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Abstract

The reverse isoperimetric inequality, due to Keith Ball, states that if K is an n-
dimensional convex body, then there is an affine image K of K for which S(K)"/V (K)"~!
is bounded from above by the corresponding expression for a regular n-dimensional sim-
plex, where S and V' denote the surface area and volume functional. It was shown by Franck
Barthe that the upper bound is attained only if K is a simplex. The discussion of the equality
case is based on the equality case in the geometric form of the Brascamp-Lieb inequality.
The present paper establishes stability versions of the reverse isoperimetric inequality and of
the corresponding inequality for isotropic measures.
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1 Introduction

The isoperimetric inequality states that a Euclidean ball has smallest surface area among convex
bodies (compact convex sets with non-empty interiors) of given volume in Euclidean space R"
with scalar product (-, -) and norm || - ||, and that Euclidean balls are the only minimizers. Let
B™ be the Euclidean unit ball centred at the origin. Denoting by S(K) the surface area and by
V(K) the volume of a convex body K in R", the isoperimetric inequality can be expressed by
the inequality

(B _ S(E)"

V(B = V(K)» 1’
where equality holds if and only if K is a Euclidean ball. Since surface area and volume are
continuous functionals (with respect to the Hausdorff metric) and the extremal bodies of the

inequality (1) are precisely the Euclidean balls, the following question arises naturally. Suppose
that a convex body K in R" satisfies

)

S(B")"

V(K —
for some € > 0. Does it follow that K is e-close to a Euclidean ball? An answer to this question
requires that the distance dist(K) of K from a Euclidean ball is measured in a suitable way. For
instance, the distance function dist(-) should have the same scaling and motion invariance as the
isoperimetric problem. The problem can also be stated in the following form. Let again K be a
convex body in R™ and assume that dist (/) > ¢ for some £ > 0. Does it follow that

S(K)" S(B")"

W > (1+ f(g))W,

where f : [0,00) — [0,00) is a continuous and increasing function with f(0) = 0? In other
words, is it true that S(K) S(B")

V(KT > (1+ f(dlst(K)))W
with an explicitly given function f? Any such inequality provides a strengthening of the classical
isoperimetric inequality and is called a stability result related to (1).

Although results of this type can be traced back to work of Minkowski and Bonnesen, a
systematic exploration is much more recent. Introductory surveys on geometric stability results
were given by H. Groemer [21, 22], an up-to-date coverage of various aspects (including appli-
cations) of the topic is provided throughout R. Schneider’s book [38]. More specifically, sta-
bility results for the isoperimetric problem (based on the Hausdorff distance) have been found,
for instance, by Groemer and Schneider [23]. As a recent breakthrough, N. Fusco, F. Maggi,
A. Pratelli [18] obtained an optimal stability version of the isoperimetric inequality in terms of
the volume difference, and A. Figalli, F. Maggi, A. Pratelli [16, 17] even extended the result to
the Brunn-Minkowski inequality.

The ratio S(K)™/V (K)"! is unbounded from above, if K ranges over all convex bodies. In
fact, simple examples show that /' can have arbitrarily small volume and still surface area equal
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to a prescribed positive value. In order to avoid this type of situation, it is a well known strategy
(see, for instance, F. Behrend [9]) to consider the affine invariant

ir(K) := inf{% RONS GL(n)}.

The infimum is attained and the unique minimizer can be characterized, as shown by C. M. Petty
[37] (see also A. Giannopoulos, M. Papadimitrakis [19]). In fact, K minimizes the isoperimetric
ratio within its affine equivalence class if and only if the suitably normalized area measure of
K is isotropic (as defined below). As a simple consequence, the regular simplex minimizes the
isoperimetric ratio within the class of simplices. Since the new functional ‘ir’ is affine invari-
ant and upper semi-continuous, it attains its maximum on the space of convex bodies. In the
Euclidean plane, W. Gustin [28] showed that ir(K) < ir(T?) with equality if and only if K is
a triangle; here T denotes a regular triangle circumscribed about B2. An extension of such a
result to higher dimensions turned out to be a formidable problem which resisted its solution
until K. M. Ball [1, 2] established reverse forms of the isoperimetric inequality. To state one of
his main results, note that

nn/2(n + 1)(n+1)/2
n!

V(T = and S(T") =nV(TT),

where 7™ is a regular simplex in R" circumscribed about B".

Theorem A (K. M. Ball) For any convex body K in R", there exists some ® € GL(n) such that

It was proved by F. Barthe [5] that equality holds in Theorem A only if K is a simplex.

The main objective of this paper is to establish a stability version of the reverse isoperimetric
inequality. Following [16, 17, 18], we define an affine invariant distance of convex bodies K and
M based on the volume difference. For this, let o« = V(K)~'/", 3 = V(M)~/", and then define

Svol (K, M) := min {V (®(aK)A(x + fM)) : & € SL(n),z € R"}.

We observe that d,,(+, ) induces a metric on the affine equivalence classes of convex bodies.

A crucial tool in geometric analysis, and in particular in the proof of the reverse isoperimetric
inequality by K. M. Ball, is the John ellipsoid of a convex body K in R". This is the unique
ellipsoid of maximal volume contained in K. Obviously, there is an affine image of /', whose
John ellipsoid is the Euclidean unit ball B™. Below (see (2) and (3)), we list some properties
of the John ellipsoid. For thorough discussions of the properties of the John ellipsoid, and of
convex bodies in general, see K. M. Ball [3], P. M. Gruber [24] or R. Schneider [38].



Theorem 1.1 Let K be a convex body in R", n > 3, whose John ellipsoid is a Euclidean ball,
andlete € [0,1). If Sy (K, T") > ¢, then

S(E)" oy S
vy = T e

where one may choose v = n=2°0",

Considering a convex body K which is obtained from 7™ by cutting off regular simplices of
height ¢ at the vertices of 7™ and slabs of width "1 parallel to the facets of 7", one can see that
the stability order (the exponent of <) in Theorem 1.1 must be at least 1.

In the plane, we obtain a result of optimal stability order.

Theorem 1.2 Let K be a convex body in R?, whose John ellipsoid is a Euclidean ball, and let
e €0,1). If by (K, T™) > ¢, then

where one may choose y = 2719372,

Theorems 1.1 and 1.2 immediately imply that if K is a convex body in R" and 9,0 (K, T") >
e for some ¢ € [0,1), then ir(K) < (1 — ~&?) ir(T™), with ~ as in these theorem and with &*
replaced by € for n = 2.

Another affine invariant distance between convex bodies is the Banach-Mazur distance
dpm (K, M), of convex bodies K and M, which is defined by

pm(K, M) :=Inmin{f\>1: K —x C (M —y) C \(K — z) for ® € GL(n),z,y € R"}.

Again, dpum(-,-) induces a metric on the affine equivalence classes of convex bodies. The two
metrics are related to each other. It is not difficult to see that d,, < 2em” Opm (see Section 8).

1
In the reverse direction, we have dgy < v 07

vol?

Section 5]), and the exponent % cannot be replaced by anything larger than
from the example of a ball from which a cap is cut off.

where v depends on the dimension n (see [12,

2
57 as can be seen

Theorem 1.3 Let K be a convex body in R™ whose John ellipsoid is a Euclidean ball, and let
€ € [O, 1) IféBM(K, Tn) > ¢, then

S(K)" maxfany S(TT)"
Wﬁ(l—% { })W’

where one may choose vy = n=2°",

Cutting off regular simplices of edge length ¢ at the corners of 7", we see that the error in
Theorem 1.3 can be of order "1,

In the plane, the aforementioned approach due to W. Gustin can be used to establish a stability
result of optimal order.



Theorem 1.4 Let K be a convex body in R?, and let ¢ € [0,1). If dpm (K, T?) > ¢, then
ir(K) < (1 —~e)ir(T?),
where we can choose v = 273372,

Since 0y < 2¢n” d8M, Theorem 1.4 implies for a convex body K in R? and € € [0, 1) that
if 8,01(K,T?%) > ¢, then ir(K) < (1 — ~e) ir(T?), where we can choose v = (2¢) %372 Ina
different way and with a slightly smaller constant -, this is also implied by Theorem 1.2.

As mentioned before, the proof of the reverse isoperimetric inequality by K. M. Ball [1, 2]
is based on a volume estimate for convex bodies whose John ellipsoid is the unit ball B". Let
S™~1 denote the Euclidean unit sphere. According to a classical theorem of F. John [29] (see also
K. M. Ball [3]), B" is the ellipsoid of maximal volume inside a convex body K if and only if
B"™ C K and there exist uy, ..., u; € S" ' NOK and ¢y, ..., c; > 0 such that

k
Z ciu; @ u; = Id,, (2)
i=1

k

> e =0, 3)

i=1

where Id,, denotes the n x n identity matrix and 0K is the boundary of K.
Following E. Lutwak, D. Yang, G. Zhang [35], let us call a Borel measure ;4 on the unit
sphere S™~! isotropic if

/ u® udp(u) = 1d,.
Sn—1

(All measures in the following are supposed to be Borel measures.) In this case, equating traces
of both sides we obtain that
u(5"Y) = n. )

If, in addition, u is centred, that is to say, if

[ wdntuy o
Snfl

then the origin 0 is an interior point of the convex hull of the support supp p of 1, and hence
Z(p) :={zr e R": (z,u) <1foru € supp u}

is a convex body.

The crucial statement leading to the reverse isoperimetric inequality is the following.

Theorem B If 1 is a centred, isotropic measure on S™"™', then

VI(Z(p) <V(TT). (5)
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Equality holds if and only if Z (1) is a regular simplex circumscribed about B".

For a discrete measure pi, the inequality (5) is due to K. M. Ball [1, 2]. The equality case
was clarified by F. Barthe [5]. The case of an arbitrary centred, isotropic measure was treated
by F. Barthe [6] and E. Lutwak, D. Yang, G. Zhang [36], where [36] also characterized the
equality case. The measures on S™"~! which have an isotropic linear image are characterized by
K. J. Boroczky, E. Lutwak, D. Yang and G. Zhang [13], building on work of E. A. Carlen, and
D. Cordero-Erausquin [14], J. Bennett, A. Carbery, M. Christ and T. Tao [10] and B. Klartag [32].
We note that isotropic measures on R" play a central role in the KLS conjecture by R. Kannan,
L. Lovéasz and M. Simonovits [30]; see, for instance, F. Barthe and D. Cordero-Erausquin [7],
O. Guedon and E. Milman [27] and B. Klartag [31].

To state a stability version of Theorem B, we define the “spherical” Hausdorff distance of
compact sets X, Y C S™~! by the formula

zeX yeY yeY zeX

dp(X,Y) := min {max min Z(z, y), max min A(:U,y)} ,

where /() denotes the geodesic distance of x, y on S*~1. In addition, for z € S"~!, we write
d[x] to denote the Dirac measure on S™ ! supported on {z}, thatis, if A C S"~! is a measurable
set, then §[z](A) = 1 if x € A and zero otherwise. If S is a regular simplex circumscribed about

B™ with contact points vy, . .., v, € S"!, then we set
" n
= g Olv;].

For the total mass of y1g we obtain ys(S™ ') = n as for y in (4).

Theorem 1.5 Let 11 be a centred, isotropic measure on S™ ', n > 3, and let € € [0,1). If
V(Z() > (1— )V(T™),

then there exists a regular simplex S circumscribed about B"™ such that

S (supp pu, supp pug) < ve'/4,

where one may choose v = n™",

Each of the corresponding n + 1 spherical balls of radius n%"c!/4 has pi-measure of order

Tt O(e'/%), and hence the Kantorovich-Monge-Rubinstein (or the Wasserstein distance) of

from j1s is O(c'/*) where the implied constant in O(-) depends only on n (see Section 10).

Again we obtain a result of optimal order for n = 2.
Theorem 1.6 Let 11 be a centred, isotropic measure on S*. If
V(Z(1) = (1 - 2)V(T?)
fore €0, 1), then there exists a regular triangle S circumscribed about B? such that

Op(Supp fu, supp pus) < 32€.



We note that the proof of Theorem B is based on the rank one case of the geometric
Brascamp-Lieb inequality. While we do not actually use the Brascamp-Lieb inequality, an es-
sential tool in our approach is the proof provided by F. Barthe [4], which is based on mass
transportation. Therefore, it is instructive to review the argument from [4], which is done in
Section 2. At the end of that section, we outline the arguments leading to Theorem 1.1, Theorem
1.3 and Theorem 1.5 and roughly describe the structure of the paper.

2 A brief review of the Brascamp-Lieb inequality

The rank one geometric Brascamp-Lieb inequality, identified by K. Ball [1] as an essential case
of the rank one Brascamp-Lieb inequality, due to H. J. Brascamp, E. H. Lieb [11], reads as

follows. If uy, ..., u, € S™ ! are distinct unit vectors and cy, . .., ¢, > 0 satisfy
k
Z ciu; @ u; = Id,,
i=1
and fi, ..., fi are non-negative measurable functions on R, then

/ nﬁfi«x,uw dr < H ([s)" ©

According to F. Barthe [5], if equality holds in (6) and none of the functions f; is identically

zero or a scaled version of a Gaussian, then £k = n and uq, . . . , u,, is an orthonormal basis of R".
Conversely, equality holds in (6) if each f; is a scaled version of the same centered Gaussian, or
if Kk =nand uq,...,u, form an orthonormal basis.

A thorough discussion of the rank one Brascamp-Lieb inequality can be found in E. Carlen,
D. Cordero-Erausquin [14]. The higher rank case, due to E. H. Lieb [33], is reproved and further
explored by F. Barthe [5] (including a discussion of the equality case), and is again carefully anal-
ysed by J. Bennett, T. Carbery, M. Christ, T. Tao [10]. In particular, see F. Barthe, D. Cordero-
Erausquin, M. Ledoux, B. Maurey [8] for an enlightening review of the relevant literature and an
approach via Markov semigroups in a quite general framework.

F. Barthe [4, 5] provides a concise proof of (6) based on mass transportation (see also
K. M. Ball [3]). We sketch the main ideas of this approach, since this will be the starting point
for subsequent refinements.

We assume that each of the functions f; is a positive and continuous probability density. Let
g(t) = e~™ be the Gaussian density. For i = 1,...,k, we consider the transportation map

T; : R — R satisfying
t Ti(t)
/ fi(s)ds = / g(s) ds.

It is easy to see that 7; is bijective, differentiable and

fit) = g(T(t)) - T;(1),  teR. (7



To these transportation maps, we associate the transformation © : R” — R"™ with

2: n
sz uw uiv JZE]R,

which satisfies
E T uz, ui X u;.

In this case, dO is positive definite and @ : R® — R" is injective (see [4]). We will need the
following two estimates due to K. M. Ball [1].

(i) For any tq,...,t; > 0, we have

k k
det <Z ticiu; & Uz) > H tflu
=1 i=1

(see also Lemma 4.1 below).

(i) If 2 = 32F, cibu; for 6y, ..., 6 € R, then
k
2] <) el )
=1

Therefore, using first (7), and then (i) and (ii), we obtain

/ nilifi«um)w: L (ﬁg (s )> (ﬁT(<H>)) "

k k
< / (H e7rc¢T¢(<u¢,:B>)2> det (Z Clﬂ/(<ul,l’>) w; @ uz) dx

=1 =

g/ e IO@I et (40(z)) dx

§/ P gy — 1.

We observe that (i) shows that the optimal constant in the geometric Brascamp-Lieb inequal-
ity is 1. The stability version of (i) (with v; = ,/c;u;), Lemma 4.3, is an essential tool in proving
a stability version of the Brascamp-Lieb inequality leading to Theorem 1.5.

Let us briefly discuss how K. M. Ball [1] used the Brascamp-Lieb inequality to prove the dis-
crete version of Theorem B, since this type of argument is hidden in the proof of Proposition 7.1



which is crucial for our approach. First, R" is embedded into R"!, and we write e,,,; to denote
the unit vector in R"*! orthogonal to R™. Let supp ut = {uy, ..., us}, let ¢; = u({u;}), and let

. [ n [ 1 n :
W = — n—Hui—i- n—|—16"+165 fori=1,...,k.

The conditions that 4 is isotropic and its centroid is the origin ensure that

k
Zéﬂll X ﬂ, = Idn+17 where 61 = TLTH C; fori = ]_, ceey k.
i=1
Now the Brascamp-Lieb inequality is applied to the system ., ..., U, c1, . . ., Cx, Where each
fi is the exponential density, that is, f;(t) = e " if ¢ > 0, and f;(¢) = 0 otherwise. For the
open convex cone C' = {y € R"" : (y,@;) >0, i = 1,...,k}, the formulas (33) and (34) in
Section 7 yield

/RnH Hfz((y,ftz))é’ dy = /Cexp <— Zéi@, ﬂz>> dy =V (Z(u))V(T™) .

Since the Brascamp-Lieb inequality implies that this expression is at most 1, we conclude Theo-
rem B.

Equality in Theorem B leads to equality in the Brascamp-Lieb inequality, and hence k£ = n+1
and 1y, . .., 1,,; form an orthonormal basis in R"*!, In turn, u, ..., u,, are the vertices of a
regular simplex.

To obtain a stability version of Theorem B, we need a stability version of the Brascamp-Lieb
inequality in the special case we use. For example, we strengthen (i) in Section 4, and estimate
derivatives of the corresponding transportation map in Section 6. The estimates in Section 6 are
very specific for our particular choice o the functions f;, and no method is known to the authors
that could lead to a stability version of the Brascamp-Lieb inequality (6) in general.

The overall structure of the paper is as follows. Sections 3, 4 and 5 provide various important
analytic and geometric estimates concerning John’s theorem, related to discrete, isotropic mea-
sures and geometric stability results for polytopes close to a regular simplex. In Section 6, we
provide auxiliary estimates for the transportation map between the exponential and the Gaussian
distribution. After these preparations, we establish in Section 7 the core statement, Proposi-
tion 7.1, on which Theorem 1.1, Theorem 1.3 and Theorem 1.5 are based. Then, Section 8
contains the proofs of Theorem 1.1 and Theorem 1.3. In Section 9, we derive Theoren 1.4,
whose proof is independent of the remaining results. Then, we extend Proposition 7.1 to gen-
eral centred, isotropic measures in Section 10, which proves Theorem 1.5. Finally, we establish
Theorem 1.6 in Section 11 and Theorem 1.2 in Section 12.

3 Some consequences of John’s condition

According to the classical theorem of F. John [29], if B" is the ellipsoid of maximal volume
inside a convex body K, then there exist u1,...,u; € S" ' NOK and ¢, ..., c; > 0 such that
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(2) and (3) are satisfied. Equating the traces on the two sides of (2) we obtain

k
i=1

In addition, we may assume that
n+1<k<n(n+3)/2,

where the lower bound on k& follows from (2) and (3) and the upper bound on £ is implied by
the proof of John’s theorem [29] (see also P. M. Gruber, F. E. Schuster [25]). We note that (2) is
equivalent to

k
Zci@:,ui)Q = [|z||* forall z € R™.
i=1

Applying this to z = u; shows that
¢ <1 fori=1,... k. (10)

In this section, we discuss properties that only use (2). This can be written as

k

Zvi ® v; = Id,, forv; := \/c; u;. (1D

i=1

We note that (11) is equivalent to

k
> (w,0)? =|jz|* forallz € R". (12)
i=1
Given vy, ...,vp € R"and Ay, ..., A\p > 0, we consider the n x k matrix

U .= [\/ )\1 Viyeo oy V )\kvk]
According to the Cauchy-Binet formula, we have
k
det (Z Ait; @ vi> =det (UUT) = > det[y/A, v, /N0 (13)
i=1 1<i1<....<in <k

It has been pointed out by K. M. Ball that the special case A\; = ... = A\ = 1 yields the following
estimate.

Lemma 3.1 Ifvy,..., v € R" satisfy Zle v;Qu; = Id,, thenthereexistl < i1 < ... <1, <k

such that
A
det[vy,, ..., v, ]* > < ) .
n
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For non-zero vectors v and w, we write Z(v,w) to denote their angle, that is, the geodesic
distance of the unit vectors ||v||~'v and ||w||~'w on the unit sphere.

Lemma 3.2 Let vy, ... v, € R\ {0} satisfy Zle v; @ v; = Id,, and let 0 < n < 1/(3Vk).
Assume for any i € {1, ... k} that ||v;|| < northere is some j € {1,... ,n} with Z(v;,v;) <.
Then there exists an orthonormal basis wy, . . . , w,, such that /(v;, w;) < 3WVknfori=1,...,n.

Proof: Fori = 1,...,n, let u; = v;/||v;||. We partition the index set {1,...,k} into sets
Vo, Vi,...,V,suchthati € V; fori = 1,...,n, and in such a way that if j € V), then ||v;]| <7,
and if j € V), for some i € {1,...,n}, then Z(v;,v;) < 1. Observe that V) is possibly empty.
For:=1,...,n, (12) yields

1= [Ju* > Z(uz',vj)2 > Z |lv;]|? cos® n,

JEV; JEV;
and hence
> lvil? < (cosn) ™. (14)
JEV:

Fori = 1,...,n, let w; € S™ ! be orthogonal to v;, j € {1,...,n} \ {i}, and satisfy
(W;,v;) > 0. In addition, let o; < 7/2 be the minimal angle of w; and any v; with j € V;, and
hence

(Wi, v;) < oy + 1. (15)

To bound «; from above, fori = 1,. .., n, we observe that |(w;, v;)| < nif j € V. Moreover,
if j € V,, then (w;,v;) < cosay, and if j € V, forsome [ € {1,...,n} \ {3}, then Z(w;,v;) >
(m/2) — n and therefore (w;,v;) < sinn. Using these facts and (14), we deduce

> i, ) < (k—n)n* < (k —n)sin®7y

2
v CoS* 7

SN2 o2 2 < S forl € {1 :
D (i vy)” <sin?n ) ol < orle{l,....n}\ {i},

: ; cos?n’
JEV JEVI
2
. cos? o
> (i, v5)? < cos®ag v < —5—,
; ; cos?n
JEV; JEV;

where the sum for V) is set to be zero if V), is empty. We conclude by (12) that

(k—n)sin®*n  (n—1)sin?n  cos? q;

1= ||lw]? <
loil” < cos?2n cos?n cos?n’

and hence
sinaq; = 1 —cos® oy < 1 —cos®n+ (k— 1)sin?n = ksin?n.
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Moreover, for 7 < 1/(3v/'k), we have

sin(2vk 1) _ sin(2vEkn) _ _sin(2/3)
Vksin() ©  vEn o 23

Therefore, (15) and 1 < 1/(3V/k) yield

4(@i,vi)§ai+n§2\/gn+n<3\/%n, 1=1,...,n.

In particular, this shows that vy, ..., v, are linearly independent.

We define w; = wy, and for i = 2,...,n we let w; be the unit vector in lin {vy, ..., v;}
which is orthogonal to vy,...,v;_1 and satisfies (w;,v;) > 0. Writing L; for the orthogonal
complement of lin {v;,...,v;_1}, we have w; € L;. Since w; is parallel to the orthogonal
projection of v; to L;, we conclude that Z(w;, v;) < Z(w;, v;) < 3Vkn. O

4 Analytic stability estimates

To calculate the optimal constant in the Brascamp-Lieb inequality (6), the following statement
has been proved by K. M. Ball [1], see F. Barthe [5, Proposition 9] for a simple argument.

Lemma 4.1 (K. M. Ball) If vy, ..., v, € R" satisfy S0, v; @ v; = Id, and if ty,... t; > 0,

then
k k
det <Z tﬂ)z‘ (24 Ui) Z H tZ{Ui’vi).
=1 =1

Remark E. Lutwak, D. Yang, G. Zhang [35] generalized Lemma 4.1 for any isotropic measure
w1 on S~ 1 and for any positive continuous function ¢ on supp y in the form

det </Sn_1 t(u) u® udu(u)> > exp (/Sn_l log t(u) du(U)> :

where equality holds if and only if the quantity ¢(vy) - - - t(v,,) is constant for linearly independent
V1, ...,U, € supp u. Actually Lemma 4.1 is the case when supp u = {uq,...,ux}, and v; =
VG u; for ¢; = p1({u;}). We do not need this generalized version in the present paper.

In Lemma 4.3, we prove a (stronger) stability version of Lemma 4.1 by replacing the
arithmetic-geometric mean inequality with the following stability version in the argument of

[5].

Lemma 4.2 If v is a probability measure and f is a measurable function which is bounded from
above and from below by positive constants, then

2

-1 dv.

[fdv 1/ Vi

exp{flnfdu}_1+§ \/m

12



Proof: We note that for a,b > 0, we have

b 1 2
a+ ~Vavb =3 (Va-vb) . (16)
Here we choose b = 1 and f
a= ffdu'

Integrating (16) with this choice of a, b against v, we get

oSV 1 / 1|

[ fdv ffdy

Since 1 —z > 1 — \/z for z € [0, 1], we obtain

(JVFdv)”

ST fav >5/ NI
(/\/?dy)QzeXp{/lnfdy},

and hence we conclude Lemma 4.2 by observing that (d/c) —1 > 1 —(¢/d) forany ¢,d > 0. O

1—-

Jensen’s inequality yields

Lemmad.3 Letk >n+1,t,...,tp >0, and let vy, ..., v, € R" satisfy Zle v; @ v; = Id,,.

Then
k k
det (Z tivi X Ui) Z 0" H t§vi7vi>
i=1 i=1
where
1 . L 2
+2 Z e[vw 7U'n,] ( tO ) )
1<ii<..<in<k
to = Z til tzn det[vil,...,vin]Q.
1<i1 <...<in <k
Proof: In this argument, [ always denotes some subset of {1, ..., k} of cardinality n. For I =
{i1,...,i,}, we define

d[ = det[vil,...,vin]Q and t[ = til tz

n*
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From Zle v; ® v; = Id,, and (13) we obtain

k
Zdl =1 and det (Z ti’Ui &® Ui> = Zt[d[,
1 i=1 1

where the summations extend over all sets I C {1,...,k} of cardinality n. It follows that the
discrete measure £ on the n element subsets of {1, ..., k} defined by ;({1}) = d is a probability
measure. According to Lemma 4.2, writing ¢y = /) _, t;d;, we deduce that

k 1 /—t 2
i=1 I I 0 T

The factor ¢; is used in [, t}l’ exactly ), ,., d; times. Moreover, (13) applied to the vectors

Viye oo 5 Ui—1,Vi415-..,Vk 1mphes
Z d[:Zd]— Z d[: 1 —det (ZUj@Uj)
I iel I 1,igl i
=1—det (Id, — v; ® v;) = (v;, vy).
Substituting this into (17) yields the lemma. O

To estimate from below (in the proof of Lemma 7.2) the factor #* in Lemma 4.3, we use the
following observation.

Lemma 4.4 Ifa,b,x > 0, then

2 p2)2
2 2 (a® — %)
Proof: Differentiating f(z) = (za — 1)? 4+ (xb — 1)? for fixed a, b with respect to = shows that
f attains its minimum at x = % Thus
_ b)2 ((l2 - b2)2 (a2 - b2)2
—1)2 b—1)% > (a = > .
(wa =1+ (b =) 2 e = @ ) (a 1 0F = 2@ 1 B

S Polytopes close to a regular simplex
We prove two quantitative statements about the approximation of a polytope by a simplex. First,

we provide a lemma which will allow us to put a given orthonormal basis into a more convenient
position by a small rotation.
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Lemma 5.1 Lete € S"7 %, and let T € (0,1/(2n)). If wy, . .., w, is an orthonormal basis of R™
such that ]

! < (e, w;) <

— =T < (e, w;) < —=

NG S

then there exists an orthonormal basis Wy, . . ., W, such that (e, W;) = \/Lﬁ and /(w;, ;) < nt
fori=1,....n

+ 7 fori=1,....n,

Proof: Fori =1,...,n,let

1
(e,w;) = — + «, and hence |a;| < 7.

NG

It follows that

n 1 2 2 n
1= |le|]* = <—+ai) <1l+— o; | +n7?,

which in turn yields that

<e,zn:wi> \/_—Fz:ozZ > \/n —

since cos(nt) < 1 — gn7? for 7 € (0,1/(2n)) and n > 2. In particular, Z(e, Y1 | w;) < nr.
We define w; = @(wz) fori =1,...,n, where ® is the orthogonal transformation, which rotates
> i, w; into y/ne via their acute angle in the two-dimensional linear subspace L containing
them, and fixing all vectors in L. Then (e, w;) = (®~1(e), w;) = \/ﬁfl<2?:1 wj,w;) =1/y/n
fort=1,...,n. O

For convex bodies containing the origin in their interiors, we introduce a very specific dis-
tance from regular simplices whose centroid is the origin. If K is a convex body with 0 € int K,
then we define

d(K) :=Inmin{\>1: sT" C K C AsT" fors > 0and ® € O(n)}.
Clearly, d(K) = 0 if and only if K is a regular simplex with centroid at the origin.

Lemma 5.2 Let Z be a polytope, and let S be a regular simplex circumscribed about B™. As-
sume that the facets of Z and S touch B"™ at uy,...,u; and wy,...,w,y1, respectively. Fix
n € (0,1/(9n)). If for any i € {1,... k} there exists some j € {1,...,n + 1} such that
Z(ui, wi) <, then

(1—=3nn)S C Z C (14 3nn)S.

In particular, d(Z) < 9nn.

15



Proof: The lemma follows from the following statement: If Z(u;,w;) < 7 then the tangent plane
to B™ at u; contains —A\ws, where

(1 —=3nn)n <X < (1+ 3nn)n. (18)

In order to prove this assertion, we observe that A"t = cos Z(—ws,uq). Moreover, we write
Z(—wy,u1) = a+ B, where v = Z(—ws, wy) with cosa = 1/n and tana < n, and |B] < n.
Since

1
|cos 8 — 1 —tanasin 3] < §n2+nn: (n+1)n

and
1 1
|cos f — tanasin §| > 1 — 5772 —nn=1—(n+n/2)n> 5
we obtain
A\ -1
’1—— = 1—<M) :|1—(cosﬁ—tanasinﬂ)_l‘§2(n+1)77,
n COS (v

which in turn yields (18).

To conclude the proof, we first observe that the vertices of S are —nwy, ..., —nw,.;. To
verify the left inclusion, let H~(u) := {z € R" : (z,u) < 1} for u € S"~!. We have shown that
—A\w; € H (uy) fori € {2,...,k}, and trivially this also holds for : = 1. Hence, (18) yields
that (1 —3nn)(—nw;) C H~ (uy), and therefore (1 —3nn)S C H~(uy). Repeating this argument
for uy, . .., u, we obtain (1 — rnn)S C Z.

As to the right inclusion, let tv € Z, where v € S" ! and t > 0. We can assume that v is in
the positive hull of —ws, ..., —w,1. Then there is some i € {1, ..., k} such that Z(u;, w;) < n.
By (18), for j = 2,...,n + 1 there are ¢; € (0, (1 + 3nn)n) such that (u;, —t;w;) = 1. There
are a,, > 0 such that tv = as(—ws) + ... + apy1(—wsy1), and therefore

n+1 n+1
s

u;, tv) = ui,tfloc'—t»w» = iy (19)
) = 3 oty () = 3

In particular, this shows that (u;,v) > 0. Since tv € Z, it is sufficient to prove that tv €
(14 3nn)S in the case where (u;, tv) = 1. But then (19) implies that

n+1
tv = Z %(—tjwj) € conv{—tows, ..., —tpi1wpi1} C (1 + 3nn)S,
j=2

and hence Z C (1+ 3nn)S. O

Lemma 5.3 Let Z be a polytope, and let S be a regular simplex circumscribed about B™. Fix
v =9-2""2n2"2 and n € (0,v7'). Assume that the facets of Z and S touch B" at uy, . . ., uy
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and wy, . .., wy1, respectively. If Z(u;,w;) < nfori=1,...,n+1and Z(ug,w;) > ~n for
i1=1,...,n+1, then

Proof: Let H" := {x € R" : (x,u;) > 1}, and let F; be the facet of S touching B™ at w;. We
may assume that Z(uy, wy) < Z(ug, w;) for i > 2, and hence (uy, w;) > 0.
First, we estimate V(S N H™"). Let z be the closest point of H N F} to w;. In particular, we

have ||z — w || < 1, while F| contains the (n — 1)-ball of radius /2% > 1+ < centered at w.

n—1
Thus F; N H" contains a regular (n — 1)-simplex of height %, and in turn a congruent copy of
# F. In addition, the distance of w; from any Fj, ¢ > 2,is 1 + %, thus the distance of z from
F; is at least

|z —wi| + (1/n) n on?’

where h = n + 1 is the height of S. We deduce that H* N S contains a point whose distance

from F is at least 55 sin Z(uy, w; ), and hence
1 nt A(U,k wl) A(uk wl)
HY > — — 2 V(S) = —_2V(9).
visnanz (5m) v = S ves)
Let Z, be the simplex whose facets touch B™ at uy, ..., u, ;. Hence

(1 —=3nn)S C Zy C (1+3nn)S
by Lemma 5.2. It follows that
V(ZoNnHY) >V(SNHY) — (V(S) = V((1-3nn)S))
Z(ug, wy)

2
Since (1 + 3nn)™ < 1+ 6n°n, we have
V(Z) < V(%) = V(Zy N HY)

((1+3nn)S) — (% - 3n277) V(S)

2n+1n2n

1%
< <1 +9n*n — M) V(9)
(
O
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6 The transportation map

The argument of F. Barthe [4] uses the transportation map ¢ : (0,00) — R between the expo-
nential and the standard Gaussian density, and hence

. t 1 et)
1—e' = / e *ds = —/ e % ds. (20)
0 ﬁ —00

Clearly, ¢ is strictly increasing and ¢(In 2) = 0.
Lemma 6.1 Ift > 4, then /2 < p(t) < V1, # < ¢/(t) < land ¢"(t) < — 5575

Proof: The definition (20) of ¢ can be written in the form

1 /°° 2
el = — e % ds. 2D
VT Sy

According to the Gordon-Mill inequality (or Mill’s ratio, see R. D. Gordon [20], L. Diimbgen
[15, (2)], or by a straightforward direct argument), if z > 0, then

2
e * 2 e

22 1 e 2

. < — “ds < )
2/mz 22241 ﬁ/ ©w 2\/mz
We deduce from the left-hand side of (22) that

1 o 2
et < — / e ¥ ds,
VNG

which in turn implies p(4) > v/2 by (21). From (21) and the right-hand side of (22), we deduce

that p(t) < v/t fort > 4.
We turn to the estimation of derivatives. Differentiating (21), we get

2

(22)

el = —— T2 t>0. (23)

In particular, this shows that ¢/(t) > 0 for ¢ > 0. Equation (23) combined with the right-hand
side of (22) leads to
20(t)¢'(t) < 1 fort > In2. (24)

Taking the logarithm of (23), we deduce the formula

—t = —log /7 — ¢(t)> +log ¢ (1), (25)

and differentiating this implies
P(t) = @) (2t (t) — 1). (26)
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Therefore ¢”(t) < 0 follows on the one hand from ¢'(¢) > 0, and on the other hand from
(t) < 0ift < 1In2, and from (24) if ¢ > In2. Thus ¢'(t) < ¢'(In2) = /7/2 < 1 by (23) for
t>1In2.

We also estimate ¢” in terms of ¢. To this end, we use an improved version of the right-
hand side of the Gordon-Mill inequality (22) (see L. Diimbgen [15, (2)], or by a simple direct
argument); namely

e~ 222 +2

1 [ .
N 5 ds < .
\/E/ cw 2\/rz 22243’

We deduce from this and the left-hand side of (22) that if z > V2, then

z > 0.

62<1/0052d<€z2 ot
— < — eV ds< —— [1—— .
3Wrz T, 21z 422

If t > 4, then p(t) > V2, thus

1 , hel, 1 1
<Y t) = Jrer® <—(1——). 27)
300 < 7 220\ 1007
In particular, ¢'(t) > #, and combining (24) and (27) yields
(1) —1

@"(t) = ' (1) (20(t)¢'(t) — 1) < — fort > 4, (28)

dp(t)? = 12p(0)

which completes the argument. O

7 Circumscribed polytopes

F. Barthe [4] proves the Brascamp-Lieb inequality for functions in one variable in full generality.
This section is based on K. M. Ball’s [3] interpretation of F. Barthe’s argument in the special
case needed for the geometric application. Since our stability argument uses in an essential way
that the Brascamp-Lieb inequality is required only for the exponential density function, we do
not separate the statement of the Brascamp-Lieb inequality.

Proposition 7.1 is the main ingredient for the proofs of Theorem 1.1, Theorem 1.3 and The-
orem 1.5. We recall that if K is a convex body with 0 € int K, then d(K) is the minimal A such
that there exists a regular simplex S whose centroid is the origin and S C K C e*S.

In the following, we use the abbreviation N := n(n + 3)/2. In this section, we consider the
case n > 3, although (with slightly different constants) the proof extends also to the case n = 2.
In the plane, however, we can argue in a different way to obtain results of optimal order. For this
reason we defer the two-dimensional case to Section 11.

19



Proposition 7.1 Let i be a discrete, centred, isotropic measure on S™'. Let n > 3. Assume
that the cardinality of supp i is at most N + 1, and let 7 € (0, n=24"). If

V(Z(@) > (L =7)V(T"),

then there exists a regular simplex S circumscribed about B™ such that

S (supp g, supp ps) < n®" V4 and d(Z(p)) < n®onrt/4,

Before we prove Proposition 7.1, we first set up the corresponding notions following
K. M. Ball [1], [2], and then prove the preparatory statement Lemma 7.2.

Let supp p = {u1, ..., ux}, and let ¢; = p({w;}). Then Zle ciu; Qu; = 1d,,, Zle ciu; =0
and £k < N + 1.

We now embed R™ into R™ x {0} = R™"! and write ¢, for the unit vector in R"™! orthog-
onal to R". We define

/1 1
111- = - " U; + ——— €Enti1 e s" and El = nt C; forizl,...,k,
n+1 n+1 n

and hence

k
Z Ci U @ U; = Idpgq,

=1

k
> Gl = Vn+ Leg, (29)

G=n+1 (30)
2

We observe that if Z(u) is a regular simplex circumscribed about B™, then & = n + 1 and
Ty, . .., Tn4, are an orthonormal basis of R™*!,
Next we consider the open cone

C:={yeR"™: (y,4,)>0,i=1,...,k} (31)
={x4re ER"™ iz eR™, r >0, (z,u) <r/vn,i=1,... k} (32)
and the map © : C' — R""! defined by

k

O(y) == Zéi (Y, i) U,

=1

where (y, 4;) > 0 by (31). In particular, the differential of O is



We observe that dO is positive definite since ¢’ is positive and

(2,dO(y)z) = Z G ' ({y, ) (2, ;)"

It follows that © is injective.
From (32) we conclude that the section {y € C': (y,e,+1) = r} of C for r > 0 is a translate
of int((r/v/n)Z(u)). Therefore

/ e~ WVntlens) dy = / / e VLT do dr (33)
c 0 J5Z

- V(Z(M))/OOO (%)ne_ AL
=V (Z(u)V (™).

By first applying (29), then (25), and finally (30), we deduce that

/€—<y,\/n+1€n+l> dy:/exp _
C C

k

—/CeXp (Zéi(—log\/_—w((y,ﬂD)Q+10g90/(<y7ﬂi>)) dy

=1

k

iy, ﬁi>> dy (34)
1

)

n /Cexp <_ Zéis@(@’ﬁﬁ)z) le(@,fm)@ dy. (35)

For each fixed y € C, we estimate the product of the two terms in (35) after the integral sign.
To estimate the first term in (35), we apply (8) with 6; = ©((y, 1;)), and hence the definition
of © yields

exp (— Zéiso«y,a»)?) < exp (—[|©(y)|) - (36)

To estimate the second term, we apply Lemma 4.3 with v; = \/¢; 4; and t; = ¢'({y,4;)), and
write 6(y) and ty(y) to denote the corresponding 6* > 1 and t,. In particular,

1 . . . .
9(y> = 1 + 5 Z cl'l Tt Cin+1 det[“il? st 7ui7L+1]2

1<i1 <. <in+1<k

) < VA ) ) 1>2

37
to(y) G7
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and Lemma 4.3 yields

k
[I# (@) < 6(y)~" det (d0(y)). (38)
i=1
We conclude that
v 2
V(Z(pn) < (LH) / 0(y) " Le IPWI" det (dO(y)) dy (39)
T 2 c
V(T" n/2 1 (n+1)/2
< (n+1) / ol g, T (n+1) — V(. (40)
T 2 Rn+1 n'
According to Lemma 3.1, used for v; = \/¢; @, i = 1, ..., k, we may assume that
o\ !
Gy v Copr det[in, ... Tpee|? > . 41
C1 -+ Cpy det[dy Uns1) _(n—i—l) (41)
Then, in particular, the vectors 4, . .., U,+1 are linearly independent. Since each factor on the

left-hand side of (41) is at most 1 (compare (10)), the product of the remaining factors is at least

(nil)_l. For Lemma 7.2, we define

1
€= n60”7'1/4 <1 and W= W—‘Hn%’b 42)

In the following lemma, we adopt the assumptions and the notation from above.

Lemma 7.2 Let the assumptions of Proposition 7.1 be satisfied. Ifi € {1,...,k}, then¢; < w?e?
or Z(U;,u;) < we for some j € {1,...,n+1}.

Proof: If i € {1,...,n + 1}, we can choose j = i and then have Z(@;, @;) = 0. Thus it remains
to consider the cases where i € {n + 2,..., k}. For this, we proceed by contradiction and hence
assume that there is some i € {n + 2,...,k} such that ¢; > w?e? and Z(;, 4;) > we for all
j € {1,...,n+ 1}. Under this assumption, we will identify a subset = of C' with reasonably
large volume such that

O(y) > 1+ye* fory € E, (43)
where g := n =¥~ depends on n (see (50)). From this we will then deduce a contradiction.
Since 1y, . . ., U, are linearly independent, there are uniquely determined Ay, ..., A\, 1 € R
such that
fbl‘ - Al'lll + e ‘l‘ /\n+1ﬂn+1. (44)
We adjust the indices of uq, . . ., 4,11 so that

A>3 A
Since (i, en41) = 1/v/n+1forj=1,... k,wehave \; +...+ \,1; = 1, and thus we obtain
A\ > #1 Combining ¢; < 1, (41), and (44), we thus conclude that

L B B o wre? o\ )
Cy...Cphy1GC det[uz, ey Upta, Ul] > m (n n 1) > Woe™, (45)
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where we define wy := n19"73%, The inequality on the right-hand side is confirmed by an

elementary calculation, which is based on £ < N + 1 and n! > /27mn (n/e)™.
Next we construct the set = for which (43) is satisfied. The open convex cone

Cy:= e R (y,epi1) > L}
= {o (enit) > ol =

satisfies Cy C C. Infact, if y = x + re,;1 € Cy with z € R™ and r > 0, then
n
r > |2+ r? ——.
VTl -

But this is equivalent to ||z|| < r/n, which in turn implies that (z,u;) < r/\/nfori=1,... k,
hence y € C.

Writing « and 3 to denote the acute angles with cos v = (@, €,,41) = \/— j=1,...k,
and cos 3 = m,wehavea B < ZL(y,u;) <a+pforye Copandj=1,... k. Fory e Cy
and j = 1,..., k, we deduce that

n++/n 2
V=il ﬁ,

_ n—+/n
{y, a;) > ||yl NCESUESY > [yl \/—

To verify the left inequality in (46), we consider y = x + re,+1 € Cp with ||y|| = 1. Then
|z||* + 7% =1and r > n/v/n? + 1. Hence

Wi = e T e S T T e )

Since f is decreasing for r > n/+/n? + 1, the assertion follows. Similarly,

JUjy > —y [ —— V1 =12+ cg(r
and ¢ is increasing for r > n/+/n? + 1, which yields the first inequality in (47).
We also observe that the section {y € Cy : (y, en41) = t} is an (n — 1)-ball of radius ¢/n for
t > 0. Now we are ready to define

{y,45) < llyll (46)

(47)

y € Co: 203/m < (y,ensr) < 40v/mand (y,it; — i) > ¢ .
NLD
Since by assumption ||4; — Uy || > we/2, E contains a right cylinder of height 20,/n whose base
is an (n — 1)-dimensional regular simplex S, of circumradius 1/y/n. Let Sy be an n-dimensional
regular simplex whose facet is S,. Since the height of Sy is less than 2/1/n, we have

n 20y/n _10n? .
2/ V() = ) V(). (48)

V(E) >
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Using (46) and (47), we also get
4 < (y,u;) <120 fory e Zandj =1,... k. (49)

For y € =, we estimate 6(y) from below using the n-tuples (1,...,n+1)and (2,...,n+1,1)

of indices in (37) (note that in addition to (45) we also have (nil) - > wp). We deduce by first
applying (41), (45) and Lemma 4.4, secondly ¢'({y, @;)) < 1forj =1,...,k (see Lemma 6.1),
and thirdly by (y, @; — @) > <= and " (t) < —127* for 4 < t < 120 (see Lemma 6.1) that

N
L (i)~ Pl i)
W) 2 S o Ulyin)) + o (i)

S 14 Wy ) 1—690’((3;,712-)))2 e

w2w0

16 n 128

>1+ et > 14 p 8T8 A (50)

According to (49) and Lemma 6.1, if y € Zand j = 1,...,k, then ¢((y, 4;))* < 120 and
©'((y,a;)) > % It follows from (36) and (38), taking into account (30), that

e~ 19WI" det (dO(y)) > exp (— Z &e((y, ﬁj>)2> H ' ({y. 4;))"

> 6—120(n+1) 33—(1’L+l) > 6_124(n+1) > 6—18671,' (51)

Recall that g = n~ 1"~ and observe that (50) implies that

4
_ Yo& 1
1—0(y)~"' > T e > 5%54. (52)

Now we use (48), (51) and (52), and argue as for (39) and (40), to obtain

vize) < Y1) / e PWIR dot (d0(y)) dy
C

m 2

e [ (=00 1O det (de(y) dy

m 2




5n2V (T
S V(Tn) 1 o n?m (n+1)70€4e—186n

nzm?2

< (1= 2Ot V() = (1— 1) V(T™),

where we used (42) in the last step. This contradicts the assumptions of Proposition 7.1, and
hence proves Lemma 7.2. O

Proof of Proposition 7.1: Fori = 1,...,k, we define 9; := /Gu; € R"*, hence ||7;]| =
/¢;. Lemma 7.2 ensures that the assumptions for the application of Lemma 3.2 are satisfied for
oy,..., 0 in R™ with n = we < 1/(3v/k). Hence, by Lemma 3.2 there is an orthonormal
basis @1, . . ., Wny1 of R™*! such that Z(#;, ;) < 3Vkwe fori = 1,...,n + 1. Writing a; =
Z(epsr, w;) and B = ZL(enq1, Vi) = L(€ng1, U;), We get

B 1
€n , Wi) —
< +1 > \/n——l—l

Since 3vkwe < 1/(2(n + 1)), we can apply Lemma 5.1, which yields the existence of an
orthonormal basis wy, ..., W, in R™ such that (e, 1,w;) = 1/v/n+1 and Z(w;,w;) <
(n + 1)3v/kwe. But then

= |cosay — cos Bi] < |a; — B < Z(w;, ;) < 3V kwe.

(W, ;) < (g, w;) + Z(wi, 6s,) < 3(n + 1)Vkwe + 3Vkwe < 8n’we.

Fori=1,...,n+ 1, we define

n+1 o [ 1 c R
Wi = —W; — 4 6n )
n n+1 "

and hence there exists a regular simplex .S whose facets touch B" at wy, . .., w, 1. Subsequently,
we use that

1 3
1—§t2 < cost < 1—§t2 fort € (0,1).

Sinee +1 11
1 — (wy, u;) = t (1 — (wy, 1)) < t —(8n?we)? < 48n*w?e?,
n n 2
we deduce that /(w;, u;) < 12n’we fori=1,...,n + 1.

We observe that y = 9 - 2"72p?"2 from Lemma 5.3 and w = (3°n°4""'n?")~! satisfy

1 , 1
T < 12yn“w < o (53)

and claim that ) .
S (supp p, supp pug) < 12yn*we < onE = %nGO"TW‘. (54)
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Let us suppose that contrary to (54), there exists some i € {n + 2, ..., k} such that Z(u;, w;) >
12ynwe for j = 1,...,n + 1. To apply Lemma 5.3, we note that ¢ < 1 and (53) yield that
12n%we < 471, Since € = n7r /4 > n?9"r we conclude from (53) that

V(Z(w) < (1 - %) V() < (1 - 1)V(T™).

This contradicts the condition on p, and hence implies (54). Finally, combining (54) and
Lemma 5.2 yields d(Z(p)) < nSnr1/4. O

8 Proofs of Theorems 1.1 and 1.3

We assume that B" is the ellipsoid of maximal volume inside the convex body K in R", and
hence there exist uq,...,u; € S 'MNOK and ¢y, ...,c; > 0 such that Zle cu; ® u; = 1d,
and Zle c;u; = o, where

n+1<k<n(n+3)/2. (55)

We write Z to denote the circumscribed polytope whose faces touch B™ at uq, . . ., uy; namely,
Z={xeR": (zu) <1,i=1,... k}.

For any © € 0K, let u, denote an exterior unit normal at x, which is unique (almost every-
where) and measurable with respect to the (n — 1)-dimensional Hausdorff-measure on 0K. We
note that

V(K) :/ (@) s SE) (56)
oK n n
It follows from (56) that
S(K)" n n nyr oy _ ()"
Lemma 8.1 Lete € (0,1).
() Ifd(Z) < e/(4n?) and dpm(K, T™) > €, then
S(K)™ 1 e\ S(T™)"
V(K)n1 = (1 e (E) ) V(Tn)r—1
() Ifd(Z) < g/(4n?) and 8, (K, T™) > ¢, then
S(K)™ L€ NUABK
V(K)t = ( §> V (Tt
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Proof: Let y := 1/(4n?). Then we may assume that
eI CcZcCcerErTn. (58)

Hence, we have 4nye < 2.
For the proof of (ii), we first choose A > 0 such that V' (7™) = V(A\Z). Then (58) yields that
e 7® < X\ < €. Therefore, again by (58) we obtain

V((\Z)AT™)

™ <
6V01(Z7T ) = V(Tn>

< AeE _ \Ne—mE

< 2nyeA"e™ < 2nyee®™ < 2nye(1 + 4ne)
<dnve <¢g/2,

where we used that e < 1+ 2¢for 0 <t <1/2.
Letn,v > 0 satisfy V(K) = V(nZ) and V(Z) = (1+v)V(K), and hence p = (1 +v)~1/",
It follows from dy0 (K, T™) > ¢ that

V((nZ2)AK) < 2V(Z\K)

£/2 < 0ya(Z,K) < V) S < 2v,
and hence (57) yields that
S(K)" n o 1 _ s@m)n
Wgn V(IK)=n"(1+v)" V(Z)<(1+v) O
eN~—t S(Tm)" e\ ST
<(1+3) vy = (-5) v

We turn to (i). It follows from dgp\ (K, 7™) > € and (58) that there is a vertex v of 7™ such
that
e’ v ¢ int K.

In particular, there exists a half-space H' containing ¢’ v, and disjoint from int K. Since
p = e7*~%v is the centroid of the simplex p + \T™ C e 771" for A := e™7* — €7°7%, aresult by
B. Griinbaum [26, p. 1260, (ii1)] yields that

n

VIH* O (p+ AT™) > % V.

Therefore, using (58) we deduce that

vz \K) = v e > Sy = ST )
> 5 () v,
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Hence, by (57) we get
1 se\n n n
VIE) + 5 (1) v <viz) < v,

and therefore

V(K) < (1 L (§>") V(™).

€ (&

Now the proof can be completed as in the previous case by using once again (57). O

Proofs of Theorems 1.1 and 1.3: 1f d(Z) > ¢/(4n?), then Proposition 7.1 can be applied by
(55), and implies that

V(Z) < (1 =474 n 2V (T™) < (1 — n~ B0V (T™).

In turn, we conclude Theorem 1.3 and Theorem 1.1 by (57).
If d(Z) < e/(4n?), then Lemma 8.1 (i) yields Theorem 1.3, and Lemma 8.1 (ii) implies
Theorem 1.1. O

For the sake of completeness we provide the following fact, which is mentioned in the intro-
duction.

Lemma 8.2 Let K, M be convex bodies in R". Then 0y (K, M) < 26”253M(K , M) and
dpm (K, M) < v by (K, M )%, where vy is a constant which depends on n.

Proof: The assertions follow from [12, Section 5]. Since the first assertion is used explicitly (in
the introduction) and the definitions of the distances used here differ from those given in [12],
we outline the short argument for the first inequality.

Since 4,1 and dg) are translation invariant in both arguments, we can assume that 0 € K, M
and K C M C ¢’ K, where § := gy, and therefore V(K) < V(M) < eV (K) or

675K0 C Mo C 66[(0,
where Ky := V(K)~# K and M, := V(M) M. But then

Thus we conclude that

V(KoAMy) < V((e°Ko) \ Ko) + V((e°Mo) \ My) <2 (e’ — 1) < 25¢€°.

Now the assertion follows since dgy (K, M) < n?. O
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9 Proof of Theorem 1.4

Throughout the proof, we have n = 2. The argument is based on [28], which we briefly recall.

For a convex body K in R™ and u € S"!, we write H~ (K, u) for the supporting half-space of

K which contains K and has exterior unit normal u, and H (K, u) for its bounding hyperplane.
For the proof, we assume that

ir(K) > (1 — ¢)ir(T?). (59)

Let IR(K) := S(K)?/V(K) for a convex body K in R?. Then ir(7?) = IR(7?). Let T}
be a triangle of maximal area contained in K. We can assume that 7} is a regular triangle
centred at 0 with height 1, whose vertices are denoted by p;, po, p3. Let uy, us, us € S* denote
the exterior normal vectors of the edges of 77. Then the lines H (71, —u;), i = 1,2,3, pass
through the vertices of 77 and bound a regular triangle 75 of height 2 which contains /. Choose
¢; € KN H(K,u;) and let z; € [0, 1] be the distance of ¢; from H (T3, u;) fori = 1,2, 3. Then

3 3
Ty C Py := conv{py, p2, ps, @1, G2, g3} € K C [V H (K, u;) 0 [ VH (K, —u;) = P, C Ta.

i=1 i=1
Let x := (21 + 22 + x3)/3 € [0, 1]. Elementary geometric arguments show (see [28]) that

and therefore
. S(Py)? z(l—x)\. o

From (59) we conclude that (1 + 3z)'z(1 — z) < ¢, and thus z(1 — z) < 4e.
If v < 1/2,then x < 8 and thus z; < 24e fori =1,2,3. If £ > 1/2, thenin factx > 1— 8¢
and hence x; > 1 — 24¢ for ¢« = 1, 2, 3. In the first case, we conclude that

Ty C K CPy,C (14 72)77,

which implies
Spm (K, T?) < In(1 4 72¢) < T2¢.

In the second case, we find a regular triangle 7" centred at 0 and homothetic to 75 such that
T C K C T, whose edges have distance at least (2/3) — 24(2/3)v/3 ¢ from 0. This shows that

1
Sa(K. T2 <In ([ —— ) <72
v )_n(1—24\/§5>_ c

for ¢ < 1/72. This completes the proof in both cases.
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10 Isotropic measures: proof of Theorem 1.5

Our proof of Theorem 1.5 will be based on Proposition 7.1. For this reason we have to ensure
that we can switch from a centred, isotropic measure ;2 on S™~! to a discrete, centred, isotropic
measure on S™~! with support contained in the support of ; and whose support has bounded
cardinality. That this can indeed be achieved is shown by the following lemma.

Recall that N = n(n + 3)/2.

Lemma 10.1 Let ;i be a centred, isotropic measure on S"~ 1. Then there exists a discrete, cen-
tred, isotropic measure piy on S™ ' such that supp jy C supp p and the cardinality of supp jig is
at most N + 1.

Proof: We consider the map F : supp  — RY given by F(u) := (u ® u, u). Here we interpret
u ® u as the upper triangular part (including the main diagonal) of the symmetric matrix v ® u,
and thus we identify the vectors (u ® u, u) with vectors in R™. Since supp p C S™ ! is compact
and F is continuous, the image set F'(supp 1) C RY is compact as well. Then also the convex
hull of this image set, conv(F (supp 1)) C R” is compact. The probability measure ji := y/n
has the same support as p and satisfies

(/yn—1u®“dﬂ(“>v/5n_ludﬁ(U)) = (%1%0) eRY.

Let D, be a decomposition of S"~! into finitely many disjoint Borel sets of diameter at most 1/1,
l € N. Weput D :={A €D, : ANsupp ii # 0}. For A € Dj, we fix some va € A N supp fi.

Then
=Y A(A)d[val

AeD;

is a discrete probability measure on S™~! and supp ji; C supp ji. Moreover, ji; — i in the weak
topology as [ — oco. Therefore, we conclude that

S () (va @ va,va) = (/Snlv@wdﬁl(v),/sn1vdﬂl(v)> R (%Idn,o)

AeD;

in RY as [ — oo. This shows that
1
(—Idn, 0) € cl conv(F(supp 1)) = conv(F'(supp fi)).
n

By Carathéodory’s theorem (see, e.g., [38, Theorem 1.1.4]) there exist & < N + 1 vectors
Uy, ..., U €supp i C S™! such that

(%mn, 0> e comv(F({ur, .., u}).
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that is, there exist ay, ..., ar > 0 with a3 + ... + a; = 1 such that

k k
1
n
i=1 =1

This shows that with ¢; := nq; fort = 1, ..., k the measure

satisfies all requirements. O

For the proof of Theorem 1.5 we can assume that ¢ € (0, n~265"), since otherwise nnei >

n3" and the assertion is trivial. For the given measure p there is a measure jio as described in
Lemma 10.1. Combined with the assumption of Theorem 1.5 this yields that

(1 =e)V(T") < V(Z(n)) < V(Z(po))-

Hence we can apply Proposition 7.1 and obtain a regular simplex S circumscribed about B" with
contact points wy, . .., w,,1 and such that

31 (Supp po, supp pis) < e, (60)

If supp o = supp [, the proof is finished. Hence, let u* € supp(ji) \ supp(io) and let Z* be the
polytope circumscribed to B™ with contact points supp(zo) U {u*}. Then we have

(1 =V (1) < V(Z(n) < V(Z7).

Let ) := n®ei < =1 = (9. 27F2272)~1 From (60) we conclude that we can assume that
supp o = {u1,...,ur}, k > n+ 1, with Z(u;, w;) < nfori =1,...,n+ 1. Assume that
Z(u*,w;) > ynfori=1,... ,n+ 1. Then Lemma 5.3 implies that
A -ev(r) <v(z) < (1- v
— — In+2p2n )
and therefore yn < 2"+ 2p?"¢, which contradicts e < 1. This shows that /(u*, w;) < ~yn for some

i € {1,...,n+1}. Since yn < n™e1, it finally follows that 84 (supp i, supp ps) < n®met,
which proves the theorem. O

Finally, we justify the remark following Theorem 1.5 by establishing the next lemma. For

w € S"1and e > 0, we consider U(w,e) := {u € S" ! : Z(u,w) < €}, that is, the closed
spherical (geodesic) ball with centre w and radius €.
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Lemma 10.2 Let S be a regular simplex circumscribed about B™ with contact points
Wi, ..., Wny1 € S"L, let j1 be a centred, isotropic Borel measure on S™~!, and let ¢ € (0,1/2).

If 611 (supp pu, supp ps) < €, then

n ‘§2n5, i=1,....n+1.
n+1

\uw(wi, ) -

Proof: Let the map G : S"! — S™ be defined by

[ n [ 1
G(U) = ntl U+ n——i—len+1.

Since ( is centred and isotropic, we obtain

n+1

Idniy = G(u) ® G(u) dp(u).

n Sn—1

By assumption, supp 1 C |, U (w;, €) and the union is disjoint. For u € U (w;,¢) and z € S™,
using the triangle and the Cauchy-Schwarz inequality as well as the fact that G(u), G(w;) and x
are unit vectors, we get

(G (), )G () = (G(wi), 2) Gwi) | < 2[|G(w) = Glwi)|| < 2[lu —wl| < 2e.

Hence, for any x € S,

po 2 imwwi,ewm 7)Glwy)
= [ (G, 60 due) - iuw(wi,sw(wi), 2)G(uwr)
<t Z [ G026 ~ (G, )G duto
L Z Loe % (U (wn, €)= 2(n + 1)e.

i=1

The special choice © = G(w;), for some ¢ € {1,...,n + 1}, together with the fact that
G(wy),...,G(wyy1) is an orthonormal basis of R"*! then yields

1= ((n+ 1)/n)u(U(wi, )] < 2(n+1)e,

from which the assertion follows. O
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Let the assumptions of Lemma 10.2 be satisfied. Furthermore, let f : S"~! — R be lipschitz
with lipschitz constant || f|| .. Here the definition of the lipschitz constant is based on the geodesic
distance on S, Since p and pg have the same total measure n, we can replace f by f — f(e;)
in the following estimation, and therefore we can assume that the sup norm || f||, of f satisfies
[ flloc < 4[[.f[|z- Thus, we get

/Snlfdu—/snlfdus

n+1 n+1

< ; /U(W) \f — flw;)|dp + ; | (w:)]2ne

< |[fllzen + [ fllc2n(n + 1)e

< 13n2€HfHL,

which yields the asserted bound for the Wasserstein distance dy (1, f1s).

11 Proof of Theorem 1.6

We state the next lemma in general dimensions although we will need it only in the plane.

Lemma 11.1 Let ;1 be a centred and isotropic Borel measure on S™'. Let v € S"! be given.
Then there is some u* € supp p such that (u*,v) > 1/n.

Proof: We fix v € S"~! and define S, := {u € 5" : (u,v) >0} and S_ := S"~ '\ S,. Since
w is centred and (u,v) > —1, we have

_/S+<u,U> dpu(u) :/ (u,v) du(u) > —pu(S-),

and hence

u(s.) > /S (u, ) dya(u). (61)

Choose u* € supp p such that (u*,v) = max{(u,v) : v € supp x}. The maximum exists as
supp p is compact. It is also clear (since i is centred) that u* € S,. Then (61) implies

[ duta) < o) [ ) duta) < (0 ohu(s). (62)
St

St

In addition, we have
/ (00 du(w) < / o) dutw) = - / (0,0) du(u) = / () du)

< (u*, 0)(Sy). (63)
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Using (62), (63), the isotropy of x and (S™™1) = n, we conclude

t= [ ot = [ )+ [ o ano)

< (u, 0)u(S) + ' o)) = (u' whu(S™1) = nlu®,v),

which yields the assertion. O

We say that a non-empty closed subset X of S is proper, if for any v € S, there exists some
u € X such that (v, u) > % A closed set X C S! is proper if and only if the angle of two
consecutive points of X is at most 27/3.

For a non-empty closed set X C S, let dy(X) be the minimum of §5 (X, o) where o runs
through the set of contact points of the regular triangles circumscribed about B2. If X is proper,

then clearly dy(X) < /3.

Lemma 11.2 If X C S is proper, and dy(X) > n for ) € (0, %], then there exist u,v € X such
thatn < Z(u,v) < 2?“ —n.

Proof: We prove the lemma by contradiction, thus we suppose that for any u, v € X, we have
either Z(u,v) <nor Z(u,v) >3 —n>% > 2. (64)

The set X has at least four elements since X is proper and dy(X) > 0. Thus there exist u}, v] €
X such that 0 < Z(uj,v}) < 7. We deduce from (64) that Z(u},v]) < 7. According to
(64), there exists v; € X such that Z(u},v;) is maximal under the conditions Z(u},v1) < 7
and v} € pos{u},v;}. Similarly, there exists u; € X such that Z(uy,v;) is maximal under the
conditions Z(uy,v1) < nand u) € pos{uy, v, }.

As X is proper, there exists us € X such that linv; separates u; and uy, and Z(ug, vq) is
minimal under the conditions /(ug,v;) < %’r and that lin v; separates u; and uy. We actually
have

% S Q?W - 77 < 4(”27”1) S 2?71—7 (65)

since £ (ug,v1) < n would imply n < Z(ug,u1) < 27, contradicting (64). In particular, we have
X Npos{us,v1} = {ug,v;}. Similarly, there exists v3 € X such that lin u; separates v; and vs,
and

I<T < Llogwm) < F, (66)

moreover X N pos{vs, u;} = {vs,u;}. It also follows from (65) and (66) that u, and v3 are not
opposite, and the shorter arc of S* connecting them does not contain «; and v;.

Finally, let vy € X Npos{us, v3} maximize Z(vq, uz) under the condition £ (vq, uz) < 7, and
let ug € X N pos{ug, v3} maximize Z(us, v3) under the condition Z(us, v3) < 1. Here possibly
vy = Uy or ug = vs. If there were w € X Nint pos{vy, us}, then Z(w, v3) > 7 and Z(w,uy) > 5
would follow from (64), what is absurd. Therefore X N pos{us, v2} = {us, v}, and

NIE

S 2{ —n< 4('&3,1}2) S 2‘?71-7 (67)
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Now the arcs S* N pos{uy, v}, ST N pos{us,v3} and S* N pos{us,v,} cover S! by their
constructions, thus
Z(uy,v9) + L(ug,v3) + ZL(ug,vy) > 2m. (68)

In particular, one of Z(uy, v2), Z(u2,v3) and Z(us, vy) is larger than 27 by (68).

If Z(uy,vy) > %’r, then we define p; € S! in such a way that —p; is the midpoint of the arc
St npos{uy, ve}. Fori = 1,2, let p; € S* satisfy Z(p;, ps) = 2 in such a way that p; and p,
lie on the same side of lin p3 where u; and v, lie, respectively. In particular, p;, po and p3 are
vertices of a regular triangle. We deduce using (66) and (67) that

p1,p2 € pos{ur,va} and Z(uy,v2) < 3 + 2. (69)

For i = 1,2, it follows from (69) that if w € S* N pos{u;,v;}, then Z(w, p;) < n. In addition,
(66) and (67) yield that if w € S* N pos{us, v3}, then Z(w,p;) < 71, and hence dy(X) < 7,
which is a contradiction. If Z(uy,v3) > %’r or Z(us,vy) > %’r in (68), then similar arguments
lead to a contradiction, which completes the proof of Lemma 11.2. O

In the following, we use the fact (T) that for 0 < 5 < o < 27/3 the function

F(t) = tan (O‘T“) + tan (M) __ 2sin(%9)

2 cos (22 + cos (t + 252)

is increasing for 0 < ¢ < min{f, & — a}.

After these preparations, we turn to the proof of Theorem 1.6.
Proof: 1t is sufficient to prove that if n € (0, §], and do(supp i) > 7, then

vz < (1- 1) v, (70)
Indeed, if do(supp 1) > 32, then 8¢ < 7/6, since dy(supp p) < 27/3 by Lemma 11.1. But
then the preceding claim can be applied with ) = 8¢.

Now we turn to the proof of the claim. It follows from Lemma 11.2 that there exist uy, uy €

supp 4 such that
n < Z(uy,ug) < A —. (71)

Since by Lemma 11.1 supp u is proper, there exist us, ..., u; € suppu, k& > 4, such that
Uy, .., u (in this order) lie on S* and form a proper set. Then

V(Z(p) <2 itan (%) ,
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where oy = Z(ug,uy) € [7],%“ —nl, oy = ZL(uj, wipr) with ugyq = ug and 0 < oy < 27/3.
Applying repeatedly (T) to pairs of the angles ao, . . ., ay, it follows that

A

QZtan( >—2(tan<();>+tan (W)%—Qtam(%))
2(tan< >+tan<§—7)+2\/_>
§2(tan<> (———)+2\/_>

§2( V3 +2f) (1-%)6\/5

which proves the assertion. O

12 Proof of Theorem 1.2

Let K be a convex body in R? whose John ellipsoid is the Euclidean unit ball. As before (at
the beginning of Section 8), the contact points of K and B? define a discrete, centred, isotropic
measure ¢ and a polytope Z = Z(u) which contains K.

If V(Z) > (1 —e)V(T?) with some ¢ € (0, 1), then Theorem 1.6 implies the existence of
a regular simplex S circumscribed about B? such that § g (supp u, supp ps) < 32 . Choosing
n =32 ¢ < 1/18, that is with ¢ < 1/(18 - 32), we see from Lemma 5.2 that d(Z) < 18 - 32 ¢.
Hence, if d(Z) > 18 -32 e and ¢ < 1/(18 - 32), then V(Z) < (1 — ¢)V(T?), and therefore
S(K)?/V(K) < (1 — €)ir(T?). On the other hand, if d(Z) < 18 - 32 € and d,,(K,T?) >
16 - 18 - 32 ¢, then Lemma 8.1 (ii) implies that

S(K)?
V(K)

1
< (1 -3 16 - 18 - 32 5) ir(T?) = (1 — 16 - 32 €)ir(T?),

provided that 16 - 18 - 32 ¢ < 1. This implies the assertion of the theorem. O
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