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Abstract

For many extremal configurations of points on a sphere, the linear
programming approach can be used to show their optimality. In this
paper we establish the general framework for showing stability of such
configurations and use this framework to prove the stability of the two
spherical codes formed by minimal vectors of the lattice E8 and of the
Leech lattice.

1 Definitions and main results

By a spherical d-dimensional code we mean a finite set of points from the unit
sphere Sd−1. A d-dimensional spherical code with N points is called a (d,N, s)-
code if all pairwise dot products of distinct points from the code are not greater
than s. When we say that a (d,N, s)-code is optimal, we mean that there doesn’t
exist a (d,N ′, s)-code with N ′ > N .

In this paper, we consider optimal spherical codes whose optimality can be
shown via the linear programming bound. In particular, we want to concentrate
on two classical codes, the (8, 240, 1/2)-code and the (24, 196560, 1/2)-code. The
optimality of these codes was shown independently by Odlyzko and Sloane [10]
and by Levenshtein [9]. Bannai and Sloane [2] proved that both the (8, 240, 1/2)-
code and the (24, 196560, 1/2)-code are unique up to orthogonal transformations
in their respective spaces. Actually, assuming that the non-zero vectors of mini-
mal length of the corresponding lattices are of unit length, the (8, 240, 1/2)-code
consists of E8 ∩ S7, and the (24, 196560, 1/2)-code consists of Λ24 ∩ S23, where
Λ24 is the Leech lattice. These codes solve the kissing number problem in R8

and R24 (see Conway, Sloane [5] and Erikson, Zinoviev [7]); namely, the maxi-
mum number of non-overlapping unit balls touching a given unit ball is 240 in
R8 and 196560 in R24.
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u. 9., H-1051, Budapest, Hungary, Research is supported in parts by NKFIH grants 109789,
121649 and 116451.
†The University of Texas Rio Grande Valley, School of Mathematical & Statistical Sciences,

One West University Blvd, Brownsville, Texas, USA, Alexey.Glazyrin@utrgv.edu, Research is
partially supported by NSF grant DMS-1400876

1



We will call two symmetric matrices P,Q of the same size δ-close if ||P −
Q||max ≤ δ.

Definition 1. Two spherical d-dimensional codes A = {a1, . . . , ak} and B =
{b1, . . . , bk} are called δ-close if there is a permutation σ on B such that the
Gram matrices of A and σ(B) are δ-close.

As in the papers and books referenced above, our approach is based on
the linear programming bound. For the linear programming bound for sphere
packings on Sd−1 we define Gegenbauer polynomials Qi, i ∈ N, in one variable
where each Qi is of degree i, and satisfies the following recursion:

Q0(t) = 1

Q1(t) = t

Qi+1(t) =
(2i+ d− 2)tQi(t)− iQi−1(t)

i+ d− 2
for i ≥ 2.

We do not signal the dependence of Qi on d because the original notation for

the Gegenbaur polynomial is Qi = Q
(α)
i for α = d−2

2 as∫ 1

−1

Qi(t)Qj(t)(1− t2)
d−3
2 dt = 0 if i 6= j.

Polynomials are normalized so that Qi(1) = 1 for all i. The main property
of these polynomials is that for any spherical code {a1, . . . , ak} ⊂ Sd−1 and
any non-negative i, the k × k matrix Qi(〈am, an〉) is positive semi-definite (see
Schoenberg [12] or the book of Erikson and Zinoviev [7]).

We use the following version of the linear programming bound.

Theorem 1. Let d ≥ 2. If f = f0Q0 + f1Q1 + . . . + fkQk for k ≥ 1 and
f1, . . . , fk ≥ 0, then, for a spherical code X with N points,

Nf(1) +
∑
x,y∈X
x 6=y

f(〈x, y〉) ≥ N2f0. (1)

Proof. The N × N matrix formed by (f − f0Q0)(〈x, y〉) for all x, y ∈ X must
be positive semi-definite. Hence its sum of elements is non-negative. Since∑

x,y∈X
f(〈x, y〉) = Nf(1) +

∑
x,y∈X
x 6=y

f(〈x, y〉)

and ∑
x,y∈X

f0Q0(〈x, y〉) = N2f0,

the statement of the theorem follows immediately.
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Table 1: Table of the known sharp configurations, together with the 600-cell
(from [4]).

n N M Inner products Name
2 N N − 1 cos(2πj/N) (1 ≤ j ≤ N/2) N -gon
n N ≤ n 1 −1/(N − 1) simplex
n n+ 1 2 −1/n simplex
n 2n 3 −1, 0 cross polytope

3 12 5 −1,±1/
√

5 icosahedron

4 120 11 −1,±1/2, 0, (±1±
√

5)/4 600-cell
8 240 7 −1,±1/2, 0 E8 roots
7 56 5 −1,±1/3 kissing
6 27 4 −1/2, 1/4 kissing/Schläfli
5 16 3 −3/5, 1/5 kissing
24 196560 11 −1,±1/2,±1/4, 0 Leech lattice
23 4600 7 −1,±1/3, 0 kissing
22 891 5 −1/2,−1/8, 1/4 kissing
23 552 5 −1,±1/5 equiangular lines
22 275 4 −1/4, 1/6 kissing
21 162 3 −2/7, 1/7 kissing
22 100 3 −4/11, 1/11 Higman-Sims

q q
3+1
q+1 (q + 1)(q3 + 1) 3 −1/q, 1/q2 isotropic subspaces

(4 if q = 2) (q a prime power)

The classical linear programming bound (sometimes called the Delsarte
bound) for (d,N, s)-codes is a simple corollary of Theorem 1: if we additionally
require f0 > 0 and f(t) ≤ 0 for all t ∈ [−1, s], then for any (d,N, s)-code

N ≤ f(1)/f0, (2)

because all f(〈x, y〉) will be non-positive for x 6= y.

Definition 2. A spherical (d,N, s)-code is called Delsarte-tight if there exists a
polynomial f = f0Q0 + f1Q1 + . . .+ fkQk for k ≥ 1, f0 > 0 and f1, . . . , fk ≥ 0,
such that f(t) ≤ 0 for all t ∈ [−1, s] and N = f(1)/f0.

In the case all coefficients f1, . . . , fk are strictly positive, a Delsarte-tight set
is known in literature as a sharp set (see [1] for more details). This is not always
the case that all these coefficients are definitely not 0. For instance, the vertices
of a 600-cell in S3 form a Delsarte-tight but not sharp set. Table 1 from [4] lists
all known sharp configurations with their inner products and types.

Theorem 2 (Weak stability of Delsarte-tight codes). If there exists a Delsarte-
tight (d,N, s)-code, then, for sufficiently small positive ε, any d-dimensional
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spherical code with all pairwise dot products less than s+ ε has no more than N
points and for any (d,N, s + ε)-code S there is a constant C and an isometry
A of Sd−1 such that pairwise spherical distances between the points of A(S) and
the points of some Delsarte-tight (d,N, s)-code T are not greater than Cε1/m,
where m is the largest root multiplicity of the polynomial f corresponding to a
Delsarte-tight code T as described in Definition 2.

In all known examples of Delsarte-tight spherical codes (see Table 1), the
largest root multiplicity m of their corresponding polynomials is 1 or 2. Theorem
2 is applicable to all codes from Table 1. Essentially for these codes, the theorem
means 1/2-Hölder contunuity of optimal codes depending on the maximal inner
product.

For several optimal spherical codes (simplex, cross polytope, icosahedron,
600-cell), their optimality can be show using the so-called simplex bound. The
strong stability of the simplex bound for these codes was shown in [3].

As the main results of this paper we show the strong stability of the linear
programming bound for the (8, 240, 1/2)-code and the (24, 196560, 1/2)-code.

Theorem 3 (Strong stability of the (8, 240, 1/2)-code). For sufficiently small
positive ε, any 8-dimensional spherical code with all pairwise dot products less
than 1/2 + ε has no more than 240 points and for any (8, 240, 1/2 + ε)-code
S there is a constant C8 and an isometry A of S7 such that pairwise spherical
distances between the points of A(S) and the points of the (8, 240, 1/2)-code are
not greater than C8ε.

Theorem 4 (Strong stability of the (24, 196560, 1/2)-code). For sufficiently
small positive ε, any 24-dimensional spherical code with all pairwise dot products
less than 1/2+ε has no more than 196560 points and for any (24, 196560, 1/2+
ε)-code S there is a constant C24 and an isometry A of S23 such that pairwise
spherical distances between the points of A(S) and the points of the (24, 196560, 1/2)-
code are not greater than C24ε.

We also find concrete Lipschitz constants C8 and C24.
The paper is organized as follows. In Section 2 we prove the weak stability

of Gram matrices of Delsarte-tight codes. Section 3 is devoted to the stability
of eigendecompositions of positive semi-definite matrices. These two sections
combined give the proof of Theorem 2. In Sections 4 and 5 we analyze the
(8, 240, 1/2)- and (24, 196560, 1/2)-codes and obtain the strong stability of these
codes subsequently proving Theorems 3 and 4, respectively.

2 Weak stability of Gram matrices for Delsarte-
tight codes

Lemma 2.1. A symmetric real matrix with 1’s on the diagonal is a Gram
matrix of a d-dimensional spherical code if and only if all principal minors of
this matrix of size greater than d are 0 and all principal minors of this matrix
of size not greater than d are non-negative.
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Proof. Since all principal minors are non-negative, by Sylvester’s criterion, the
matrix is positive semi-definite and thus is a Gram matrix of a spherical code.
If a symmetric matrix has rank r, then at least one principal minor of size r is
not 0 [13, Chapter VI, Theorem 4]. Any principal minor of size greater than d
is 0. Therefore, the rank of the matrix is not greater than d and the spherical
code is d-dimensional.

We consider a fixed set X = {x1, . . . , xl} of real numbers and a set MX of
all square matrices of size not greater than N with all their entries from X.

Lemma 2.2. There exists ε = ε(X,N) such that for any δ < ε and any square
matrix A of size not greater than N which is δ-close to a matrix B from MX ,
the following conditions hold: 1) if detA = 0, then detB = 0; 2) if detA ≥ 0,
then detB ≥ 0.

Proof. There are finitely many matrices in MX so there is the minimal non-
zero value K among all |detB|, B ∈ MX . Due to the Lipschitz continuity of
determinants, there exists also a constant C such that |detA− detB| ≤ Cδ for
any matrix B, B ∈ MX , and any A δ-close to B. It is clear that, if we choose
ε = K/C, both conditions 1) and 2) must hold because the determinants of A
and B will differ by less than K.

Theorem 5. If there exists a Delsarte-tight (d,N, s)-code, then, for sufficiently
small positive ε, any d-dimensional spherical code with all pairwise dot products
less than s+ ε has no more than N points and for any (d,N, s+ ε)-code S there
is a constant K such that this code is Kε1/m-close to some (d,N, s)-code, where
m is the largest root multiplicity of the polynomial f described in Definition 2.

Proof. We will begin the proof with several properties of Delsarte-tight sets.
If we have equality in (2), then (1) shows that all values 〈x, y〉 for x 6= y,

x, y ∈ X are roots of f . Denote the set of roots of f from the segment [−1, s]
by x1, . . . , xl and define R = {1, x1, . . . , xl}. By MR we mean the set of all
matrices of size no greater than N with all entries from R.

From the proof of Theorem 1 we can also conclude that the sum of elements
of each matrix Qi(〈x, y〉) is 0 in case the coefficient fi of Qi in the Gegenbauer
expansion of f is strictly positive.

In case f(s) < 0, we can choose any ε such that f is negative on [s, s + ε].
The linear programming bound will work for s + ε as well and, since there are
no roots of f on [s, s + ε], any (d,N, s + ε)-code is a (d,N, s)-code too. Hence
we can assume that f(s) = 0.

Denote the minimal root of f from (s, 1) by r if such a root exists. Otherwise,
we take r = 1. We will denote by M the maximal value of f(t)/(t−s) on [s, s+r2 ].
Then for any positive ε, ε ≤ r−s

2 , the value of f on [s, s+ ε] is not greater than
Mε.

Assume we had a (d,N ′, s + ε)-code S with N ′ ≥ N . We want to prove
the first part of the theorem and show that N ′ = N if ε is small enough. For
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any pair x, y of distinct points from S, the value of f(〈x, y〉) is either non-
positive if 〈x, y〉 ∈ [−1, s] or, as we have shown above, not greater than Mε if
〈x, y〉 ∈ [s, s+ ε]. This implies that∑

x,y∈X
x 6=y

f(〈x, y〉) ≤ N ′(N ′ − 1)Mε.

Combining this inequality with Theorem 1 we get

N ′f(1) +N ′(N ′ − 1)Mε ≥ N ′2f0,

f(1) + (N ′ − 1)Mε ≥ N ′f0.

From the tightness of the linear programming bound for the (d,N, s)-code
we know that f(1) = Nf0. If we assume N ′ > N , we get

ε ≥ N ′ −N
N ′ − 1

· f0

M
≥ 1

N
· f0

M
,

which doesn’t hold for ε < f0
NM .

From this moment on, we consider only ε < min
{

f0
NM , r−s2

}
to prove the

second part of the theorem. From Theorem 1 we conclude that
∑

x,y∈X
x 6=y

f(〈x, y〉) =

0. All positive elements of this sum are not greater than Mε so any negative
element is at least −(N2 −N − 1)Mε.

Denote the multiplicities of roots x1, . . . , xl of f by m1, . . . ,ml, respectively.

We define M ′ as the minimum of max
{∣∣∣ f(t)

(t−x1)m1

∣∣∣ , . . . , ∣∣∣ f(t)
(t−xl)ml

∣∣∣} over all t ∈
[−1, 1]. By definition M ′ > 0. For each point t ∈ [−1, s] there is xj such that
f(t) ≤ −M ′|t−xj |mj . If t = 〈x, y〉 for distinct points x, y from the (d,N, s+ε)-
code then we can combine it with the previous inequality:

−M ′|t− xj |mj ≥ f(t) ≥ −(N2 −N − 1)Mε,

|t− xj | ≤
(

(N2 −N − 1)
M

M ′
ε

)1/mj

≤ Kε1/m,

where K = max
{

(N2 −N − 1) MM ′ , 1
}

.

We have just proved that the Gram matrix of the (d,N, s+ε) code is Kε1/m-
close to some matrix B from MR. From Lemma 2.2, there exists ε0 = ε0(R,N)
such that, whenever Kε1/m < ε0, if a minor of the Gram matrix of X is 0, then
the corresponding minor of B is 0 and, if a minor of the Gram matrix of X is
non-negative, then the corresponding minor of B is non-negative. This means
that, for ε <

(
ε0
K

)m
, all principal minors of B of size greater than d are 0 and all

principal minors of B of size not greater than d are non-negative. By Lemma
2.1, B is the Gram matrix of a d-dimensional spherical code. All non-diagonal
entries of B are roots of f so the code is a Delsarte-tight (d,N, s)-code.
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3 Stability of eigenvectors of positive semi-definite
matrices

For a N × N matrix T , we write ‖T‖ to denote its spectral norm and, for a
v ∈ Rd, we write ‖v‖ to denote its l2-norm. We say that two N × N matrices
A = [aij ] and B = [bij ] are δ-close for δ > 0 if |aij − bij | ≤ δ for i, j = 1, . . . , d.
It is well-known that A and B are ‖A−B‖-close on the one hand, and if A and
B are δ-close, then ‖A−B‖ ≤ Nδ on the other hand.

For a linear subspace L in some Euclidean space, we write ·|L to denote
the orthogonal projection into L. The following statement is Lemma 2.1 in
Böröczky, Böröczky, Glazyrin, Kovács [3], which is needed in the proof of The-
orem 6.

Lemma 3.1. If d ≥ 2, ε ∈ (0, 1
2d ), and u1, . . . , ud ∈ Sd−1 satisfy |〈ui, uj〉| ≤ ε

for i 6= j, then there exist an orthonormal basis w1, . . . , wd of Rd such that
‖ui − wi‖ ≤ 2dε for i = 1, . . . , d.

Theorem 6. For any non-trivial positive semi-definite symmetric matrix B of
size N ≥ 2, one finds δ0 > 0 and K > 0 depending on B with the following
property. If A is a symmetric matrix of the same rank as B and δ-close to B,
0 < δ < δ0, then there exist N × N positive semi-definite symmetric matrices
P and Q such that A = PP and B = QQ where P and Q are Kδ-close to each
other.

Remark We may choose K =
85N5 max{

√
‖B‖,1}

∆ where ∆ > 0 is the mini-
mum of the minimal gap between consecutive eigenvalues of B and the smallest
positive eigenvalue of B.

Proof. For a positive semi-definite diagonal matrix T , we write
√
T to denote

the positive semi-definite diagonal matrix whose square is T .
Let r ≥ 1 be the common rank of A and B. In addition, let 0 < λ1 <

. . . < λk, k ≤ r, be the different positive eigenvalues of B with corresponding
mutually orthogonal eigenspaces L1, . . . , Lk, k ≤ r, whose dimensions naturally
add up to r, and hence L = L1 + . . . + Lk is r dimensional. Let ∆ ∈ (0, 1] be
maximal such that λ1 ≥ ∆, and λj − λi ≥ ∆ for j > i. We assume that δ is
small enough to have

14N4

∆
· δ < 1

2N
. (3)

Let D be the diagonal matrix D such that the first r diagonal entries are positive
and increasing with the index, and λi occurs as diagonal entry dimLi times.

There exists an N ×N orthogonal matrix M such that M−1BM = D, and
let E = M−1AM −D. Since ‖A − B‖ ≤ Nδ, we deduce that ‖E‖ ≤ Nδ. We
write coordinates in RN with respect to the new orthonormal basis obtained
via M . In particular, D acts on Li by multiplication by λi, i = 1, . . . , k. For
j = 1, . . . , k, let Ij ⊂ {1, . . . , k} be the set of indices of basis vectors contained
in Lj , and hence I1 ∪ . . . ∪ Ik = {1, . . . , r}.
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Let v1, . . . , vN be an orthonomal set of eigenvectors of M−1AM . We claim
that there exist at least r indices i ∈ {1, . . . , N} such that ‖vi|L‖ ≥ 1√

N
, or in

other words, we may reindex v1, . . . , vN in a way such that

‖vi|L‖ ≥
1√
N

if i ≤ r. (4)

We suppose that (4) does not hold, and seek a contradicton. Obviously r < N
in this case. The indirect hypothesis yields that there exists a subset J ⊂
{1, . . . , N} of indices of cardinality N − r+ 1 such that ‖vi|L‖ < 1√

N
for i ∈ J ,

and hence

‖vi|L⊥‖ >
√

1− 1
N for i ∈ J . (5)

In addition, if i 6= j for i, j ∈ J , then∣∣〈(vi|L⊥), (vj |L⊥)
〉∣∣ = | 〈(vi|L), (vj |L)〉 | < 1

N
. (6)

As L⊥ is N − r dimensional, there exists coefficient γi ∈ R for i ∈ I with
γ = maxi∈J |γi| > 0 such that

∑
i∈J γi(vi|L⊥) = o. There exists a j ∈ J such

that γ = |γj |. We deduce from the triangle inequality, (5) and (6) that

0 =

∣∣∣∣∣
〈

(vj |L⊥),
∑
i∈J

γi(vj |L⊥)

〉∣∣∣∣∣ > γ

(
1− 1

N

)
− (N − r)γ · 1

N
≥ 0. (7)

This contradiction proves (4).
For i ≤ r, we have

‖(µiId−D)vi‖ = ‖Evi‖ ≤ Nδ. (8)

According to (4), there exists α ∈ I such that the αth coordinate of v is at least
1/
√
Nr in absolute value. If α ∈ Ij , then we have

|µi − λj | ≤
√
NrN · δ ≤ N2δ, (9)

and hence (3) implies

|
√
λj −

√
µi| =

|µi − λj |√
λj +

√
µi
≤ N2

√
∆
· δ ≤ N2

∆
· δ. (10)

In addition, (3), (9) and the rank of B being r yield

µi > ∆/2 for i = 1, . . . , r and µi = 0 for i > r. (11)

If λq 6= λj , then |µi−λq| > ∆/2 by (3) and (9). It follows from this observation,
from (9) and (11) that writing vi = (t1, . . . , tN ), we have

|tα| ≤
2N2

∆
· δ provided α 6∈ Ij ,
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and hence

‖vi|L⊥j ‖ ≤
2N2
√
N

∆
· δ. (12)

We conclude from (3) and (12) that

‖vi|Lj‖ ≥ 1− 4N5

∆2
· δ2 >

3

4
(13)

We deduce from (13) that for any i ∈ I, there exists a unique j(i) ∈ {1, . . . , k}
such that ‖vi|Lj(i)‖ > 3

4 , and we define ṽi = vi|Lj(i). In particular, if j = j(i) =
j(l) for i, j ∈ I, then (3) and (12) imply that

‖ṽi‖ ≥ 1− 4N5

∆2 · δ2 > 1− δ
∆

|〈ṽi, ṽl〉| ≤ 4N5

∆2 · δ2 < δ
∆ if i 6= l.

(14)

Using (3) and similar argument as in (7) shows that for any Lj , j = 1, . . . , k,
the vectors of the form ṽi with i ∈ I that are contained in Lj are indepen-
dent, therefore their number of is at most dimLj . We deduce from pigeon hole
principe that possibly after renumbering v1, . . . , vN , we may asume that ṽi ∈ Lj
if and only if i ∈ Ij .

We claim that there exist an orthonormal basis w1, . . . , wr of L such that if
i ∈ Ij , then wi ∈ Lj and

‖wi − vi‖ ≤
7N3

∆
· δ. (15)

For any i ≤ r, we set v′i = ṽi/‖ṽi‖ ∈ Lj ∩ SN−1, and hence (3) and (14) yield
that if i, l ∈ Ij , i 6= l, then

|〈v′i, v′l〉| ≤
(

1− δ

∆

)−2
δ

∆
<

2δ

∆
. (16)

In addition, combining (12) and (14) implies

‖v′i − vi‖ ≤
3N2.5

∆
· δ. (17)

On the other hand, for any j ∈ {1, . . . , k}, we deduce from (3), (16) and
Lemma 3.1 that there exist an orthornormal basis {wi : i ∈ Ij} of Lj such
that

‖wi − v′i‖ ≤
4N

∆
· δ for i ∈ Ij , (18)

Combining (17) and (18) yields (15).
Next we extend the basis w1, . . . , wr of L in (15) into an orthonormal basis

w1, . . . , wN of RN such that

‖wi − vi‖ ≤
28N4

∆
· δ for i = 1, . . . , N. (19)
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Having (15) at hand, we may assume that r < N . If 1 ≤ i ≤ r and r < j ≤ N ,

then 〈vj , vi〉 = 0 and (15) yield that |〈wi, vj〉| ≤ 7N3

∆ · δ. Therefore if r < j ≤ N ,
then

‖vj |L‖ ≤ 7N4

∆ · δ∥∥vj |L⊥∥∥ ≥ 1− 7N4

∆ · δ
(20)

From this point, we follow a similar path as in the case of (15). For j =
r + 1, . . . , N , we write ṽj = vj |L⊥ and v′j = ṽj/‖ṽj‖ ∈ L⊥ ∩ SN−1, and hence
(20) yields that

‖vj − v′j‖ ≤
14N4

∆
· δ, (21)

and if r + 1 ≤ j < l ≤ N , then (3) and (20) imply that

|〈v′i, v′l〉| ≤
(

1− 7N4

∆
· δ
)−2

|〈ṽi, ṽl〉| < 2|〈ṽi, ṽl〉| = 2|〈(vj |L), (vl|L)〉|

< 2 · 7N4

∆
· δ · 1

2N
<

7N3

∆
· δ. (22)

In turn, we conclude from (3), (22) and Lemma 3.1 that there exist an or-
thornormal basis wr+1, . . . , wN of L⊥ such that

‖wj − v′j‖ ≤
14N4

∆
· δ for j = r + 1, . . . , N, (23)

Combining (15), (21) and (23) yields (19).

We write D̃ to denote the diagonal matrix whose first r diagonal entries are
µ1, . . . , µr > 0 in this order, and the rest of the entries are 0 (compare (11)). For
the N ×N orthogonal transformation F defined by Fwi = vi for i = 1, . . . , N ,
we have

D̃ = FMAM−1F−1.

Writing Ẽ =
√
D̃ −

√
D, it follows from (10) that

‖Ẽ‖ ≤ N2

∆
· δ. (24)

In addition, (3) and (19) yield that

‖F−1 − Id‖ ≤ 28N5

∆
· δ and ‖F − Id‖ ≤ 28N5

∆
· δ < 1. (25)

For the positive semi-definite P = M−1F−1
√
D̃FM and Q = M−1

√
DM

matrices, we have A = PP and B = QQ, and

‖P −Q‖ = ‖M−1F−1
√
D̃FM −M−1

√
DM‖ = ‖M−1(F−1

√
D̃F −

√
D)M‖

≤ ‖F−1
√
D̃F −

√
D‖ = ‖F−1(

√
D + Ẽ)F −

√
D‖

≤ ‖(F−1 − Id)
√
D(F − Id) + (F−1 − Id)

√
D +

√
D(F − Id)‖+ ‖F−1ẼF‖

≤
√
λr
(
‖F−1 − Id‖ · ‖F − Id‖+ ‖F−1 − Id‖+ ‖F − Id‖

)
+ ‖Ẽ‖

10



Combining (24) and (25) implies

‖P −Q‖ ≤
85N5 max{

√
‖B‖, 1}

∆
· δ,

thus we may choose K =
85N5 max{

√
‖B‖,1}

∆ .

Theorem 2 immediately follows from Theorems 5 and 6.

Proof of Theorem 2. We use notation from Theorem 5. The Gram matrix A of
any (d,N, s+ ε)-code is Kε1/m-close to the Gram matrix B of a Delsarte-tight
(d,N, s)-code for sufficiently small ε. Then, by Theorem 6, B and A can be
represented as QQ and PP , respectively, where Q and P are positive semi-

definite symmetric matrices which are
85N5 max{

√
‖B‖,1}

∆ Kε1/m-close, where ∆
is the minimum of the minimal gap between two consecutive eigenvalues of B
and the minimal positive eigenvalue of B. The matrices P and Q define by
their column vectors two d-dimensional spherical codes whose Gram matrices
are A and B, respectively. The corresponding columns P i and Qi, 1 ≤ i ≤
N , are unit d-dimensional vectors whose components differ by no more than
85N5 max{

√
‖B‖,1}

∆ Kε1/m so ‖P i − Qi‖ ≤
√
d · 85N5 max{

√
‖B‖,1}

∆ Kε1/m. Using
∠(P i, Qi) ≤ π

2 ‖P
i − Qi‖, we get that the sphecrical distance between P i and

Qi is not greater than Cε1/m, where C = π
2

√
d · 85N5 max{

√
‖B‖,1}

∆ K.

4 Stability of the (8, 240, 1/2)-code

The set of minimal vectors of the E8 lattice forms the Delsarte-tight (8, 240, 1/2)-
code. The polynomial f for this code is

f(t) =
320

3
(t+ 1)(t+ 1/2)2t2(t− 1/2) =

= Q0 +
16

7
Q1 +

200

63
Q2 +

832

231
Q3 +

1216

429
Q4 +

5120

3003
Q5 +

2560

4641
Q6,

where f0 = 1 and f(1) = 240.
It follows from the proof of Theorem 5 that for any ε < 5 · 10−6 any

(8, N ′, 1/2 + ε)-code must have no more than 240 points. For the weak sta-
bility, slightly generalizing the outcome of Theorem 5, we get that for any
ε < 1

(6·107·240!·2240)2 the combinatorial structure of a (8, 240, 1/2 + ε)-code is

the same as for the (8, 240, 1/2)-code and all dot products in a (8, 240, 1/2 + ε)-
code differ by not more than 3 · 107

√
ε from 0 or −1/2 or by not more than

3 · 107ε from −1 or 1/2. From now on we consider only (8, 240, 1/2 + ε)-codes
as described above. In what follows, we will show that the linear programming
approach and the combinatorial structure of the code force all dot products to
be within O(ε) of the dot products of the (8, 240, 1/2)-code.

11



For any two points x, y in the (8, 240, 1/2)-code such that 〈x, y〉 = −1/2,
there is a point z such that 〈x, z〉 = 〈y, z〉 = 1/2. This is true because x + y
must belong to E8 as well, has length 1 and forms the angles of π/3 with both x
and y. From here we conclude that for any two points x, y of a (8, 240, 1/2 + ε)-
code such that 〈x, y〉 is close to −1/2 there exists a point z with 〈x, z〉 and
〈y, z〉 not smaller than 1/2− 3 · 107ε. From the triangle inequality for spherical
distances, we get that 〈x, y〉 ≥ −1/2− 9 · 107ε.

Similarly to the proof of Theorem 1, for any (d,N, s)-code X, any f =
f0Q0 + f1Q1 + . . .+ fkQk with non-negative coefficients, and any i ∈ [1, k],

Nf(1) +
∑
x,y∈X
x6=y

f(〈x, y〉) ≥ N2f0 +
∑
x,y∈X

fiQi(〈x, y〉) ≥ N2f0. (26)

For N and f satisfying the conditions of a Delsarte-tight code, Nf(1) =
N2f0 so we get ∑

x,y∈X
x 6=y

f(〈x, y〉) ≥
∑
x,y∈X

fiQi(〈x, y〉) ≥ 0. (27)

As we know, f(〈x, y〉) for x 6= y in our code is either non-positive or not

greater than max
t∈[1/2,1]

{
f(t)
t−1/2

}
ε = 480ε. Therefore, for each i ∈ [1, 6],

0 ≤
∑
x,y∈X

Qi(〈x, y〉) ≤
1

fi
(2402 − 240) · 480ε. (28)

We note that for the (8, 240, 1/2)-code all six sums are 0.
We use the inequality 0 ≤

∑
x,y∈X Q2(〈x, y〉). For d = 8, Q2(t) = 8

7 t
2 − 1

7 .

If 〈x, y〉 is close to 1/2, Q2(〈x, y〉) ≤ Q2(1/2) + 7 · 107ε. If 〈x, y〉 is close to 0,
Q2(〈x, y〉) ≤ Q2(0) + 2 · 1015ε. If 〈x, y〉 is close to −1, Q2(〈x, y〉) ≤ Q2(−1). If
〈x, y〉 is close to −1/2 and less than −1/2, Q2(〈x, y〉) ≤ Q2(−1/2) + 3 · 108ε.
Overall, for all considered cases if 〈x, y〉 is close to α, Q2(〈x, y〉) − Q2(α) ≤
2 · 1015ε. Since the sum for Q2 is 0 on the (8, 240, 1/2)-code, the total sum of
Q2(〈x, y〉) − Q2(α) is non-negative too. The sum of non-negative terms from
here is not greater than (2402− 240) · 2 · 1015ε < 2 · 1020ε. The only unobserved
case so far is the one when 〈x, y〉 is close to −1/2 and not smaller than −1/2.
In this case, Q2(〈x, y〉)−Q2(−1/2) is non-positive and cannot be larger by its
absolute value than the sum of all positive elements. Therefore,

Q2(〈x, y〉)−Q2(−1/2) ≥ −2 · 1020ε,

〈x, y〉 ≤ −1/2 + 2 · 1020ε.

In the (8, 240, 1/2)-code for any pair of points x, y such that 〈x, y〉 = 0, there
exist 12 more points z such that 〈x, z〉 = 〈y, z〉 = 1/2 (due to the association
scheme structure this number is 12 for any such pair of x and y). Note that all
these points including x and y belong to the 6-dimensional sphere of radius 1√

2

12



with the center at x+y
2 . 14 points on the same 6-dimensional sphere of radius

1√
2

with the minimal distance equal to 1 =
√

2 · 1√
2

must be located in the

vertices of the 7-dimensional cross-polytope. All pairs of points with 〈x, y〉 = 0
are then partitioned into 7-tuples from the same 7-dimensional cross-polytope.

Consider two pairs of points x, y and z, t from the (8, 240, 1/2 + ε)-code
X such that 〈x, y〉 and 〈z, t〉 are close to 0 and the other four dot products
between pairs of these points are close to 1/2. We denote 〈x, y〉 by α and 〈z, t〉
by β. Assume also that 〈x, z〉 = 1/2 + δ1, 〈x, t〉 = 1/2 + δ2, 〈y, z〉 = 1/2 + δ3,
〈y, t〉 = 1/2 + δ4. All |δi|, 1 ≤ i ≤ 4, are not greater than 3 · 107ε. The Gram
matrix for these four points should be positive semi-definite so its determinant
is non-negative:

0 ≤

∣∣∣∣∣∣∣∣
1 α 1

2 + δ1
1
2 + δ2

α 1 1
2 + δ3

1
2 + δ4

1
2 + δ1

1
2 + δ3 1 β

1
2 + δ2

1
2 + δ4 β 1

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
1 α 1

2
1
2

α 1 1
2

1
2

1
2

1
2 1 β

1
2

1
2 β 1

∣∣∣∣∣∣∣∣+ 2 · 109ε = (29)

= (1− α)(1− β)(αβ + α+ β) + 2 · 109ε.

Hence we get that αβ+α+β ≥ −3·109ε. Since αβ ≤ 9·1014ε, α+β ≥ −1015ε.
For each 7-dimensional cross-polytope described above we can average these
inequalities over all pairs and get that the sum of the seven dot products in it
is at least −35 · 1014ε. On the other hand, if we set aside one pair of opposite
vertices in a cross-polytope and average over six pairs , we will get that their
sum is at least −30 ·1014ε. Overall, if we set aside one fixed pair of points x0, y0

such that 〈x0, y0〉 is close to 0, then all other pairs of such points on average has
a dot product at least −5 · 1014ε

Using inequality (28) for the Gram matrix (matrix for Q1) we get that

0 ≤
∑
x,y∈X

〈x, y〉 ≤ 2 · 107ε.

For all pairs x, y, where 〈x, y〉 is close to −1, −1/2, 1/2, 〈x, y〉 differs from
all these numbers by no more than 2 · 1020ε. If we fix one pair of points x0, y0

such that 〈x0, y0〉 is close to 0, then, using all lower bounds above, we get

〈x0, y0〉 − (2402 − 240− 1) · 2 · 1020ε ≤ 2 · 107ε,

〈x0, y0〉 ≤ 2 · 1025ε.

Hence for all x, y such that 〈x, y〉 is close to 0, 〈x, y〉 ≤ 2 · 1025ε. We can use
this to bound 〈x, y〉 from below as well, using the inequality α + β ≥ −1015ε:
〈x, y〉 ≥ −1015ε− 2 · 1025ε ≥ −3 · 1025ε.

Combining all the bounds we obtained, the (8, 240, 1/2 + ε)-code is 3 ·1025ε-
close to the (8, 240, 1/2)-code. Coupling this with Theorem 6 we get Theorem 3.
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The proof follows the proof of Theorem 2 almost word-for-word. The constant
C8 we obtain satisfies

C8 ≥
π

2

√
8 ·

85 · 2405 max{
√
‖B‖, 1}

∆
· 3 · 1025,

where B is the Gram matrix of the (8, 240, 1/2)-code and ∆ is the minimum
of the minimal gap between two consecutive eigenvalues of B and the minimal
positive eigenvalue of B. ‖B‖ is not greater than 240 and ∆ may be estimated by
using the root separation bounds from [11]. Overall, we get that it is sufficient
to take C8 = 10206.

5 Stability of the (24, 196560, 1/2)-code

The set of minimal vectors of the Leech lattice forms the Delsarte-tight (24, 196560, 1/2)-
code with the polynomial

f(t) =
1490944

15
(t+ 1)(t+ 1/2)2(t+ 1/4)2t2(t− 1/4)2(t− 1/2) =

= Q0 +
48

23
Q1 +

1144

425
Q2 +

12992

3825
Q3 +

73888

22185
Q4 +

2169856

687735
Q5+

+
59062016

25365285
Q6 +

4472832

2753575
Q7 +

23855104

28956015
Q8 +

7340032

20376455
Q9 +

7340032

80848515
Q10,

so that f0 = 1 and f(1) = 196560.
The structure of the proof will be generally similar to the one for the

(8, 240, 1/2)-code. Firstly, we use the proof of Theorem 5 and see that for ε <
10−11 any (24, N ′, 1/2 + ε)-code with N ′ ≥ 196560 must have precisely 196560
points. The proof of Theorem 5 also implies that, when ε < 1

(4·1016·196560!·4196560)2 ,

the structure of this code is combinatorially the same as the one of the (24, 196560, 1/2)-
code and all inner products close to 1/2 and −1 must be within 2 · 1016ε from
1/2 and −1, respectively, all inner products close to −1/4, −1/2, 0, 1/4 must
be within 2 · 1016

√
ε from −1/4, −1/2, 0, 1/4, respectively. From now on

we consider only codes with these constraints on dot products. For the main
part of the proof, we will use the linear programming approach and the com-
binatorics of the (24, 196560, 1/2)-code to show that all inner products of such
(24, 196560, 1/2 + ε)-codes are, in fact, within O(ε) of their counterparts among
minimal vectors of the Leech lattice.

Inequality (27) is true for any case of a Delsarte-tight code so we can find an
analogue of inequality (28) in the 24-dimensional case. In a (24, 196560, 1/2)-
code X, f(〈x, y〉) for x, y ∈ X, x 6= y, is either non-positive or not greater than

max
t∈[1/2,1]

{
f(t)
t−1/2

}
ε = 393120ε. Therefore, for each i ∈ [1, 10],

14



0 ≤
∑
x,y∈X

Qi(〈x, y〉) ≤
1

fi
(1965602 − 196560) · 393120ε < 2 · 1017ε. (30)

Similarly to the 8-dimensional case, we note that these sums are identically
0 if X is the unique (24, 196560, 1/2)-code.

We will split all pairs of points from X2 into groups Aα, α = −1, −1/2,−1/4,
0, 1/4, 1/2, 1, such that (x, y) ∈ Aα if 〈x, y〉 is close to α (the corresponding pair
of points in the (24, 196560, 1/2)-code has inner product α). By Sα we denote∑

(x,y)∈Aα(〈x, y〉 − α). By using inequalities (30), we will show that all Sα are

O(ε).
This immediately holds for S1 (since it is identically 0), S1/2, S−1:

−(1965602−196560)·2·1016ε ≤ S1/2 ≤ (1965602−196560)ε, hence |S1/2| ≤ 8·1026ε;

0 ≤ S−1 ≤ (1965602 − 196560) · 2 · 1016ε, hence |S−1| ≤ 8 · 1026ε.

We use inequalities (30) for i = 1, 2, 3, 4 approximating Qi(〈x, y〉) by Qi(α)+
(〈x, y〉 − α)Q′i(α). We also change the left and right sides of the inequalities to
±1045ε in order to cover deficiencies caused by omitting higher order terms:
(〈x, y〉 − α)2 ≤ 4 · 1032ε, all terms with degree at least 3 are much smaller
because they are O(ε3/2) and ε is extremely small.

−1045ε ≤ S−1 + S−1/2 + S−1/4 + S0 + S1/4 + S1/2 ≤ 1045ε;

−1045ε ≤ −48

23
S−1 −

24

23
S−1/2 −

12

23
S−1/4 +

12

23
S1/4 +

24

23
S1/2 ≤ 1045ε;

−1045ε ≤ 75

23
S−1 +

33

46
S−1/2 +

15

184
S−1/4 − 3S0 +

15

184
S1/4 +

33

46
S1/2 ≤ 1045ε;

−1045ε ≤ −104

23
S−1 −

208

575
S−1/2 −

13

230
S−1/4 +

13

230
S1/4 +

208

575
S1/2 ≤ 1045ε.

This system of inequalities must imply that all Sα are O(ε) because the
coefficients for S−1/2, S−1/4, S0, S1/4 form a non-singular matrix. More pre-
cisely, from the second and forth inequalities we can immediately get that
|S−1/2| ≤ 1046ε and |S1/4 − S−1/4| ≤ 2 · 1046ε. From the first and the third
inequality we then get that |S1/4 + S−1/4| ≤ 2 · 1046ε too so both |S1/4| and
|S−1/4| are not greater than 2 · 1046ε. Using the bound for |S1/4 + S−1/4| we
also find that |S0| ≤ 4 · 1046ε.
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Now we will use the bound on S0 to show that, for each pair of points
x, y ∈ X such that 〈x, y〉 is close to 0, 〈x, y〉 is O(ε). The proof is similar to the
one for the 8-dimensional kissing configuration.

In the (24, 196560, 1/2)-code for any pair of points x, y such that 〈x, y〉 =
0, there exist 44 more points z such that 〈x, z〉 = 〈y, z〉 = 1/2 (due to the
association scheme structure this number is 44 for any such pair of x and y).
All these points including x and y belong to the 22-dimensional sphere of radius
1√
2

with the center at x+y
2 . 46 points on the same 22-dimensional sphere of

radius 1√
2

with the minimal distance equal to 1 must be the vertices of the

23-dimensional cross-polytope. All pairs of points with 〈x, y〉 = 0 are then
partitioned into 23-tuples from the same 23-dimensional cross-polytope.

For two pairs of points x, y and z, t from X such that 〈x, y〉 and 〈z, t〉 are
close to 0 and the other four dot products between these points are close to
1/2, denote 〈x, y〉 by α and 〈z, t〉 by β. Assume also that 〈x, z〉 = 1/2 + δ1,
〈x, t〉 = 1/2 + δ2, 〈y, z〉 = 1/2 + δ3, 〈y, t〉 = 1/2 + δ4. All δi, 1 ≤ i ≤ 4, are not
greater than 2 ·1016ε. The Gram matrix for these four points should be positive
semi-definite so its determinant is non-negative:

0 ≤

∣∣∣∣∣∣∣∣
1 α 1

2 + δ1
1
2 + δ2

α 1 1
2 + δ3

1
2 + δ4

1
2 + δ1

1
2 + δ3 1 β

1
2 + δ2

1
2 + δ4 β 1

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
1 α 1

2
1
2

α 1 1
2

1
2

1
2

1
2 1 β

1
2

1
2 β 1

∣∣∣∣∣∣∣∣+ 1018ε = (31)

= (1− α)(1− β)(αβ + α+ β) + 1018ε.

Hence we get that αβ + α + β ≥ −1018ε. Since αβ ≤ 4 · 1032ε, α + β ≥
−6 · 1032ε. Averaging this inequality over all pairs from a 23-dimensional cross-
polytope described above we get the the sum of dot products for pairs of opposite
vertices in such a cross-polytope is at least −23 · 3 · 1032ε. On the other hand,
averaging over all pairs from a cross-polytope, except for a fixed pair (x0, y0),
the sum of dot products is at least −22 · 3 · 1032ε. From these inequalities,

S0 ≥ 〈x0, y0〉 − (1965602 − 196560− 1) · 3 · 1032ε ≥ 〈x0, y0〉 − 2 · 1043ε.

Combining this with the bound on S0, we find that |〈x0, y0〉| ≤ 5 · 1046ε.
For the next step we will show that if 〈x0, y0〉 is close to -1 then 〈x0, y0〉

differs from -1 by O(ε2). In order to do this we use the following lemma.

Lemma 5.1. In a d-dimensional spherical code {x, z1, z2, . . . , zd−1}, |〈x, zi〉| <
δ for all i from 1 to d− 1 and for a fixed δ > 0. If z1, z2, . . . , zd−1 are linearly
independent, then, for one of the two unit vectors orthogonal to the span of

z1, z2, . . . , zd−1, its spherical distance to x is not greater than π
2

√
d−1
λ1(G)δ, where

λ1(G) is the minimal eigenvalue of the Gram matrix G of z1, z2, . . . , zd−1.
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Proof. We denote one of the unit vectors orthogonal to the span of z1, z2, . . . , zd−1

by z⊥ if 〈x, z⊥〉 ≥ 0. We represent x as α⊥z⊥+xz, where xz belongs to the span
of z1, z2, . . . , zd−1. Then |〈xz, zi〉| < δ for all i from 1 to d−1. We denote 〈xz, zi〉
by ∆i for all i and the vector (∆1, . . . ,∆d−1) by ∆. If α = (α1, . . . , αd−1) is
the vector of coordinates of xz in the basis z1, z2, . . . , zd−1, then ∆ = Gα and
α = G−1∆. On the other hand,

||xz||2 = αTGα ≤ ||α|| · ||∆|| = ||G−1∆|| · ||∆|| ≤ 1

λ1(G)
||∆||2 ≤ d− 1

λ1(G)
δ2.

Therefore, ∠(z⊥, x) = arcsin ||xz|| ≤ π
2 ||xz|| ≤

π
2

√
d−1
λ1(G)δ.

We consider an arbitrary pair x0, y0 of points from X such that 〈x0, y0〉 is
close to -1. Among 93150 points x from X such that 〈x0, x〉 is close to 0, we
choose arbitrarily 23 points so that their counterparts in the (24, 196560, 1/2)-
code form a basis. Since all dot products in this basis are ±1/2,±1/4, 0, the
Gram matrix of this basis has determinant not smaller than 1

423 . We can deduce
that the Gram matrix of the corresponding basis in X has determinant not
smaller than 1

424 . Each eigenvalue of the Gram matrix is not greater than 13
(for instance, by the Gershgorin circle theorem). Hence the smallest one is at
least 1

4241323 . Lemma 5.1 implies that the angle between x0 and y0 must be at
least

π − π

√
23

λ1(G)
· 5 · 1046ε ≥ π − π

√
23 · 424 · 1323 · 5 · 1046ε ≥ π − 1068ε.

For any points x, y ∈ X such that 〈x, y〉 is close to -1/2, we consider a point
z ∈ X such that 〈x, z〉 is close to -1 and 〈y, z〉 is close to 1/2. Then, by the
inequality on ∠(x, z) proven above, 〈x, y〉 differs from −〈y, z〉 by no more than
1068ε. Given that 〈y, z〉 is within 2 · 1016ε of 1/2 we can conclude that 〈x, y〉 is
within 2 · 1068ε of -1/2.

For the next step, consider a pair of points x′ and y′ of the (24, 196560, 1/2)-
code such that 〈x′, y′〉 = 1/4. There are exactly 275 points u′ of the (24, 196560, 1/2)-
code such that 〈x′, u′〉 = 〈y′, u′〉 = 1/2 (this number is the same for all such
pairs x′, y′ due to the association scheme structure). It is not hard to see that,
after the appropriate dilation, these 275 points form a (22, 275, 1/6)-code. This
is a Delsarte-tight code in dimension 22 with exactly two inner products, 1/6
and -1/4. It must possess the structure of a strongly regular graph (see [6]).
Due to this structure, there is a unique (22, 275, 1/6)-code [8]. In what follows
we will analyze the counterpart of this code in the (24, 196560, 1/2 + ε)-code X.

Consider two points x, y ∈ X such that 〈x, y〉 is close to 1/4. We denote
〈x, y〉 by 1/4 + δ, where |δ| is known to be not greater than 2 · 1016

√
ε. With

the slight abuse of notation, by ±t, for any real t, we will mean an unknown
real number between −t and t. For instance, for each point u ∈ X such that
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both 〈x, u〉 and 〈y, u〉 are close to 1/2, we can write 〈x, u〉 = 1/2± 2 · 1016ε and
〈y, u〉 = 1/2 ± 2 · 1016ε. Any point u of this kind may be uniquely represented
as αx+βy+γz, where z is a unit vector orthogonal both to x and y and α, β, γ
are real with γ > 0. Straightforward calculations show that both α and β must
be 2/5± 3 · 1016ε. Since ||u|| = 1, we get

α2 + 2αβ

(
1

4
+ δ

)
+ β2 + γ2 = 1,

2

5
+

8

25
δ + γ2 ± 7 · 1016ε = 1,

γ =

√
3

5
− 4
√

15

75
δ ± 2 · 1031ε.

Now we consider two points u1, u2 ∈ X satisfying the conditions above.
Hence for their representations u1 = α1x+β1y+γ1z1 and u2 = α2x+β2y+γ2z2,

α1 = 2/5 ± 3 · 1016ε, β1 = 2/5 ± 3 · 1016ε, γ1 =
√

3
5 −

4
√

15
75 δ ± 2 · 1031ε,

α2 = 2/5 ± 3 · 1016ε, β2 = 2/5 ± 3 · 1016ε, γ2 =
√

3
5 −

4
√

15
75 δ ± 2 · 1031ε. Then

we can estimate 〈u1, u2〉:

〈u1, u2〉 = α1α2 + (α1β2 + β1α2)

(
1

4
+ δ

)
+ β1β2 + γ1γ2〈z1, z2〉 =

=
2

5
+

8

25
δ +

(
3

5
− 8

25
δ

)
〈z1, z2〉 ± 6 · 1032ε.

We know that 〈u1, u2〉 is not greater than 1/2 + ε. Therefore,(
3

5
− 8

25
δ

)
〈z1, z2〉 ≤

1

10
− 8

25
δ + 7 · 1032ε.

This inequality must hold for all pairs from 275 points z from the unit sphere
in R22. From the tightness of the (22, 275, 1/6)-code, this may happen only if
for some of these pairs 〈z1, z2〉 ≥ 1

6 . We conclude that(
3

5
− 8

25
δ

)
1

6
≤ 1

10
− 8

25
δ + 7 · 1032ε.

Subsequently, δ ≤ 3·1033ε. Hence we proved that for any two points x, y ∈ X
such that 〈x, y〉 is close to 1/4, 〈x, y〉 ≤ 1/4 + 3 · 1033ε. There are no more than
1965602 − 196560 pairs like this so, using that |S1/4| ≤ 2 · 1046ε, we also get

〈x, y〉 ≥ 1/4 + S1/4 − (1965602 − 196560) · 3 · 1033ε ≥

≥ 1/4− 2 · 1046ε− (1965602 − 196560) · 3 · 1033ε ≥ 1/4− 3 · 1046ε.
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This means that if 〈x, y〉 is close to 1/4, 〈x, y〉 differs from 1/4 by no more
than 3 · 1046ε.

For any points x, y ∈ X such that 〈x, y〉 is close to -1/4, we consider a point
z ∈ X such that 〈x, z〉 is close to -1 and 〈y, z〉 is close to 1/4. Then, by the
inequality on ∠(x, z) we proved, 〈x, y〉 differs from −〈y, z〉 by no more than
1068ε. Given that 〈y, z〉 is within 3 · 1046ε of 1/4 we can conclude that 〈x, y〉 is
within 2 · 1068ε of -1/4.

Combining all the results from this section, we have shown that any (24, 196560, 1/2+
ε)-code X and the unique (24, 196560, 1/2)-code are 2 · 1068ε-close. Together
with Theorem 6 this gives the proof of Theorem 4. The proof is very similar to
the proofs of Theorem 2 and Theorem 3. The constant C24 should satisfy

C24 ≥
π

2

√
24 ·

85 · 1965605 max{
√
‖B‖, 1}

∆
· 2 · 1068,

where B is the Gram matrix of the (24, 196560, 1/2)-code and ∆ is the
minimum of the minimal gap between two consecutive eigenvalues of B and the
minimal positive eigenvalue of B. ‖B‖ is not greater than 196560 and ∆ may be
estimated by using the root separation bounds from [11]. Overall, it is sufficient
to take C24 = 103120.
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