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Abstract

For many extremal configurations of points on a sphere, the linear
programming approach can be used to show their optimality. In this
paper we establish the general framework for showing stability of such
configurations and use this framework to prove the stability of the two
spherical codes formed by minimal vectors of the lattice EFs and of the
Leech lattice.

1 Definitions and main results

By a spherical d-dimensional code we mean a finite set of points from the unit
sphere S9~1. A d-dimensional spherical code with N points is called a (d, N, s)-
code if all pairwise dot products of distinct points from the code are not greater
than s. When we say that a (d, N, s)-code is optimal, we mean that there doesn’t
exist a (d, N’, s)-code with N’ > N.

In this paper, we consider optimal spherical codes whose optimality can be
shown via the linear programming bound. In particular, we want to concentrate
on two classical codes, the (8,240, 1/2)-code and the (24, 196560, 1/2)-code. The
optimality of these codes was shown independently by Odlyzko and Sloane [10]
and by Levenshtein [9]. Bannai and Sloane [2] proved that both the (8,240, 1/2)-
code and the (24, 196560, 1/2)-code are unique up to orthogonal transformations
in their respective spaces. Actually, assuming that the non-zero vectors of mini-
mal length of the corresponding lattices are of unit length, the (8,240, 1/2)-code
consists of Eg N S7, and the (24, 196560, 1/2)-code consists of Agy N 5?3, where
Asy is the Leech lattice. These codes solve the kissing number problem in R®
and R?* (see Conway, Sloane [5] and Erikson, Zinoviev [7]); namely, the maxi-
mum number of non-overlapping unit balls touching a given unit ball is 240 in
R® and 196560 in R4,
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We will call two symmetric matrices P, @Q of the same size d-close if ||P —
QHmaw S J.

Definition 1. Two spherical d-dimensional codes A = {aq,...,ar} and B =
{b1,...,bi} are called d-close if there is a permutation o on B such that the
Gram matrices of A and o(B) are §-close.

As in the papers and books referenced above, our approach is based on
the linear programming bound. For the linear programming bound for sphere
packings on S?~! we define Gegenbauer polynomials @Q;, i € N, in one variable
where each Q; is of degree i, and satisfies the following recursion:

Qo(t) = 1
Qi(t) = ¢
Qi_;,_l(t) _ (21 + d— 2)15@1(1*,) — ZQi_1(t) for i Z 9

i+d—2

We do not signal the dependence of J; on d because the original notation for

a—2

the Gegenbaur polynomial is Q; = an) for a = d2 as

d—

/1 QiQ;(1)(1 =) dt =0 ifi#j.
—1

Polynomials are normalized so that @;(1) = 1 for all 7. The main property
of these polynomials is that for any spherical code {ai,...,ar} C S? ! and
any non-negative ¢, the k x k matrix Q;({am,an)) is positive semi-definite (see
Schoenberg [12] or the book of Erikson and Zinoviev [7]).

We use the following version of the linear programming bound.

Theorem 1. Let d > 2. If f = foQo+ f1Q1 + ... + fxQk for k > 1 and
fi,---5 fr =0, then, for a spherical code X with N points,

NI+ Y f(zy) = N*fo. (1)

Proof. The N x N matrix formed by (f — foQo)({(z,y)) for all z,y € X must
be positive semi-definite. Hence its sum of elements is non-negative. Since

S ) = NFO)+ Y fllay))

x,yEX 1,Ty;yx
and
> foQo((z,y) = N*fo,
z,yeX
the statement of the theorem follows immediately. O



Table 1: Table of the known sharp configurations, together with the 600-cell
(from []).

n N M Inner products Name

2 N N -1 cos(2nj/N) (1 <j < N/2) N-gon

n N<n 1 —-1/(N-1) simplex

n n+1 2 —1/n simplex

n 2n 3 -1,0 cross polytope

3 12 5 —1,+1/v/5 icosahedron

4 120 11 —1,£1/2,0,(+1 £ 5)/4 600-cell

8 240 7 —1,£1/2,0 Ey roots

7 56 5 -1,+1/3 kissing

6 27 4 ~1/2,1/4 kissing /Schlafli

5 16 3 -3/5,1/5 kissing

24 196560 11 —1,4+1/2,£1/4,0 Leech lattice

23 4600 7 —1,£1/3,0 kissing

22 891 5 ~1/2,-1/8,1/4 kissing

23 552 5 —1,£1/5 equiangular lines

22 275 4 ~1/4,1/6 kissing

21 162 3 —2/7,1/7 kissing

22 100 3 -4/11,1/11 Higman-Sims
qq;%ll (g+1)(¢®+1) 3 -1/q,1/¢* isotropic subspaces

(4ifg=2) (¢ a prime power)

The classical linear programming bound (sometimes called the Delsarte
bound) for (d, N, s)-codes is a simple corollary of Theorem [1} if we additionally
require fo > 0 and f(¢) <0 for all ¢ € [—1, 5], then for any (d, N, s)-code

N < f(1)/fo, (2)
because all f({z,y)) will be non-positive for x # y.

Definition 2. A spherical (d, N, s)-code is called Delsarte-tight if there exists a

polynomial f = foQo + f1Q1+ ...+ [xQk fork>1, fo >0 and f1,..., fr >0,
such that f(t) <0 for allt € [-1,s] and N = f(1)/fo.

In the case all coefficients f1, ..., fi are strictly positive, a Delsarte-tight set
is known in literature as a sharp set (see [I] for more details). This is not always
the case that all these coefficients are definitely not 0. For instance, the vertices
of a 600-cell in S? form a Delsarte-tight but not sharp set. Table [1| from [4] lists
all known sharp configurations with their inner products and types.

Theorem 2 (Weak stability of Delsarte-tight codes). If there exists a Delsarte-
tight (d, N, s)-code, then, for sufficiently small positive €, any d-dimensional



spherical code with all pairwise dot products less than s+ € has no more than N
points and for any (d, N, s + €)-code S there is a constant C and an isometry
A of S*1 such that pairwise spherical distances between the points of A(S) and
the points of some Delsarte-tight (d, N, s)-code T are not greater than Ccel/m,
where m is the largest root multiplicity of the polynomial f corresponding to a
Delsarte-tight code T as described in Definition [2

In all known examples of Delsarte-tight spherical codes (see Table , the
largest root multiplicity m of their corresponding polynomials is 1 or 2. Theorem
[2]is applicable to all codes from Table[] Essentially for these codes, the theorem
means 1/2-Holder contunuity of optimal codes depending on the maximal inner
product.

For several optimal spherical codes (simplex, cross polytope, icosahedron,
600-cell), their optimality can be show using the so-called simplex bound. The
strong stability of the simplex bound for these codes was shown in [3].

As the main results of this paper we show the strong stability of the linear
programming bound for the (8,240, 1/2)-code and the (24, 196560, 1/2)-code.

Theorem 3 (Strong stability of the (8,240,1/2)-code). For sufficiently small
positive €, any 8-dimensional spherical code with all pairwise dot products less
than 1/2 + & has no more than 240 points and for any (8,240,1/2 + €)-code
S there is a constant Cg and an isometry A of S7 such that pairwise spherical
distances between the points of A(S) and the points of the (8,240, 1/2)-code are
not greater than Cse.

Theorem 4 (Strong stability of the (24,196560,1/2)-code). For sufficiently
small positive €, any 24-dimensional spherical code with all pairwise dot products
less than 1/2+¢ has no more than 196560 points and for any (24,196560,1/2+
g)-code S there is a constant Coy and an isometry A of S*3 such that pairwise
spherical distances between the points of A(S) and the points of the (24, 196560, 1/2)-
code are not greater than Cayue.

We also find concrete Lipschitz constants Cs and Coay.

The paper is organized as follows. In Section [2] we prove the weak stability
of Gram matrices of Delsarte-tight codes. Section |3|is devoted to the stability
of eigendecompositions of positive semi-definite matrices. These two sections
combined give the proof of Theorem [2] In Sections [] and [5] we analyze the
(8,240,1/2)- and (24, 196560, 1/2)-codes and obtain the strong stability of these
codes subsequently proving Theorems [3[ and [4 respectively.

2 Weak stability of Gram matrices for Delsarte-
tight codes

Lemma 2.1. A symmetric real matriz with 1’s on the diagonal is a Gram
matriz of a d-dimensional spherical code if and only if all principal minors of
this matriz of size greater than d are 0 and all principal minors of this matriz
of size not greater than d are non-negative.



Proof. Since all principal minors are non-negative, by Sylvester’s criterion, the
matrix is positive semi-definite and thus is a Gram matrix of a spherical code.
If a symmetric matrix has rank r, then at least one principal minor of size r is
not 0 [I3} Chapter VI, Theorem 4]. Any principal minor of size greater than d
is 0. Therefore, the rank of the matrix is not greater than d and the spherical
code is d-dimensional. O

We consider a fixed set X = {z1,...,;} of real numbers and a set Mx of
all square matrices of size not greater than N with all their entries from X.

Lemma 2.2. There exists ¢ = e(X, N) such that for any 6 < & and any square
matrix A of size not greater than N which is §-close to a matriz B from Mx,
the following conditions hold: 1) if det A = 0, then det B =0; 2) if det A > 0,
then det B > 0.

Proof. There are finitely many matrices in Mx so there is the minimal non-
zero value K among all |det B|, B € Mx. Due to the Lipschitz continuity of
determinants, there exists also a constant C' such that | det A — det B| < C4 for
any matrix B, B € Mx, and any A d-close to B. It is clear that, if we choose
e = K/C, both conditions 1) and 2) must hold because the determinants of A
and B will differ by less than K. O

Theorem 5. If there exists a Delsarte-tight (d, N, s)-code, then, for sufficiently
small positive €, any d-dimensional spherical code with all pairwise dot products
less than s+ ¢ has no more than N points and for any (d, N, s+¢)-code S there
is a constant K such that this code is Ke'/™-close to some (d, N, s)-code, where
m is the largest root multiplicity of the polynomial f described in Definition 3

Proof. We will begin the proof with several properties of Delsarte-tight sets.

If we have equality in (2)), then (1) shows that all values (z,y) for = # y,
x,y € X are roots of f. Denote the set of roots of f from the segment [—1, s]
by z1,...,2; and define R = {1,z1,...,2;}. By Mg we mean the set of all
matrices of size no greater than N with all entries from R.

From the proof of Theorem [I] we can also conclude that the sum of elements
of each matrix @;({x,y)) is 0 in case the coefficient f; of Q; in the Gegenbauer
expansion of f is strictly positive.

In case f(s) < 0, we can choose any ¢ such that f is negative on [s, s + ¢].
The linear programming bound will work for s + ¢ as well and, since there are
no roots of f on [s,s+ €], any (d, N, s + ¢)-code is a (d, N, s)-code too. Hence
we can assume that f(s) = 0.

Denote the minimal root of f from (s, 1) by r if such a root exists. Otherwise,
we take 7 = 1. We will denote by M the maximal value of f(t)/(t—s) on [s, =£*].
Then for any positive e, e < %52, the value of f on [s, s +¢] is not greater than
Me.

Assume we had a (d, N', s + ¢)-code S with N’ > N. We want to prove
the first part of the theorem and show that N’ = N if € is small enough. For




any pair x,y of distinct points from S, the value of f((z,y)) is either non-
positive if (z,y) € [—1, s] or, as we have shown above, not greater than Me if
(x,y) € [s,s+ ¢€]. This implies that

S Fl{wy)) < N'(N' —1)Me.

Combining this inequality with Theorem [I] we get
N'f(1) + N'(N' —1)Me > N2,

f)+ (N"=1)Me > N' f,.

From the tightness of the linear programming bound for the (d, N, s)-code
we know that f(1) = N fy. If we assume N’ > N, we get

N — N 1
e > . ﬁ > . ﬁ7
-~ N-1 M~-N M
which doesn’t hold for € < A{;’M
From this moment on, we consider only € < min { Aﬁ’w, Tgs} to prove the

z,y€X
Ay

0. All positive elements of this sum are not greater than Me so any negative
element is at least —(N? — N — 1)Me.

Denote the multiplicities of roots z1,...,x; of f by mq, ..., m;, respectively.
() 1) } over all t €

(t—xq1)™1 (t—axy)™
[—1,1]. By definition M’ > 0. For each point ¢ € [—1, s] there is z; such that
ft) < =M'|t—x;|™i. If t = (x,y) for distinct points z,y from the (d, N, s +¢)-
code then we can combine it with the previous inequality:

second part of the theorem. From Theorem [1|we conclude that >~ f((z,y)) =

We define M’ as the minimum of max{

ey

~M'|t —x;|™ > f(t) > —(N* = N — 1)Me,

M 1/m;
|t — ;| < <(N2—N—1)M,€> < Ke'/™,

where K = max {(N? = N — 1)2%,1}.

We have just proved that the Gram matrix of the (d, NV, s+¢) code is Kel/m-
close to some matrix B from Mpg. From Lemma there exists g = eg(R, N)
such that, whenever Kel/™ < g, if a minor of the Gram matrix of X is 0, then
the corresponding minor of B is 0 and, if a minor of the Gram matrix of X is
non-negative, then the corresponding minor of B is non-negative. This means
that, for € < (%)m, all principal minors of B of size greater than d are 0 and all
principal minors of B of size not greater than d are non-negative. By Lemma
B is the Gram matrix of a d-dimensional spherical code. All non-diagonal
entries of B are roots of f so the code is a Delsarte-tight (d, N, s)-code. O



3 Stability of eigenvectors of positive semi-definite
matrices

For a N x N matrix T, we write ||T|| to denote its spectral norm and, for a
v € RY, we write ||v]| to denote its l;-norm. We say that two N x N matrices
A = [ai;] and B = [b;;] are o-close for § > 0 if |a;; — b;;| < dfori,j=1,...,d.
It is well-known that A and B are |A — B||-close on the one hand, and if A and
B are d-close, then ||A — B|| < N§ on the other hand.

For a linear subspace L in some Euclidean space, we write -|L to denote
the orthogonal projection into L. The following statement is Lemma 2.1 in
Boroczky, Bordczky, Glazyrin, Kovécs [3], which is needed in the proof of The-
orem
Lemma 3.1. Ifd > 2, ¢ € (0, i), and uy,...,uqg € ST satisfy [(ui, u;)| < e
for i # j, then there exist an orthonormal basis wi,...,wq of R* such that
llui —w;|| <2de fori=1,...,d.

Theorem 6. For any non-trivial positive semi-definite symmetric matriz B of
size N > 2, one finds 6o > 0 and K > 0 depending on B with the following
property. If A is a symmetric matriz of the same rank as B and d-close to B,
0 < < g, then there exist N x N positive semi-definite symmetric matrices
P and Q such that A= PP and B = QQ where P and Q are Kd-close to each
other.

5 X
Remark We may choose K = SN maA{V 1511} where A > 0 is the mini-
mum of the minimal gap between consecutive eigenvalues of B and the smallest
positive eigenvalue of B.

Proof. For a positive semi-definite diagonal matrix T', we write v/T to denote
the positive semi-definite diagonal matrix whose square is 7.

Let » > 1 be the common rank of A and B. In addition, let 0 < A\ <
... < Ak, k < r, be the different positive eigenvalues of B with corresponding
mutually orthogonal eigenspaces L1, ..., L, k < r, whose dimensions naturally
add up to r, and hence L = Ly + ... + Ly is r dimensional. Let A € (0,1] be
maximal such that Ay > A, and A\; — A\; > A for j > 4. We assume that ¢ is
small enough to have .,

14N 1
A o< 5N (3)
Let D be the diagonal matrix D such that the first r diagonal entries are positive
and increasing with the index, and \; occurs as diagonal entry dim L; times.

There exists an N x N orthogonal matrix M such that M ~!BM = D, and
let E = M~*AM — D. Since ||[A — B|| < N§, we deduce that |[E| < N§. We
write coordinates in RY with respect to the new orthonormal basis obtained
via M. In particular, D acts on L; by multiplication by \;, ¢ = 1,...,k. For
j=1,...,k, let I; C {1,...,k} be the set of indices of basis vectors contained
in L;, and hence L U... U, ={1,...,r}.



Let vq,...,vn be an orthonomal set of eigenvectors of M ~'AM. We claim
that there exist at least r indices ¢ € {1,..., N} such that |v;|L|| > ﬁ, or in

other words, we may reindex v1,...,vyN in a way such that

1
lvi|L]| > —— ifi <. (4)

VN

We suppose that does not hold, and seek a contradicton. Obviously r < N
in this case. The indirect hypothesis yields that there exists a subset J C
{1,..., N} of indices of cardinality N —r + 1 such that |lv;|L|| < —= 5 forieJ,

and hence
Jvi|LH|| > /1 — & fori € J. (5)

In addition, if i # j for ¢,j € J, then

[((oil L), (v | L)) | = [ (il L), (vs] L)) | < % (6)

As Lt is N — r dimensional, there exists coefficient 7; € R for i € I with
v = max;es |7i| > 0 such that >, ;7 (v;|L*) = 0. There exists a j € J such
that v = |y;]. We deduce from the triangle inequality, and @ that

<vJ|L Z%%IL> (1-§) - Wy o @

ieJ

0=

This contradiction proves (4.
For ¢ < r, we have

[(uild = D)vi|| = [[Evi| < N6. (8)

According to , there exists a € I such that the ath coordinate of v is at least
1/v/ Nr in absolute value. If o € I}, then we have

i — Aj| < VNrN -§ < N2, (9)
and hence (3 implies
i =N _ N? N2
|\/¥*\/E’|*ﬁ<\ﬁ 0< —=-0. (10)
In addition, (@ and the rank of B being r yield
i > A/2fori=1,...,r and p; =0 for i > r. (11)

If A\ # A, then |p; —Ag| > A/2 by (3) and @ It follows from this observation,
from @D and (| . ) that writing v; = (t1,...,tn), we have

2N? ,
ta] < R d provided o & I



and hence

2N2V/N
los| Ly || < A 0. (12)
We conclude from and that
4N°® 9 _ 3
[l Ly | Zliﬁ.é > 1 (13)

We deduce from that for any i € I, there exists a unique j(i) € {1,...,k}
such that [[vi|L;) || > 7, and we define ©; = v;|L;(;). In particular, if j = j(i) =
j(l) for i,j € I, then and imply that

) > 1-27.62 >1-2
(T, 0)] < HF-2< % if i # 1.

(14)

Using and similar argument as in @ shows that for any L;, j = 1,...,k,
the vectors of the form ¥; with ¢ € I that are contained in L; are indepen-
dent, therefore their number of is at most dim L;. We deduce from pigeon hole

principe that possibly after renumbering vy, ..., vx, we may asume that v; € L;
if and only if ¢ € I;.
We claim that there exist an orthonormal basis wy, ..., w, of L such that if
i € I, then w; € L; and
TN
lwi —vil| < A d. (15)

For any i < r, we set v} = ¥;/||%;|| € L; N S¥~1, and hence and yield
that if 4,1 € I, i # [, then

s\ ?s 26
[(vi, up)| < <1 - A) A < N (16)
In addition, combining and implies
, 3N25
- < - 0. 17
Iof — vl < 2% (1)

On the other hand, for any j € {1,...,k}, we deduce from (3, and
Lemma that there exist an orthornormal basis {w; : i € I;} of L; such
that

AN
llw; — o] §Z~5 for i € I, (18)

Combining and yields .
Next we extend the basis wy, ..., w, of L in into an orthonormal basis
wi,...,wy of RY such that

28N*

lw; — v]| < -y fori=1,...,N. (19)



Having at hand, we may assume that r < N. If ] <i<randr <j <N,
then (vj,v;) = 0 and yield that |[{w;, v;)] < 7g3 -d. Therefore if r < j < N,
then

[ I

S (20)
[ i R
From this point, we follow a similar path as in the case of (15). For j =
r41,...,N, we write o; = v;|L* and v} = ;/[|t;]| € L+ N SN~!, and hence
yields that
14N*
oy = ol < =55, (21)

andifr+1§j<l§N,thenandimplythat

ol < (1= TR0 8) 100l < 200600 = 210 (D)

< 2. h <4 (22)

In turn, we conclude from , and Lemma that there exist an or-
thornormal basis w,.41,...,wy of L+ such that

14N4

|wj — v < -0 forj=r+1,...,N, (23)
Combining , and yields .

We write D to denote the diagonal matrix whose first r diagonal entries are
L1, -« b > 0 in this order, and the rest of the entries are 0 (compare ) For
the N x N orthogonal transformation F defined by Fw; =v; fori =1,..., N,
we have B

D=FMAM'F~1.
Writing E=VD- VD, it follows from that
N2

Bl < — .6
£ < N9 (24)

In addition, and yield that

28 N5 28 N°
-6 and [|[F-1d|| < .

|F~t —1d < §< 1. (25)

For the positive semi-definite P = M~1F~1v/DFM and Q = M~*v/DM
matrices, we have A = PP and B = QQ, and

IP-Q| = |M*F'VDFM - M 'VDM| = |M*(FVDF - VD)M|
< ||[F"VDF - vVD| = |[F~'(VD + E)F — VD)
< |(F'=1d)VD(F —1d) + (F~' = 1d)V'D + VD(F —1d)|| + |[F " EF||
< VA (IFTN=1d) | F = Td) 4 [P =T+ (|F - 1d]]) + B

10



Combining and implies
85N° max B,1
T VIPLLY

thus we may choose K = SN maxA{ VIBILLY O

Theorem [2] immediately follows from Theorems [5| and [6}

Proof of Theorem[3 We use notation from Theorem [5] The Gram matrix A of
any (d, N, s + ¢)-code is Ke'/™-close to the Gram matrix B of a Delsarte-tight
(d, N, s)-code for sufficiently small e. Then, by Theorem @ B and A can be
represented as Q@ and PP, respectively, where () and P are positive semi-

definite symmetric matrices which are 8N maxim’l}l( e'/m_close, where A
is the minimum of the minimal gap between two consecutive eigenvalues of B
and the minimal positive eigenvalue of B. The matrices P and @ define by
their column vectors two d-dimensional spherical codes whose Gram matrices
are A and B, respectively. The corresponding columns P? and Q?, 1 < i <
N, are unit d-dimensional vectors whose components differ by no more than
85N° maxA{\/m,l}Kgl/m so ||P' — Qi < V- 85N° maxA{m,l}Kel/m. Using
Z(P, Q") < Z||P* — Q'|, we get that the sphecrical distance between P and

@' is not greater than Ce'/™, where C = ZVd - 8N aA{V IBIL1} pe O

4 Stability of the (8,240, 1/2)-code

The set of minimal vectors of the Eg lattice forms the Delsarte-tight (8,240, 1/2)-
code. The polynomial f for this code is

ft) = %(t +1)(t+1/2)%2(t —1/2) =

16 0 832 1216 5120 2560
= Qo+ 7@1 + —Q2 + ﬁQs + Qs+ Qs + ——Qs,

20
63 429 3003 4641

where fo =1 and f(1) = 240.

It follows from the proof of Theorem [5| that for any ¢ < 5- 1076 any
(8, N',1/2 + €)-code must have no more than 240 points. For the weak sta-
bility, slightly generalizing the outcome of Theorem we get that for any
e < m the combinatorial structure of a (8,240,1/2 + €)-code is
the same as for the (8,240, 1/2)-code and all dot products in a (8,240,1/2+¢)-
code differ by not more than 3 - 107\/¢ from 0 or —1/2 or by not more than
3-107¢ from —1 or 1/2. From now on we consider only (8,240,1/2 + £)-codes
as described above. In what follows, we will show that the linear programming
approach and the combinatorial structure of the code force all dot products to
be within O(e) of the dot products of the (8,240, 1/2)-code.

11



For any two points z,y in the (8,240,1/2)-code such that (z,y) = —1/2,
there is a point z such that (z,z) = (y,z) = 1/2. This is true because z + y
must belong to Fg as well, has length 1 and forms the angles of 7/3 with both x
and y. From here we conclude that for any two points z,y of a (8,240,1/2+¢)-
code such that (x,y) is close to —1/2 there exists a point z with (z,z) and
{y, 2) not smaller than 1/2 — 3-107e. From the triangle inequality for spherical
distances, we get that (z,y) > —1/2—9-107¢.

Similarly to the proof of Theorem [I} for any (d, N,s)-code X, any f =
foQo + f1Q1 + ... + frQk with non-negative coefficients, and any i € [1, k],

NI+ Y fzy) > N fo+ . £iQillz,y) > N*fo.  (26)

z,y€X X
i T,Y€

For N and f satisfying the conditions of a Delsarte-tight code, Nf(1) =
N2 £y so we get

S )= Y £Q(y) > 0. (27)
If;fyx z,ye X

As we know, f({z,y)) for x # y in our code is either non-positive or not
1) }5 = 480¢. Therefore, for each i € [1, 6],

greater than max

tefi/2,1) Lt=1/2
1
0< ) Qil{a,y) < ?(2402 — 240) - 480¢. (28)
z,yeX v

We note that for the (8,240, 1/2)-code all six sums are 0.

We use the inequality 0 < >°, v Q2((z,y)). For d =8, Q2(t) = 82 — 1.
If (x,y) is close to 1/2, Qa({z,y)) < Q2(1/2) +7-107e. If (x,y) is close to 0,
Q2({m,y)) < Q2(0) +2-10%¢. If (x,y) is close to —1, Q2({x,y)) < Qa2(—1). If
(w,y) is close to —1/2 and less than —1/2, Q2({(z,y)) < Q2(—1/2) + 3 - 10%¢.
Overall, for all considered cases if (x,y) is close to «, Q2({(z,y)) — Q2(a) <
2 -10%%¢. Since the sum for Q5 is 0 on the (8,240, 1/2)-code, the total sum of
Q2((z,y)) — Q2(c) is non-negative too. The sum of non-negative terms from
here is not greater than (240% —240) - 2-10%%¢ < 2-10%°c. The only unobserved
case so far is the one when (x,y) is close to —1/2 and not smaller than —1/2.
In this case, Q2({x,y)) — Q2(—1/2) is non-positive and cannot be larger by its
absolute value than the sum of all positive elements. Therefore,

Q2((z,)) — Q2(=1/2) > —=2-10%,

(z,y) < —1/2+2-10%¢.

In the (8,240, 1/2)-code for any pair of points x, y such that (x,y) = 0, there
exist 12 more points z such that (z,z) = (y,z) = 1/2 (due to the association
scheme structure this number is 12 for any such pair of x and y). Note that all

1

these points including = and y belong to the 6-dimensional sphere of radius 7
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with the center at % 14 points on the same 6-dimensional sphere of radius

% with the minimal distance equal to 1 = V2 - % must be located in the

vertices of the 7-dimensional cross-polytope. All pairs of points with (z,y) =0
are then partitioned into 7-tuples from the same 7-dimensional cross-polytope.

Consider two pairs of points x,y and z,t from the (8,240,1/2 + ¢)-code
X such that (z,y) and (z,t) are close to 0 and the other four dot products
between pairs of these points are close to 1/2. We denote (z,y) by a and (z,t)
by 8. Assume also that (x,z) = 1/2+ 61, (z,t) = 1/2+ 09, (y,2) = 1/2 + J3,
(y,t) = 1/2 +64. All |6;], 1 < i < 4, are not greater than 3 - 107c. The Gram
matrix for these four points should be positive semi-definite so its determinant
is non-negative:

1 a 140 1+6 Lo 5 3
o< @ 1 5+ 03 §+54 < |« 1 % §+2'109€* (29)
ST E R R ek
3+0 5+6s B 1 2 2 A1

=(1-a)1-pB)af+a+p)+2-10%.

Hence we get that aS+a+5 > —3-10%. Since aff < 9-10*¢, a+3 > —10"%¢.
For each 7-dimensional cross-polytope described above we can average these
inequalities over all pairs and get that the sum of the seven dot products in it
is at least —35 - 10'¢. On the other hand, if we set aside one pair of opposite
vertices in a cross-polytope and average over six pairs , we will get that their
sum is at least —30-10¢. Overall, if we set aside one fixed pair of points zg, yo
such that (x,yo) is close to 0, then all other pairs of such points on average has
a dot product at least —5 - 10'%e

Using inequality for the Gram matrix (matrix for Q1) we get that

0< > (ay) <2-107e.
z,yeX
For all pairs z,y, where (x,y) is close to —1, —1/2, 1/2, (z,y) differs from
all these numbers by no more than 2 - 10%2%. If we fix one pair of points zg, ¥o
such that (xg,yo) is close to 0, then, using all lower bounds above, we get

(z0,y0) — (2407 — 240 — 1) - 2-10%% < 2-107¢,

(z0,90) < 2-10%¢.

Hence for all z,y such that (z,y) is close to 0, (z,y) < 2-10*°c. We can use
this to bound (z,y) from below as well, using the inequality o + 8 > —10'%¢:
(z,y) > —101%¢ — 2-10%°¢ > —3 - 10%¢.

Combining all the bounds we obtained, the (8,240, 1/2+ ¢)-code is 3 - 10%¢-
close to the (8,240, 1/2)-code. Coupling this with Theorem [6]we get Theorem

13



The proof follows the proof of Theorem [2| almost word-for-word. The constant
(s we obtain satisfies

Co > T3 85 - 2405 max{+/|| B||, 1} 3.10%,
2 A
where B is the Gram matrix of the (8,240, 1/2)-code and A is the minimum
of the minimal gap between two consecutive eigenvalues of B and the minimal
positive eigenvalue of B. || B|| is not greater than 240 and A may be estimated by
using the root separation bounds from [I1I]. Overall, we get that it is sufficient

to take Cg = 10296,

5 Stability of the (24, 196560, 1/2)-code

The set of minimal vectors of the Leech lattice forms the Delsarte-tight (24, 196560, 1/2)-
code with the polynomial

ft) = %5944@ + 1)t 4 1/2)%(t 4 1/4)% 82 (t — 1/4)%(t — 1/2) =

1144 12992 73888 2169856

= Qo + Q1 5 @2t 3555 93 ¥ 5o1g5 9 T G O F

59062016 4472832 23855104 7340032 7340032
Qs + Q7+ Qs + Qo + s C10,

+ 25365285 2753575 28956015 20376455 80848515

so that fo =1 and f(1) = 196560.

The structure of the proof will be generally similar to the one for the
(8,240,1/2)-code. Firstly, we use the proof of Theorem [5| and see that for e <
10~ any (24, N’,1/2 + ¢)-code with N’ > 196560 must have prec1sely 196560
points. The proof of Theoremalso implies that, when ¢ < (@T0TS 196560, JT96560Y2 5
the structure of this code is combinatorially the same as the one of the (24, 196560, 1/2)-
code and all inner products close to 1/2 and —1 must be within 2 - 10 from
1/2 and —1, respectively, all inner products close to —1/4, —1/2, 0, 1/4 must
be within 2 - 1016\/z from —1/4, —1/2, 0, 1/4, respectively. From now on
we consider only codes with these constraints on dot products. For the main
part of the proof, we will use the linear programming approach and the com-
binatorics of the (24,196560, 1/2)-code to show that all inner products of such
(24, 196560, 1/2 4 ¢)-codes are, in fact, within O(g) of their counterparts among
minimal vectors of the Leech lattice.

Inequality is true for any case of a Delsarte-tight code so we can find an
analogue of inequality in the 24-dimensional case. In a (24, 196560, 1/2)-
code X, f({x,y)) for x,y € X, = # y, is either non-positive or not greater than

max {tf(t/) }z—: = 393120¢. Therefore, for each i € [1,10],
te[1/2,1]
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1
0< Z Qi({z,y)) < —(196560% — 196560) - 393120e < 2-10'7.  (30)

z,yeX fZ

Similarly to the 8-dimensional case, we note that these sums are identically
0 if X is the unique (24, 196560, 1/2)-code.

We will split all pairs of points from X2 into groups A,, a = —1, —1/2,—1/4,
0,1/4,1/2, 1, such that (z,y) € A, if (z,y) is close to a (the corresponding pair
of points in the (24, 196560, 1/2)-code has inner product «). By S, we denote
> (eyea. ((,y) — ). By using inequalities , we will show that all S, are
O(e).

This immediately holds for S; (since it is identically 0), Sy 2, S_1:

—(196560°—196560)-2-10"% < S /5 < (196560 —196560)¢, hence |S; /5| < 8-10%¢;

0 < S < (196560% — 196560) - 2 - 10*%, hence |S_;| < 8 - 10%%¢.

We use inequalities fori =1,2,3,4 approximating Q;({z,y)) by Q;(a)+
((z,y) — a)Q}(a). We also change the left and right sides of the inequalities to
+10*%¢ in order to cover deficiencies caused by omitting higher order terms:
({z,y) — a)? < 41032, all terms with degree at least 3 are much smaller
because they are O(¢3/2) and ¢ is extremely small.

—10%e < S_1 4+ S_1/2 4+ S_1/4 + So + Sia + S1/2 < 10%¢;

48 24 12 12 24
—10%%¢ < —%571 — ?35—1/2 — %5—1/4 + %51/4 + 551/2 < 10%¢;

15

_10%: <« 2 _ i, _
10%¢ 23S_1 -+ 6S_1/2 —+ 184S_1/4 350 —+ 184

51/4 + Esl/g < 10 SN

104 208 13 13

, 208
10 229 "9 g =
07e < =591 = 5912~ 5359174+ 55

Siat 5z

31/2 S 10456.

This system of inequalities must imply that all S, are O(e) because the
coefficients for S_y,2, S_1/4, So, S1/4 form a non-singular matrix. More pre-
cisely, from the second and forth inequalities we can immediately get that
IS_1/2] < 10%¢ and |S1/a — S_1/4] < 2- 10%6¢. From the first and the third
inequality we then get that |Sy,4 4+ S_q1/4] < 2- 10%6¢ too so both |S1/4] and
|S_1/4| are not greater than 2 - 10%6¢. Using the bound for |S1 /4 + S_1/4] we
also find that |Sp| < 4 - 10%%¢.
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Now we will use the bound on Sy to show that, for each pair of points
x,y € X such that (x,y) is close to 0, (x,y) is O(g). The proof is similar to the
one for the 8-dimensional kissing configuration.

In the (24, 196560, 1/2)-code for any pair of points xz,y such that (z,y) =
0, there exist 44 more points z such that (z,z) = (y,z) = 1/2 (due to the
association scheme structure this number is 44 for any such pair of = and y).
All these points including = and y belong to the 22-dimensional sphere of radius

% with the center at ‘TT“’ 46 points on the same 22-dimensional sphere of

radius % with the minimal distance equal to 1 must be the vertices of the
23-dimensional cross-polytope. All pairs of points with (z,y) = 0 are then
partitioned into 23-tuples from the same 23-dimensional cross-polytope.

For two pairs of points z,y and z,¢ from X such that (z,y) and (z,t) are
close to 0 and the other four dot products between these points are close to
1/2, denote (z,y) by « and (z,t) by 8. Assume also that (z,z) = 1/2 + ¢y,
(x,t) =1/2+ 2, (y,2) =1/2+ 63, (y,t) = 1/2+ d4. All §;, 1 < i < 4, are not
greater than 2-10'%s. The Gram matrix for these four points should be positive
semi-definite so its determinant is non-negative:

1 o l—|—(31 l—|—(52 1 o £ 1
R R N R -
5+02 5+0d4 8 1 5 3 B 1

=(1-a)(1-B)(aB+a+ )+ 10"

Hence we get that a8 +a + 8 > —10'%. Since a8 < 4-10%%¢, a + 3 >
—6-10%2¢. Averaging this inequality over all pairs from a 23-dimensional cross-
polytope described above we get the the sum of dot products for pairs of opposite
vertices in such a cross-polytope is at least —23 - 3 - 103%c. On the other hand,
averaging over all pairs from a cross-polytope, except for a fixed pair (zo,yo),
the sum of dot products is at least —22 - 3 - 1032¢. From these inequalities,

Sy > (o, y0) — (1965602 — 196560 — 1) - 3 - 1032 > (x0,y0) — 2 - 10%3¢.

Combining this with the bound on Sy, we find that |(zq,yo)| < 5 - 10%%.
For the next step we will show that if (zg,yo) is close to -1 then (xg,yo)
differs from -1 by O(¢?). In order to do this we use the following lemma.

Lemma 5.1. In a d-dimensional spherical code {x,z1,2a,...,24-1}, |{z, z:)| <
0 for alli from 1 to d—1 and for a fixzed § > 0. If z1,29,...,2q—1 are linearly
independent, then, for one of the two unit vectors orthogonal to the span of

21,22, -+, 2d—1, its spherical distance to x is not greater than 3 %5, where
M (Q) is the minimal eigenvalue of the Gram matriz G of z1, 22, ..., 24—1-
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Proof. We denote one of the unit vectors orthogonal to the span of z1, 22, ...,24-1
by z, if (x,z,) > 0. We represent = as aj z) +x,, where x, belongs to the span

of z1,22,...,24—1. Then [(x,, z;)| < ¢ for all i from 1 to d—1. We denote (z., z;)
by A; for all ¢ and the vector (Ay,...,Aqy—1) by A. If a = (a1,...,0q-1) is
the vector of coordinates of x, in the basis z1,29,...,24_1, then A = Ga and

a = G7'A. On the other hand,

1 d—1
2|2 =aTGa < ||a|| - [|A]] = [|GTTA] - ||A]] < All2 < ———§2.
||| < llell- Al = | -1l ||_)\1(G)\| I W)
Therefore, Z(z1,x) = arcsin [|z.|| < F|[z.|| < § %5. O

We consider an arbitrary pair zg, yo of points from X such that {(xg,yo) is
close to -1. Among 93150 points « from X such that (zg,z) is close to 0, we
choose arbitrarily 23 points so that their counterparts in the (24,196560,1/2)-
code form a basis. Since all dot products in this basis are +1/2,+1/4,0, the
Gram matrix of this basis has determinant not smaller than 4%. We can deduce
that the Gram matrix of the corresponding basis in X has determinant not
smaller than 4%. Each eigenvalue of the Gram matrix is not greater than 13
(for instance, by the Gershgorin circle theorem). Hence the smallest one is at
least m. Lemma implies that the angle between zg and yo must be at
least

2
m-m/5 (BG) 510 > 7 — 7v/23 - 421138 . 5. 10%e > 7 — 10%%.
1

For any points x,y € X such that (x,y) is close to -1/2, we consider a point
z € X such that (z,z) is close to -1 and (y, z) is close to 1/2. Then, by the
inequality on Z(z, z) proven above, (z,y) differs from —(y, z) by no more than
10%e. Given that (y, z) is within 2 - 10'5¢ of 1/2 we can conclude that (z,y) is
within 2 - 10%8¢ of -1/2.

For the next step, consider a pair of points 2’ and y' of the (24,196560, 1/2)-
code such that (x’,y’) = 1/4. There are exactly 275 points u’ of the (24, 196560, 1/2)-
code such that (z/,u') = (y/,u') = 1/2 (this number is the same for all such
pairs 2/, 3" due to the association scheme structure). It is not hard to see that,
after the appropriate dilation, these 275 points form a (22,275,1/6)-code. This
is a Delsarte-tight code in dimension 22 with exactly two inner products, 1/6
and -1/4. Tt must possess the structure of a strongly regular graph (see [6]).
Due to this structure, there is a unique (22,275,1/6)-code [§]. In what follows
we will analyze the counterpart of this code in the (24, 196560, 1/2+¢)-code X.

Consider two points z,y € X such that (z,y) is close to 1/4. We denote
(x,y) by 1/4 + &, where |§| is known to be not greater than 2 - 1016,/c. With
the slight abuse of notation, by +t, for any real ¢, we will mean an unknown
real number between —t and t. For instance, for each point u € X such that
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both (z,u) and (y,u) are close to 1/2, we can write (z,u) = 1/242-10'%¢ and
(y,u) = 1/242-10'%. Any point u of this kind may be uniquely represented
as ax + By + vz, where z is a unit vector orthogonal both to z and y and «, 5,y
are real with v > 0. Straightforward calculations show that both a and 8 must
be 2/5 £ 3-101%. Since ||u|| = 1, we get

1
a2+2@ﬂ<4+5>+[32+’y21,

2 8
S 5 +42 47100 =1
5Tt £T b
3 415
=4/ — T "5+2-10%.
7 \/; 75 c

Now we consider two points uj,us € X satisfying the conditions above.
Hence for their representations w1 = ayx+S1y+7121 and us = asz+ Poy+v222,

ar = 2/5+3-10%, f; = 2/5+£3-10'%, v = \/g — W55 4 9. 103,

oy =2/5+£3-10%¢, B =2/5+£3-10%¢, 35 = /2 — 47—@’)5 +2-10%%. Then

we can estimate (ug,ug):

(u1,u2) = ayag + (1 f2 + Broe) <i + 5) + B1P2 + 172(21, 22) =

2 8 3 8
-2+ 2 S +6-10%%.
5+25(5+(5 255) (21,29) £6-10°¢

We know that (uj,us) is not greater than 1/2 + e. Therefore,

3 8 1 8
e < ——— -10%2%¢.
(5 255) <21,2’2> =70 255+7 0°“¢e

This inequality must hold for all pairs from 275 points z from the unit sphere
in R?2. From the tightness of the (22,275,1/6)-code, this may happen only if
for some of these pairs (21, z9) > %. We conclude that

3 8 \1 _ 1 8
S )<= —— -10%%¢.
<5 255>6_ 10 250 TT10E

Subsequently, § < 3-10%3¢. Hence we proved that for any two points z,y € X
such that (z,y) is close to 1/4, (x,y) < 1/4+ 3-10%3%. There are no more than
1965602 — 196560 pairs like this so, using that |S1/4] < 2- 10%%¢, we also get

(z,y) > 1/4+ 51,4 — (196560° — 196560) - 3 - 10%°c >

>1/4 —2-10%e — (1965602 — 196560) - 3 - 1033 > 1/4 — 3 - 10%¢.
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This means that if (x,y) is close to 1/4, (x,y) differs from 1/4 by no more
than 3 - 10%%¢.

For any points x,y € X such that (x,y) is close to -1/4, we consider a point
z € X such that (x,z) is close to -1 and (y, z) is close to 1/4. Then, by the
inequality on Z(zx,z) we proved, (z,y) differs from —(y,z) by no more than
10%e. Given that (y, z) is within 3 - 10%5¢ of 1/4 we can conclude that (z,y) is
within 2 - 10%8¢ of -1/4.

Combining all the results from this section, we have shown that any (24, 196560, 1/2+
g)-code X and the unique (24,196560,1/2)-code are 2 - 1058¢-close. Together
with Theorem [6] this gives the proof of Theorem [d] The proof is very similar to
the proofs of Theorem [2 and Theorem 3| The constant Co4 should satisfy

Oy > g\/ﬂ ) 85 - 196560° Izax{\/ IB|l, 1} . 1068)
where B is the Gram matrix of the (24,196560,1/2)-code and A is the
minimum of the minimal gap between two consecutive eigenvalues of B and the
minimal positive eigenvalue of B. || B|| is not greater than 196560 and A may be
estimated by using the root separation bounds from [IT]. Overall, it is sufficient
to take Cyy = 103120,
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