number of the images of D and G will be greater than
3, a contradiction. So E2 ·D = 0. Next note that if E3 · (C2 ∪ · · · ∪Ck) = 0 or
E3 · D = 0, then since E3 · G = 0, after completing the blowing down process,
the intersection number of the images of D and G will be 2, a contradiction.
So E3 · (C2 ∪ · · · ∪ Ck) = 1 and E3 · D = 1. It follows that we must have
E3 · Ck = 1 and E2 · C2 = 1. Also if E1 · D = 0, then, after completing the
blowing down process, the intersection number of the images of D and F will
be 5, a contradiction. So we must have E1 ·D = 1. Thus the three (−1)-curves
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E1, E2, E3 must be as given by the Proposition (cf. also Figure 24(c)). Finally,
for each value of k , the blowing down process fixes c and c1, · · · , ck , which
(with k = n) must be as given in Figure 24(a).
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Figure 24: The one-parameter family of 4-legged graphs in B with rational homology
disk filling

Lemma 4.7 There does exist a configuration of curves in CP2 shown by
Figure 24(d), hence for the graph Γ′ given by Figure 24(b) there are curves
in CP2#(|Γ′| − 1)CP2 intersecting each other according to Γ′ . Consequently,
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there are singularities with resolution graphs given in Figure 24(a) which admit
rational homology disk smoothings.

Proof Let L and R1 be as before and let M be the line {x + z = 0} and
R3 be the cubic given by the equation f3(x, y, z) = y2z + 2xyz + 2yz2 − 2x3 −
4x2z − 2xz2 . The curve R3 is rational nodal cubic with a node [−1 : 0 : 1].
One can check that L , R1 and R3 are pairwise triply tangent at [0 : 1 : 0].
Also R1 and R3 intersect at [0 : 0 : 1] with intersection multiplicity 4 and at
[−1 : 0 : 1] with intersection multiplicity 2. Furthermore, M passes through
the point [0 : 1 : 0] and is tangent to R1 at [−1 : 0 : 1]. Therefore the existence
of the configuration of curves depicted by Figure 24(d) is verified, from which
the appropriate sequence of blow–ups verifies the existence of the embedding of
curves with intersections given by Figure 24(b). The existence of the smoothing
then follows from Pinkham’s Theorem 2.9.

Proof of Theorem 4.5 As before, the implication (1) ⇒ (2) follows from
general principles, (2) ⇒ (3) is a direct consequence of Proposition 4.6 and
(3) ⇒ (1) is implied by Lemma 4.7.

Remark 4.8 The graphs found in this case are constructed by the usual strat-
egy of always blowing up the edge connecting the (−1)–vertex with the leaf.

The family A

Finally we consider four-legged graphs in the family A . The generic four-legged
member Γ of A is given in the first picture in Figure 25 with the dual graph
in the second.

Theorem 4.9 Suppose that Γ is a plumbing graph as in Figure 25(a). Then
the following three statements are equivalent:

(1) There is a singularity SΓ with resolution graph Γ which admits a rational
homology disk smoothing,

(2) the Milnor fillable contact 3–manifold (YΓ, ξΓ) admits a rational homology
disk weak filling, and

(3) for the graph Γ given by Figure 23(a) b = −3, b1 = . . . = bn−2 = −2,
bn−1 = −4 and bn = −n for some integer n ≥ 2.

After three blow–downs we obtain the configuration K indicated in the third
picture in Figure 25. Suppose that Z is the closed symplectic 4-manifold we
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Figure 25: The 4-legged graphs in A

get by symplectically gluing the compactifying divisor WΓ′ (containing K ) to
a rational homology disc symplectic filling of YΓ . Then it is easy to check that
there must be three (−1)-curves, say E1, E2, E3 , not contained in the string
C2, . . . , Ck , such that, after blowing down these three (−1)-curves, the image
of B can be blown down and the images of the curves in string C2, . . . , Ck can
be sequentially blown down so that in the process F and D are transformed
to a pair of cubics in CP2 and the images of L and A are lines.

Since in the blowing down process B will be eventually transformed into a
curve which can be blown down, one of the three (−1)-curves, call it E1 , must
intersect B .

Proposition 4.10 If a rational homology disk filling exists in the situation
described above, then E1 intersects D , F and B , E2 intersects A , D and
F and E3 intersects D and Ck . The corresponding framings are given as
c1 = −k + 1, c3 = −3 and c2 = c4 = . . . = ck = −2.

Proof Note that if E1 · A = 1, then E1 · (C2 ∪ · · · ∪ Ck) = 0, otherwise
after blowing down E1 , and then the image of B , the image of A will become
singular when the image of Ci is eventually blown down, where E1 · Ci = 1,
which contradicts the fact that the image of A in CP2 will be a line. Thus
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at least one (−1)-curve different from E1 should intersect A . Let us call this
(−1)-curve E2 . We now begin the case-by-case analysis.

Case I: E1 · (C2 ∪ · · · ∪ Ck) = 1.

Suppose that E1 ·Ci = 1. In this case, by the argument above, we will necessar-
ily have E1 ·A = 0. Note that if E1 ·F = 1, then after E1 and the image of B

are blown down, the image F ′ of F will be singular. However, the intersection
number of the image C ′

i of Ci and F ′ will be 2. Thus when the image of
C ′

i is eventually blown down the image of F ′ have a second singularity, which
contradicts the fact that it must eventually blow down to a cubic in CP2 . Thus
E1 ·F = 0. Also, we must have E1 ·D = 0, otherwise, after repeatedly blowing
down, the image of D will eventually have a triple point, which contradicts the
fact that the image of D in CP2 should also be a cubic.

Note that if E2 ·(C2∪· · ·∪Ck) = 0, then we must have have E3 ·A = 1 and E3 ·
(C2∪· · ·∪Ck) = 1, since, after completing the blowing down process, the image
of A should be a smooth curve of self-intersection number 1. Renumbering E2

and E3 , if necessary, we may assume that E2 · (C2 ∪ · · · ∪ Ck) = 1.

Suppose that E2 ·Cj = 1. Notice that, in the blowing down process, the image
of Cj must either be the last curve of the string attached to D to get blown
down or it must be the penultimate curve to get blown down, since otherwise,
after the blowing process is complete, the self-intersection number of the image
of A will be greater than 1, a contradiction.

(i) i = 2.

(ia) The image Cj is last curve of the string to get blown down. Then we must
have E3 · A = 1, and hence E3 · (C2 ∪ · · · ∪ Ck) = 0. Now, since E1 · D = 0,
there are two ways that an appropriate singularity can appear on image of D :
either E2 · D = 1 or E3 · D = 2.

Suppose that E2 · D = 1. Then E3 · D = 0, otherwise, after completing the
blowing down process, the intersection number of the images of D and A would
be greater than 3, a contradiction. We now have E2 ·F = 0 or 1. If E2 ·F = 0,
then we must have E3 · F = 2, otherwise the image of F , after completing the
blowing down process, would be smooth and rational, which is a contradiction.
Now the condition that the self-intersection number of the image of F , after
completing the blowing down process, will be 9, forces us to have k = 3. But
then, after completing the blowing down process, the intersection number of the
images of F and D will be 7, a contradiction. If E2 · F = 1, then E3 · F = 0,
otherwise the intersection number of the images of F and A , after completing
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the blowing down process, would be greater than 3, a contradiction. Now,
again, the condition that the self-intersection number of the image of F , after
completing the blowing down process, will be 9, forces us to have k = 4. But
then, after completing the blowing down process, the intersection number of
the images of F and D will be 10, again a contradiction.

Suppose that E3 · D = 2. Then E2 · D = 0. We now have E2 · F = 0 or 1. If
E2 · F = 0, then we must have E3 · F = 2. Now, as before, the condition that
the self-intersection number of the image of F , after completing the blowing
down process, will be 9, forces k = 4. But then, after completing the blowing
down process, the intersection number of the images of F and D will be 10, a
contradiction. If E2 · F = 1, then we must have E3 · F = 0. Thus, again, the
condition that the self-intersection number of the image of F , after completing
the blowing down process, will be 9, forces k = 4. And, this time, after
completing the blowing down process, the intersection number of the images of
F and D will be 7, again a contradiction.

(ib) Then image of Cj is penultimate curve of the string to get blown down.
Then we must have E3 ·A = 0. Also, we must have E2 ·D = 0, otherwise, after
completing the blowing down process, the intersection number of the images of
D and A would be greater than 3, a contradiction. Similarly, we must have
E2 · F = 0.

Suppose that E3 · (C2∪ · · ·∪Ck) = 0 or E3 ·D = 0. Then, after completing the
blowing down process, the intersection number of the images of D and A will
be at most 2, a contradiction. So E3 · (C2 ∪ · · · ∪ Ck) = 1 and E3 · D = 1. If
E3 ·Cl = 1 for l < k , then we must have l = k − 1 and j = k , otherwise, after
completing the blowing down process, the image of D will have more than one
singular point, a contradiction. However, if l = k − 1 and j = k , then, after
completing the blowing down process, the intersection number of the images of
D and A will be 2, a contradiction. So we must have E3 · Ck = 1. Also we
must have E3 · F = 1, otherwise the image of F , after completing the blowing
down process will be smooth, a contradiction. Now, the condition that the
self-intersection number of the image of F , after completing the blowing down
process, will be 9, forces us to have k = 4. But then, after completing the
blowing down process, the intersection number of the images of F and D will
be 10, a contradiction.

(ii) 2 < i < k (k ≥ 4).

(iia) The image of Cj is last curve of the string to get blown down. Then we
must have E3 · A = 1, and hence E3 · (C2 ∪ · · · ∪ Ck) = 0. If k is greater than
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3, then, after completing the blowing down process, the image of F will either
have a point of multiplicity greater than 2 or have more than one singular point,
neither of which is possible for a cubic in CP2 . Thus we must have k = 4 and
thus j = 2 or 4. Also, we must have E2 ·F = 0, otherwise, after completing the
blowing down process, the image of F will have a triple point, a contradiction.
Furthermore, we must have E3 ·F = 1, otherwise, after completing the blowing
down process, the intersection number of the images of F and A will be less
that 3, a contradiction. Now the only way a singularity of the appropriate type
can appear on the image of D is if E2 · D = 1 or E3 · D = 2.

Suppose first that E2 ·D = 1. Then we must have E3 ·D = 0, otherwise, after
completing the blowing down process, the intersection number of the images
of A and D will be greater than 3, a contradiction. It follows that, after
completing the blowing down process, the intersection number of the images of
F and D will be at most 8, which contradicts the fact that images of F and
D in CP2 are a pair of cubics.

Suppose now that E3 ·D = 2. Then we must have E2 ·D = 0, otherwise, after
completing the blowing down process, the intersection number of the images of
D and A will be greater that 3, a contradiction. It follows, after completing
the blowing down process, the intersection number of the images of F and D

will be at most 8, a contradiction.

(iib) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 · A = 0 and E2 · D = E2 · F = 0. Also, we must have
E3 · (C2 ∪ · · · ∪ Ck) = 1 and E3 · D = 1.

Suppose that E3 · Cl = 1 for l < k . Then the image of Cl must be the last
curve of the string attached to D to get blown down. Indeed, it is easy to see
that after the image of Cl is blown down, the image of the portion Cl+1, . . . , Ck

of the the string must be a point, otherwise, after completing the blowing down
process, the image of D will have more than one singular point. Thus we must
have i > l or j > l . In the former case, after the portion Cl, . . . , Ck of the the
string has been collapsed to a point, the image of F will be singular and thus
the image of Cl must be the last curve of the string to get blown down. In the
latter case, since the image of Cj is the penultimate curve of the string to get
blown down, Cl must be the last curve of the string to get blown down. Now
again using the assumption that the image of Cj is the penultimate curve of
the string to get blown down, we must have either j < l or j > l . Suppose that
j < l . Then we must have i > l . Also, we must have E3 ·F = 0, otherwise, after
completing the blowing down process, the image of F will have a singularity of
multiplicity greater than 2, a contradiction. Now, after completing the blowing
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down process, the intersection number of the images of A and F will be 2, a
contradiction. Suppose that j > l . Then, after completing the blowing down
process, the intersection number of the images of A and D will be 2, again a
contradiction.

Suppose that E3 · Ck = 1. Then we must have E3 · F = 0 or 1. Suppose that
E3 · F = 0. Then, in the blowing down process, the images of the curves Ci−1

and Ci+1 must be the last two curves of the string attached to D to get blown
down. It follows that we must have i = 3. It is now easy to check that, after
completing the blowing down process, the image of F will have self-intersection
number 8, a contradiction. Suppose that E3 · F = 1. Then the image of Ci

must be the last curve of the string to get blown down. It follows that we
must have i = 3 and j = 2. We now find that, after completing the blowing
down process, the intersection number of the images of F and A will be 2, a
contradiction.

(iii) i = k (k ≥ 3).

(iiia) The image of Cj is last curve of the string to get blown down. Then we
must have E3 · A = 1, and hence E3 · (C2 ∪ · · · ∪ Ck) = 0. Also we must have
j = 2. Now the only way a singularity of the appropriate type can appear on
the image of D is if E2 · D = 1 or E3 · D = 2.

Suppose that E2 · D = 1. Then we must have E3 · D = 0. Now we have
E2 · F = 0 or 1. If E2 · F = 0, then it is easy to see that, after completing the
blowing down process, the intersection number of the images of F and D will
be 5, a contradiction. If E2 · F = 1, then one can check that, after completing
the blowing down process, the intersection number of the images of F and D

will be 8, again a contradiction.

Suppose that E3 · D = 2. Then we must have E2 · D = 0. Again we have
E2 · F = 0 or 1. If E2 · F = 0, then we must have E3 · F = 2. It follows
that, after completing the blowing down process, the intersection number of
the images of F and D will be 8, a contradiction. If E2 ·F = 1, then we must
have E3 · F = 0. In this case, after completing the blowing down process, the
intersection number of the images of F and D will be 5, again a contradiction.

(iiib) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 · A = 0 and E2 · D = E2 · F = 0. Also, we must have
E3 · (C2∪ · · ·∪Ck) = 1 and E3 ·D = 1. Furthermore, we must have E3 ·F = 1,
otherwise, after completing the blowing down process, the image of F would
be smooth, a contradiction. Now note that if l 6= 2, then we must have l = 3
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and j = 2, otherwise, after completing the blowing down process, the image
of F will have more than one singular point, a contradiction. If l = 2, then
C2 must be the last curve to get blown down, otherwise, after completing the
blowing down process, the image of D will have more than one singular point, a
contradiction. Thus we must have j = 3. It now follows that, after completing
the blowing down process, the intersection number of the images of D and A

will be 2, a contradiction. If l = 3 and j = 2, then C3 must be the last curve
to get blown down and in this case it follows that, after completing the blowing
down process, the intersection number of the images of F and A will be 2,
again a contradiction.

Case II: E1 · (C2 ∪ · · · ∪ Ck) = 0.

IIA. E1 · A = 1.

Since we are assuming that E2 ·A = 1 also, we will necessarily have E2 · (C2 ∪
· · · ∪Ck) = 0 and E3 ·A = 0. Also, since the string C2 . . . , Ck is nonempty for
every 4–legged graph Γ in A , we must have E3 · (C2 ∪ · · · ∪ Ck) = 1. Now if
E1 · D = 0, then, after completing the blowing down process, the intersection
number of the images of D and A will be at most 2, a contradiction. It follows
that we must have E1 · D = 1 and thus we must also have E2 · D = 1.

Suppose that E1·F = 1. Then we must have E2 ·F = 0. If E3 ·F = 0 also holds,
then, after completing the blowing down process, the self-intersection number
of the image of F will be 6, a contradiction. So we must have E3 · F = 1
and k must be 3. But then, after completing the blowing down process, the
intersection number of the images of F and D will be 10, a contradiction.

Suppose that E1 · F = 0. Then we must have E2 · F = 2. Again we require
E3 · F = 1 and k = 3. It thus follows again that, after completing the blowing
down process, the intersection number of the images of F and D will be 10, a
contradiction as before.

IIB. E1 · A = 0.

We may now assume E2 · (C2 ∪ · · · ∪Ck) = 1. (Since if E2 · (C2 ∪ · · · ∪Ck) = 0,
then we would necessarily have E3 ·A = 1 and E3 · (C2 ∪ · · · ∪Ck) = 1, and we
would just renumber the (−1)-curves.) Suppose that E2 · Cj = 1. It follows
that, in the blowing down process, the image of Cj is either the last curve of
the string to get blown down or the penultimate curve to get blown down.

(i) Suppose first that the image of Cj is last curve of the string to get blown
down. Then we must have E3 · A = 1 and E3 · (C2 ∪ · · · ∪ Ck) = 0. Since we
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are assuming that E1 · A = 0, we must have that k = 2. Now if E2 · F = 0,
then, after completing the blowing down process, the intersection number of
the images of A and F will be at most 2, a contradiction. So E2 · F = 1 and
thus E3 · F = 1 also. It follows that we must have E1 · F = 1, otherwise, after
completing the blowing down process, the image of F would be smooth or have
more than one singularity, a contradiction in both cases.

Suppose that E2 · D = 1. Then we must have E3 · D = 0. Note also that we
must have E1 · D = 1, otherwise, after completing the blowing down process,
the intersection number of the images of F and D will be different from 9, a
contradiction. It follows that D must have self-intersection number 2 and C2

must have self-intersection number −2. It is easy to see that in this case Γ is
just the unique three-legged graph in the family A with four vertices and we
already know that in this case the corresponding contact 3-manifold (YΓ, ξΓ)
admits a rational homology disk filling.

Suppose that E2 ·D = 0. Then we must have E3 ·D = 2. Again we can check
that we must have E1 ·D = 1. As in the previous case, it follows that D must
have self-intersection number 2 and C2 must have self-intersection number −2,
and this case has already been considered.

(ii) The image of Cj is the penultimate curve of the string to get blown down.
Then we must have E3 ·A = 0. Note that if E2 ·D = 1, then, after completing
the blowing down process, the intersection number of the images of A and D

will be 4, a contradiction. Thus E2 · D = 0. Also we must have E3 · (C2 ∪
· · · ∪ Ck) = 1 and E3 · D = 1, otherwise, after completing the blowing down
process, the intersection number of the images of A and D will be at most 2,
a contradiction. Now if l < k , then we must have k = 3, l = 2 and j = 3. But
then, after completing the blowing down process, the intersection number of
the images of A and D will be 2, a contradiction. So l = k . It follows that we
must have j = 2 or 3. Now note that if E2 · F = 0, then, after completing the
blowing down process, the intersection number of the images of A and F will
be at most 2, a contradiction. So we must have E2 ·F = 1. It also follows that
we must have E3 ·F = 0, otherwise, after completing the blowing down process,
the intersection number of the images of A and F will be greater than 3, a
contradiction. We now must have E1 · F = 1, otherwise, after completing the
blowing down process, the image of F will be smooth, a contradiction. For each
value of k and for j = 2, 3, the blowing down process now fixes c, c1, . . . , ck ,
which (with k = n + 1) must be as in Figure 26.
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Figure 26: The one-parameter family of 4-legged graphs in A with rational homology
disk filling

Lemma 4.11 There does exist a configuration of curves in CP2 having the
intersection pattern given in Figure 26(d). This shows that there are curves em-
bedded in CP2#(|Γ′|−1)CP2 intersecting each other according to the plumbing
graph Γ′ given by Figure 26(b). In turn, this fact implies that for each graph
of Figure 26(a) there is a singularity with that resolution graphs which admit
rational homology disk smoothings.
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Proof Let L and R1 be as before, let N be the line {y−i
√

3(x+ 8

9
z) = 0} and

R4 be the cubic given by the equation f4(x, y, z) = y2z + (1− i
√

3)xyz + 4

9
(3−

i
√

3)yz2 + 1

2
(−1+ i

√
3)x3 +(−2+ i

√
3)x2z− 4

9
(−3+ i

√
3)xz2 . The curve R4 is

rational nodal cubic with a node [−4

3
: −4

9
i
√

3 : 1]. The line N and the curves
R1 and R4 are pairwise triply tangent at [0 : 1 : 0]. Also the curves R1 and R4

intersect at each of the points [0, 0, 1] and [−4

3
: −4

9
i
√

3 : 1] with intersection

multiplicity 3. The line N is triply tangent to R1 at [−4

3
: −4

9
i
√

3 : 1] and
intersects R4 at the same point with intersection multiplicity 3. Therefore
the configuration of curves depicted by Figure 26(d) is verified, from which the
appropriate sequence of blow–ups verifies the existence of the embedding of
curves with intersections given by Figure 26(b). A simple count of blow–ups
shows that the resulting configuration is in CP2#(|G′| − 1)CP2 . The existence
of the smoothing then follows from Pinkham’s Theorem 2.9.

Proof of Theorem 4.9 As before, the implication (1) ⇒ (2) follows from
general principles, (2) ⇒ (3) is a direct consequence of Proposition 4.10 and
(3) ⇒ (1) is implied by Lemma 4.11.

Remark 4.12 The graphs found in this case are constructed by the usual
strategy of always blowing up the edge connecting the (−1)–vertex with the
leaf.

After examining all possibilities, we arrive to the

Proof of Theorem 1.6 Consider a Seifert singularity SΓ with minimal good
resolution graph having at least four legs. Once again, the existence of a rational
homology disk smoothing implies the existence of a rational homology disk
filling of the Milnor fillable contact structure ξΓ on the link YΓ showing the
implication (1) ⇒ (2). Suppose now that (YΓ, ξΓ) admits a rational homology
disk filling. By Theorem 2.11 we get that Γ is a 4–legged graph in A ∪ B ∪ C .
Therefore the combination of Theorems 4.1, 4.5 and 4.9 implies both (2) ⇒ (3)
and (3) ⇒ (1), concuding the proof of the theorem.

5 Appendix: the families W ,N and M

For completeness, we verify the existence of rational homology disk smoothings
for the singularities with resolution graphs in W,M and N . Notice that these
results were already proved in [14] with slightly different means; here we sketch
this alternative argument to unify the treatment of all cases.
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The family W
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Figure 27: The graphs, their dual, the (−1)–curves and the configuration of curves
after repeated blow–downs in the family W

Graphs in the family W were defined in [14, Figure 3.] (cf. [15] for the first
appearance of these plumbing trees), which for completeness we depict in Fig-
ure 27(a) (cf. also Figure 1(a)), together with the dual plumbing (b). Adding
the (−1)–curves to the duals as it is shown in (c), repeated blow–downs result
Figure 27(d) in the complex projective plane, i.e. four lines. Since the diagram
depicts four generic lines in the complex projective plane, the existence of such
a configuration is obvious. Blowing back up we get the dual configuration Γ′

in CP2#(|Γ′| − 1)CP2 , which according to [13, Theorem 6.7] (cf. also Theo-
rem 2.9) provides the existence of the rational homology disk smoothing. The
same statement has been verified in [15] and in [14, Example 8.4].

The family N

Figure 28(a) shows the triply infinite family of graphs forming N for p > 1,
with (b) depicting the degeneration when p = 0 (cf. also Figures 1(b) and (c)).
The two cases can be treated uniformly when turning to the duals, shown by
Figure 28(c) and (d). One blow-up, and two blow–downs result (e) (where the

61



�� �� �� �� �� �� �� �� ����

��

�� ����

��

�� ������

�� �� �� �� �� �� �� ��

��

��

������ ������������ ������������ ��������

�������� �������������� ��������

������ ������������������������ ��
−2 −2 −2 −2 −2 −2−3 −3

−(r+3)

−(p+2)

−(q+4)

q (−2)’s r (−2)’sp−1 (−2)’s

−3−2−2 −2 −2 −(q+4)

−2

r (−2)’sq (−2)’s

−(r+4)

−2 −2 −2−2

−2

−2

−(r+2)

0−(q+2)

−(p+2)

r+1 (−2)’s q+2 (−2)’s

p+1 (−2)’s

−(q+2)

−(p+2)

−2

−2 −1

−r−3

−2

−1

−2
−2 −2

−1
−r−3

−2

−2

−2
−2

−(p+2)
−2

−2

−2

r+1 (−2)’s

−q

+1

+1 +1

4

(a)

(b) (c)

(d)
(e)

(f)

... ... ...

......

... ...

.
.
.
.
.
.
.

.
.
.
..

.

.
.
. ...

...

...

+1

Figure 28: The graphs, their dual, the (−1)–curves and the configuration of curves
after repeated blow–downs in the family N

parabola is tangent to the horizontal line), which (after successively blowing
down the (−1)–curves, starting with the dashed ones) results the configuration
of a conic and three lines in CP2 . When p = 0, the vertical (−1)–curve is
missing in (e), and correspondingly the final configuration admits two lines
and the conic. It is elementary to give examples of a conic, a tangent line
to it, and two further lines intersecting according to the diagram in (f). The
reversal of the blow–down preocedure, together with Pinkham’s Theorem 2.9
shows the existence of the rational homology disk smoothing. Once again,
similar argument for the existence of rational homology disk smoothing has
been presented in [14, Example 8.4].
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The family M

As usual, Figure 29(a) depicts the triply infinite family of graphs in M , with
the various degenerations for p = 0 in (b), r = 0 in (c) or both in (d) (cf.
also Figures 1(d), (e), (f) and (g)). These discrepancies are absorbed by the
dual graph shown by (e), and by three blow–downs we get the configuration
shown in (g). (For r = 0 the vertical (−1), together with the (−2)’s hanging
on it are missing, for p = 0 the (−2)–curves attached to the horizontal +1
are missing, while for p = r = 0 both these groups of curves are not there.)
The repeated blow–down of the (−1)–curves (starting with the dashed ones)
results the configuration of (h) (again, for p = 0 or r = 0 a line is missing,
and for p = r = 0 two lines are not there). A cubic curve with a transverse
double point — for example the one given by {y2z−x3 −x2z = 0} — together
with a tangent in one of its inflection points (e.g., {z = 0} intersecting it in
[0 : 1 : 0]) and the two further lines {x = 0} and {x + y = 0} provide such
a configuration. Once again, this argument shows the existence of the rational
homology disk filling, which was already discussed in [14, Example 8.3].
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