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Abstract

The reverse isoperimetric inequality, due to Keith Ball, states that if K is an n-
dimensional convex body, then there is an affine image K̃ of K for which S(K̃)n/V (K̃)n−1

is bounded from above by the corresponding expression for a regular n-dimensional sim-
plex, where S and V denote the surface area and volume functional. It was shown by Franck
Barthe that the upper bound is attained only if K is a simplex. The discussion of the equality
case is based on the equality case in the geometric form of the Brascamp-Lieb inequality.
The present paper establishes stability versions of the reverse isoperimetric inequality and of
the corresponding inequality for isotropic measures.
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1 Introduction
The isoperimetric inequality states that a Euclidean ball has smallest surface area among convex
bodies (compact convex sets with non-empty interiors) of given volume in Euclidean space Rn

with scalar product 〈· , ·〉 and norm ‖ · ‖, and that Euclidean balls are the only minimizers. Let
Bn be the Euclidean unit ball centred at the origin. Denoting by S(K) the surface area and by
V (K) the volume of a convex body K in Rn, the isoperimetric inequality can be expressed by
the inequality

S(Bn)n

V (Bn)n−1
≤ S(K)n

V (K)n−1
, (1)

where equality holds if and only if K is a Euclidean ball. Since surface area and volume are
continuous functionals (with respect to the Hausdorff metric) and the extremal bodies of the
inequality (1) are precisely the Euclidean balls, the following question arises naturally. Suppose
that a convex body K in Rn satisfies

S(K)n

V (K)n−1
≤ (1 + ε)

S(Bn)n

V (Bn)n−1

for some ε ≥ 0. Does it follow that K is ε-close to a Euclidean ball? An answer to this question
requires that the distance dist(K) of K from a Euclidean ball is measured in a suitable way. For
instance, the distance function dist(·) should have the same scaling and motion invariance as the
isoperimetric problem. The problem can also be stated in the following form. Let again K be a
convex body in Rn and assume that dist(K) ≥ ε for some ε ≥ 0. Does it follow that

S(K)n

V (K)n−1
≥ (1 + f(ε))

S(Bn)n

V (Bn)n−1
,

where f : [0,∞) → [0,∞) is a continuous and increasing function with f(0) = 0? In other
words, is it true that

S(K)n

V (K)n−1
≥ (1 + f(dist(K)))

S(Bn)n

V (Bn)n−1

with an explicitly given function f? Any such inequality provides a strengthening of the classical
isoperimetric inequality and is called a stability result related to (1).

Although results of this type can be traced back to work of Minkowski and Bonnesen, a
systematic exploration is much more recent. Introductory surveys on geometric stability results
were given by H. Groemer [21, 22], an up-to-date coverage of various aspects (including appli-
cations) of the topic is provided throughout R. Schneider’s book [38]. More specifically, sta-
bility results for the isoperimetric problem (based on the Hausdorff distance) have been found,
for instance, by Groemer and Schneider [23]. As a recent breakthrough, N. Fusco, F. Maggi,
A. Pratelli [18] obtained an optimal stability version of the isoperimetric inequality in terms of
the volume difference, and A. Figalli, F. Maggi, A. Pratelli [16, 17] even extended the result to
the Brunn-Minkowski inequality.

The ratio S(K)n/V (K)n−1 is unbounded from above, if K ranges over all convex bodies. In
fact, simple examples show that K can have arbitrarily small volume and still surface area equal
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to a prescribed positive value. In order to avoid this type of situation, it is a well known strategy
(see, for instance, F. Behrend [9]) to consider the affine invariant

ir(K) := inf

{
S(ΦK)n

V (ΦK)n−1
: Φ ∈ GL(n)

}
.

The infimum is attained and the unique minimizer can be characterized, as shown by C. M. Petty
[37] (see also A. Giannopoulos, M. Papadimitrakis [19]). In fact, K minimizes the isoperimetric
ratio within its affine equivalence class if and only if the suitably normalized area measure of
K is isotropic (as defined below). As a simple consequence, the regular simplex minimizes the
isoperimetric ratio within the class of simplices. Since the new functional ‘ir’ is affine invari-
ant and upper semi-continuous, it attains its maximum on the space of convex bodies. In the
Euclidean plane, W. Gustin [28] showed that ir(K) ≤ ir(T 2) with equality if and only if K is
a triangle; here T 2 denotes a regular triangle circumscribed about B2. An extension of such a
result to higher dimensions turned out to be a formidable problem which resisted its solution
until K. M. Ball [1, 2] established reverse forms of the isoperimetric inequality. To state one of
his main results, note that

V (T n) =
nn/2(n+ 1)(n+1)/2

n!
and S(T n) = nV (T n),

where T n is a regular simplex in Rn circumscribed about Bn.

Theorem A (K. M. Ball) For any convex body K in Rn, there exists some Φ ∈ GL(n) such that

S(ΦK)n

V (ΦK)n−1
≤ S(T n)n

V (T n)n−1
.

It was proved by F. Barthe [5] that equality holds in Theorem A only if K is a simplex.
The main objective of this paper is to establish a stability version of the reverse isoperimetric

inequality. Following [16, 17, 18], we define an affine invariant distance of convex bodies K and
M based on the volume difference. For this, let α = V (K)−1/n, β = V (M)−1/n, and then define

δvol(K,M) := min {V (Φ(αK)∆(x+ βM)) : Φ ∈ SL(n), x ∈ Rn} .

We observe that δvol(·, ·) induces a metric on the affine equivalence classes of convex bodies.
A crucial tool in geometric analysis, and in particular in the proof of the reverse isoperimetric

inequality by K. M. Ball, is the John ellipsoid of a convex body K in Rn. This is the unique
ellipsoid of maximal volume contained in K. Obviously, there is an affine image of K, whose
John ellipsoid is the Euclidean unit ball Bn. Below (see (2) and (3)), we list some properties
of the John ellipsoid. For thorough discussions of the properties of the John ellipsoid, and of
convex bodies in general, see K. M. Ball [3], P. M. Gruber [24] or R. Schneider [38].
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Theorem 1.1 Let K be a convex body in Rn, n ≥ 3, whose John ellipsoid is a Euclidean ball,
and let ε ∈ [0, 1). If δvol(K,T

n) ≥ ε, then

S(K)n

V (K)n−1
≤ (1− γε4)

S(T n)n

V (T n)n−1
,

where one may choose γ = n−250n.

Considering a convex body K which is obtained from T n by cutting off regular simplices of
height ε at the vertices of T n and slabs of width εn−1 parallel to the facets of T n, one can see that
the stability order (the exponent of ε) in Theorem 1.1 must be at least 1.

In the plane, we obtain a result of optimal stability order.

Theorem 1.2 Let K be a convex body in R2, whose John ellipsoid is a Euclidean ball, and let
ε ∈ [0, 1). If δvol(K,T

n) ≥ ε, then

S(K)2

V (K)
≤ (1− γε)S(T 2)2

V (T 2)
,

where one may choose γ = 2−103−2.

Theorems 1.1 and 1.2 immediately imply that if K is a convex body in Rn and δvol(K,T
n) ≥

ε for some ε ∈ [0, 1), then ir(K) ≤ (1 − γε4) ir(T n), with γ as in these theorem and with ε4

replaced by ε for n = 2.
Another affine invariant distance between convex bodies is the Banach-Mazur distance

δBM(K,M), of convex bodies K and M , which is defined by

δBM(K,M) := ln min{λ ≥ 1 : K − x ⊂ Φ(M − y) ⊂ λ(K − x) for Φ ∈ GL(n), x, y ∈ Rn}.

Again, δBM(·, ·) induces a metric on the affine equivalence classes of convex bodies. The two
metrics are related to each other. It is not difficult to see that δvol ≤ 2en

2
δBM (see Section 8).

In the reverse direction, we have δBM ≤ γ δ
1
n
vol, where γ depends on the dimension n (see [12,

Section 5]), and the exponent 1
n

cannot be replaced by anything larger than 2
n+1

as can be seen
from the example of a ball from which a cap is cut off.

Theorem 1.3 Let K be a convex body in Rn whose John ellipsoid is a Euclidean ball, and let
ε ∈ [0, 1). If δBM(K,T n) ≥ ε, then

S(K)n

V (K)n−1
≤ (1− γεmax{4,n})

S(T n)n

V (T n)n−1
,

where one may choose γ = n−250n.

Cutting off regular simplices of edge length ε at the corners of T n, we see that the error in
Theorem 1.3 can be of order εn−1.

In the plane, the aforementioned approach due to W. Gustin can be used to establish a stability
result of optimal order.
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Theorem 1.4 Let K be a convex body in R2, and let ε ∈ [0, 1). If δBM(K,T 2) ≥ ε, then

ir(K) ≤ (1− γε) ir(T 2),

where we can choose γ = 2−33−2.

Since δvol ≤ 2en
2
δBM, Theorem 1.4 implies for a convex body K in R2 and ε ∈ [0, 1) that

if δvol(K,T
2) ≥ ε, then ir(K) ≤ (1 − γε) ir(T 2), where we can choose γ = (2e)−43−2. In a

different way and with a slightly smaller constant γ, this is also implied by Theorem 1.2.

As mentioned before, the proof of the reverse isoperimetric inequality by K. M. Ball [1, 2]
is based on a volume estimate for convex bodies whose John ellipsoid is the unit ball Bn. Let
Sn−1 denote the Euclidean unit sphere. According to a classical theorem of F. John [29] (see also
K. M. Ball [3]), Bn is the ellipsoid of maximal volume inside a convex body K if and only if
Bn ⊂ K and there exist u1, . . . , uk ∈ Sn−1 ∩ ∂K and c1, . . . , ck > 0 such that

k∑
i=1

ciui ⊗ ui = Idn, (2)

k∑
i=1

ciui = 0, (3)

where Idn denotes the n× n identity matrix and ∂K is the boundary of K.
Following E. Lutwak, D. Yang, G. Zhang [35], let us call a Borel measure µ on the unit

sphere Sn−1 isotropic if ∫
Sn−1

u⊗ u dµ(u) = Idn.

(All measures in the following are supposed to be Borel measures.) In this case, equating traces
of both sides we obtain that

µ(Sn−1) = n. (4)

If, in addition, µ is centred, that is to say, if∫
Sn−1

u dµ(u) = 0,

then the origin 0 is an interior point of the convex hull of the support suppµ of µ, and hence

Z(µ) := {x ∈ Rn : 〈x, u〉 ≤ 1 for u ∈ suppµ}

is a convex body.

The crucial statement leading to the reverse isoperimetric inequality is the following.

Theorem B If µ is a centred, isotropic measure on Sn−1, then

V (Z(µ)) ≤ V (T n). (5)
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Equality holds if and only if Z(µ) is a regular simplex circumscribed about Bn.

For a discrete measure µ, the inequality (5) is due to K. M. Ball [1, 2]. The equality case
was clarified by F. Barthe [5]. The case of an arbitrary centred, isotropic measure was treated
by F. Barthe [6] and E. Lutwak, D. Yang, G. Zhang [36], where [36] also characterized the
equality case. The measures on Sn−1 which have an isotropic linear image are characterized by
K. J. Böröczky, E. Lutwak, D. Yang and G. Zhang [13], building on work of E. A. Carlen, and
D. Cordero-Erausquin [14], J. Bennett, A. Carbery, M. Christ and T. Tao [10] and B. Klartag [32].
We note that isotropic measures on Rn play a central role in the KLS conjecture by R. Kannan,
L. Lovász and M. Simonovits [30]; see, for instance, F. Barthe and D. Cordero-Erausquin [7],
O. Guedon and E. Milman [27] and B. Klartag [31].

To state a stability version of Theorem B, we define the “spherical” Hausdorff distance of
compact sets X, Y ⊂ Sn−1 by the formula

δH(X, Y ) := min

{
max
x∈X

min
y∈Y

∠(x, y),max
y∈Y

min
x∈X

∠(x, y)

}
,

where ∠(x, y) denotes the geodesic distance of x, y on Sn−1. In addition, for x ∈ Sn−1, we write
δ[x] to denote the Dirac measure on Sn−1 supported on {x}, that is, if A ⊂ Sn−1 is a measurable
set, then δ[x](A) = 1 if x ∈ A and zero otherwise. If S is a regular simplex circumscribed about
Bn with contact points v0, . . . , vn ∈ Sn−1, then we set

µS =
n∑
i=0

n

n+ 1
δ[vi].

For the total mass of µS we obtain µS(Sn−1) = n as for µ in (4).

Theorem 1.5 Let µ be a centred, isotropic measure on Sn−1, n ≥ 3, and let ε ∈ [0, 1). If

V (Z(µ)) ≥ (1− ε)V (T n),

then there exists a regular simplex S circumscribed about Bn such that

δH(suppµ, suppµS) ≤ γε1/4,

where one may choose γ = n70n.

Each of the corresponding n + 1 spherical balls of radius n65nε1/4 has µ-measure of order
n
n+1

+O(ε1/4), and hence the Kantorovich-Monge-Rubinstein (or the Wasserstein distance) of µ
from µS is O(ε1/4) where the implied constant in O(·) depends only on n (see Section 10).

Again we obtain a result of optimal order for n = 2.

Theorem 1.6 Let µ be a centred, isotropic measure on S1. If

V (Z(µ)) ≥ (1− ε)V (T 2)

for ε ∈ [0, 1), then there exists a regular triangle S circumscribed about B2 such that

δH(suppµ, suppµS) ≤ 32ε.
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We note that the proof of Theorem B is based on the rank one case of the geometric
Brascamp-Lieb inequality. While we do not actually use the Brascamp-Lieb inequality, an es-
sential tool in our approach is the proof provided by F. Barthe [4], which is based on mass
transportation. Therefore, it is instructive to review the argument from [4], which is done in
Section 2. At the end of that section, we outline the arguments leading to Theorem 1.1, Theorem
1.3 and Theorem 1.5 and roughly describe the structure of the paper.

2 A brief review of the Brascamp-Lieb inequality
The rank one geometric Brascamp-Lieb inequality, identified by K. Ball [1] as an essential case
of the rank one Brascamp-Lieb inequality, due to H. J. Brascamp, E. H. Lieb [11], reads as
follows. If u1, . . . , uk ∈ Sn−1 are distinct unit vectors and c1, . . . , ck > 0 satisfy

k∑
i=1

ciui ⊗ ui = Idn,

and f1, . . . , fk are non-negative measurable functions on R, then∫
Rn

k∏
i=1

fi(〈x, ui〉)ci dx ≤
k∏
i=1

(∫
R
fi

)ci
. (6)

According to F. Barthe [5], if equality holds in (6) and none of the functions fi is identically
zero or a scaled version of a Gaussian, then k = n and u1, . . . , un is an orthonormal basis of Rn.
Conversely, equality holds in (6) if each fi is a scaled version of the same centered Gaussian, or
if k = n and u1, . . . , un form an orthonormal basis.

A thorough discussion of the rank one Brascamp-Lieb inequality can be found in E. Carlen,
D. Cordero-Erausquin [14]. The higher rank case, due to E. H. Lieb [33], is reproved and further
explored by F. Barthe [5] (including a discussion of the equality case), and is again carefully anal-
ysed by J. Bennett, T. Carbery, M. Christ, T. Tao [10]. In particular, see F. Barthe, D. Cordero-
Erausquin, M. Ledoux, B. Maurey [8] for an enlightening review of the relevant literature and an
approach via Markov semigroups in a quite general framework.

F. Barthe [4, 5] provides a concise proof of (6) based on mass transportation (see also
K. M. Ball [3]). We sketch the main ideas of this approach, since this will be the starting point
for subsequent refinements.

We assume that each of the functions fi is a positive and continuous probability density. Let
g(t) = e−πt

2 be the Gaussian density. For i = 1, . . . , k, we consider the transportation map
Ti : R→ R satisfying ∫ t

−∞
fi(s) ds =

∫ Ti(t)

−∞
g(s) ds.

It is easy to see that Ti is bijective, differentiable and

fi(t) = g(Ti(t)) · T ′i (t), t ∈ R. (7)
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To these transportation maps, we associate the transformation Θ : Rn → Rn with

Θ(x) :=
k∑
i=1

ciTi(〈ui, x〉)ui, x ∈ Rn,

which satisfies

dΘ(x) =
k∑
i=1

ciT
′
i (〈ui, x〉)ui ⊗ ui.

In this case, dΘ is positive definite and Θ : Rn → Rn is injective (see [4]). We will need the
following two estimates due to K. M. Ball [1].

(i) For any t1, . . . , tk > 0, we have

det

(
k∑
i=1

ticiui ⊗ ui

)
≥

k∏
i=1

tcii ;

(see also Lemma 4.1 below).

(ii) If z =
∑k

i=1 ciθiui for θ1, . . . , θk ∈ R, then

‖z‖2 ≤
k∑
i=1

ciθ
2
i . (8)

Therefore, using first (7), and then (i) and (ii), we obtain∫
Rn

k∏
i=1

fi(〈ui, x〉)ci dx =

∫
Rn

(
k∏
i=1

g(Ti(〈ui, x〉))ci
)(

k∏
i=1

T ′i (〈ui, x〉)ci
)
dx

≤
∫
Rn

(
k∏
i=1

e−πciTi(〈ui,x〉)
2

)
det

(
k∑
i=1

ciT
′
i (〈ui, x〉)ui ⊗ ui

)
dx

≤
∫
Rn

e−π‖Θ(x)‖2 det (dΘ(x)) dx

≤
∫
Rn

e−π‖y‖
2

dy = 1.

We observe that (i) shows that the optimal constant in the geometric Brascamp-Lieb inequal-
ity is 1. The stability version of (i) (with vi =

√
ciui), Lemma 4.3, is an essential tool in proving

a stability version of the Brascamp-Lieb inequality leading to Theorem 1.5.
Let us briefly discuss how K. M. Ball [1] used the Brascamp-Lieb inequality to prove the dis-

crete version of Theorem B, since this type of argument is hidden in the proof of Proposition 7.1
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which is crucial for our approach. First, Rn is embedded into Rn+1, and we write en+1 to denote
the unit vector in Rn+1 orthogonal to Rn. Let suppµ = {u1, . . . , uk}, let ci = µ({ui}), and let

ũi := −
√

n

n+ 1
ui +

√
1

n+ 1
en+1 ∈ Sn for i = 1, . . . , k.

The conditions that µ is isotropic and its centroid is the origin ensure that

k∑
i=1

c̃iũi ⊗ ũi = Idn+1, where c̃i := n+1
n
ci for i = 1, . . . , k.

Now the Brascamp-Lieb inequality is applied to the system ũ1, . . . , ũk, c̃1, . . . , c̃k, where each
fi is the exponential density, that is, fi(t) = e−t if t ≥ 0, and fi(t) = 0 otherwise. For the
open convex cone C = {y ∈ Rn+1 : 〈y, ũi〉 > 0, i = 1, . . . , k}, the formulas (33) and (34) in
Section 7 yield∫

Rn+1

k∏
i=1

fi(〈y, ũi〉)c̃i dy =

∫
C

exp

(
−

k∑
i=1

c̃i〈y, ũi〉

)
dy = V (Z(µ))V (T n)−1.

Since the Brascamp-Lieb inequality implies that this expression is at most 1, we conclude Theo-
rem B.

Equality in Theorem B leads to equality in the Brascamp-Lieb inequality, and hence k = n+1
and ũ1, . . . , ũn+1 form an orthonormal basis in Rn+1. In turn, u1, . . . , un+1 are the vertices of a
regular simplex.

To obtain a stability version of Theorem B, we need a stability version of the Brascamp-Lieb
inequality in the special case we use. For example, we strengthen (i) in Section 4, and estimate
derivatives of the corresponding transportation map in Section 6. The estimates in Section 6 are
very specific for our particular choice o the functions fi, and no method is known to the authors
that could lead to a stability version of the Brascamp-Lieb inequality (6) in general.

The overall structure of the paper is as follows. Sections 3, 4 and 5 provide various important
analytic and geometric estimates concerning John’s theorem, related to discrete, isotropic mea-
sures and geometric stability results for polytopes close to a regular simplex. In Section 6, we
provide auxiliary estimates for the transportation map between the exponential and the Gaussian
distribution. After these preparations, we establish in Section 7 the core statement, Proposi-
tion 7.1, on which Theorem 1.1, Theorem 1.3 and Theorem 1.5 are based. Then, Section 8
contains the proofs of Theorem 1.1 and Theorem 1.3. In Section 9, we derive Theoren 1.4,
whose proof is independent of the remaining results. Then, we extend Proposition 7.1 to gen-
eral centred, isotropic measures in Section 10, which proves Theorem 1.5. Finally, we establish
Theorem 1.6 in Section 11 and Theorem 1.2 in Section 12.

3 Some consequences of John’s condition
According to the classical theorem of F. John [29], if Bn is the ellipsoid of maximal volume
inside a convex body K, then there exist u1, . . . , uk ∈ Sn−1 ∩ ∂K and c1, . . . , ck > 0 such that
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(2) and (3) are satisfied. Equating the traces on the two sides of (2) we obtain

k∑
i=1

ci = n. (9)

In addition, we may assume that

n+ 1 ≤ k ≤ n(n+ 3)/2,

where the lower bound on k follows from (2) and (3) and the upper bound on k is implied by
the proof of John’s theorem [29] (see also P. M. Gruber, F. E. Schuster [25]). We note that (2) is
equivalent to

k∑
i=1

ci〈x, ui〉2 = ‖x‖2 for all x ∈ Rn.

Applying this to x = ui shows that

ci ≤ 1 for i = 1, . . . , k. (10)

In this section, we discuss properties that only use (2). This can be written as

k∑
i=1

vi ⊗ vi = Idn for vi :=
√
ci ui. (11)

We note that (11) is equivalent to

k∑
i=1

〈x, vi〉2 = ‖x‖2 for all x ∈ Rn. (12)

Given v1, . . . , vk ∈ Rn and λ1, . . . , λk > 0, we consider the n× k matrix

U := [
√
λ1 v1, . . . ,

√
λk vk].

According to the Cauchy-Binet formula, we have

det

(
k∑
i=1

λivi ⊗ vi

)
= det

(
UU>

)
=

∑
1≤i1<...<in≤k

det[
√
λi1 vi1 , . . . ,

√
λin vin ]2. (13)

It has been pointed out by K. M. Ball that the special case λ1 = . . . = λk = 1 yields the following
estimate.

Lemma 3.1 If v1, . . . , vk ∈ Rn satisfy
∑k

i=1 vi⊗vi = Idn, then there exist 1 ≤ i1 < . . . < in ≤ k
such that

det[vi1 , . . . , vin ]2 ≥
(
k

n

)−1

.
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For non-zero vectors v and w, we write ∠(v, w) to denote their angle, that is, the geodesic
distance of the unit vectors ‖v‖−1v and ‖w‖−1w on the unit sphere.

Lemma 3.2 Let v1, . . . , vk ∈ Rn \ {0} satisfy
∑k

i=1 vi ⊗ vi = Idn, and let 0 < η < 1/(3
√
k).

Assume for any i ∈ {1, . . . , k} that ‖vi‖ ≤ η or there is some j ∈ {1, . . . , n} with ∠(vi, vj) ≤ η.
Then there exists an orthonormal basis w1, . . . , wn such that ∠(vi, wi) < 3

√
k η for i = 1, . . . , n.

Proof: For i = 1, . . . , n, let ui = vi/‖vi‖. We partition the index set {1, . . . , k} into sets
V0,V1, . . . ,Vn such that i ∈ Vi for i = 1, . . . , n, and in such a way that if j ∈ V0, then ‖vj‖ ≤ η,
and if j ∈ Vi for some i ∈ {1, . . . , n}, then ∠(vi, vj) ≤ η. Observe that V0 is possibly empty.
For i = 1, . . . , n, (12) yields

1 = ‖ui‖2 ≥
∑
j∈Vi

〈ui, vj〉2 ≥
∑
j∈Vi

‖vj‖2 cos2 η,

and hence ∑
j∈Vi

‖vj‖2 ≤ (cos η)−2. (14)

For i = 1, . . . , n, let w̃i ∈ Sn−1 be orthogonal to vj , j ∈ {1, . . . , n} \ {i}, and satisfy
〈w̃i, vi〉 ≥ 0. In addition, let αi ≤ π/2 be the minimal angle of w̃i and any vj with j ∈ Vi, and
hence

∠(w̃i, vi) ≤ αi + η. (15)

To bound αi from above, for i = 1, . . . , n, we observe that |〈w̃i, vj〉| ≤ η if j ∈ V0. Moreover,
if j ∈ Vi, then 〈w̃i, vj〉 ≤ cosαi, and if j ∈ Vl for some l ∈ {1, . . . , n} \ {i}, then ∠(w̃i, vj) ≥
(π/2)− η and therefore 〈w̃i, vj〉 ≤ sin η. Using these facts and (14), we deduce

∑
j∈V0

〈w̃i, vj〉2 ≤ (k − n)η2 ≤ (k − n) sin2 η

cos2 η
,

∑
j∈Vl

〈w̃i, vj〉2 ≤ sin2 η
∑
j∈Vl

‖vj‖2 ≤ sin2 η

cos2 η
, for l ∈ {1, . . . , n} \ {i},

∑
j∈Vi

〈w̃i, vj〉2 ≤ cos2 αi
∑
j∈Vi

‖vj‖2 ≤ cos2 αi
cos2 η

,

where the sum for V0 is set to be zero if V0 is empty. We conclude by (12) that

1 = ‖w̃i‖2 ≤ (k − n) sin2 η

cos2 η
+

(n− 1) sin2 η

cos2 η
+

cos2 αi
cos2 η

,

and hence
sin2 αi = 1− cos2 αi ≤ 1− cos2 η + (k − 1) sin2 η = k sin2 η.

11



Moreover, for η < 1/(3
√
k), we have

sin(2
√
k η)√

k sin(η)
≥ sin(2

√
k η)√

k η
≥ 2

sin(2/3)

2/3
≥ 1.

Therefore, (15) and η < 1/(3
√
k) yield

∠(w̃i, vi) ≤ αi + η ≤ 2
√
k η + η < 3

√
k η, i = 1, . . . , n.

In particular, this shows that v1, . . . , vn are linearly independent.
We define w1 = u1, and for i = 2, . . . , n we let wi be the unit vector in lin {v1, . . . , vi}

which is orthogonal to v1, . . . , vi−1 and satisfies 〈wi, vi〉 > 0. Writing Li for the orthogonal
complement of lin {v1, . . . , vi−1}, we have w̃i ∈ Li. Since wi is parallel to the orthogonal
projection of vi to Li, we conclude that ∠(wi, vi) ≤ ∠(w̃i, vi) < 3

√
k η. 2

4 Analytic stability estimates
To calculate the optimal constant in the Brascamp-Lieb inequality (6), the following statement
has been proved by K. M. Ball [1], see F. Barthe [5, Proposition 9] for a simple argument.

Lemma 4.1 (K. M. Ball) If v1, . . . , vk ∈ Rn satisfy
∑k

i=1 vi ⊗ vi = Idn and if t1, . . . , tk > 0,
then

det

(
k∑
i=1

tivi ⊗ vi

)
≥

k∏
i=1

t
〈vi,vi〉
i .

Remark E. Lutwak, D. Yang, G. Zhang [35] generalized Lemma 4.1 for any isotropic measure
µ on Sn−1 and for any positive continuous function t on suppµ in the form

det

(∫
Sn−1

t(u) u⊗ u dµ(u)

)
≥ exp

(∫
Sn−1

log t(u) dµ(u)

)
,

where equality holds if and only if the quantity t(v1) · · · t(vn) is constant for linearly independent
v1, . . . , vn ∈ suppµ. Actually Lemma 4.1 is the case when suppµ = {u1, . . . , uk}, and vi =√
ci ui for ci = µ({ui}). We do not need this generalized version in the present paper.

In Lemma 4.3, we prove a (stronger) stability version of Lemma 4.1 by replacing the
arithmetic-geometric mean inequality with the following stability version in the argument of
[5].

Lemma 4.2 If ν is a probability measure and f is a measurable function which is bounded from
above and from below by positive constants, then∫

f dν

exp
{∫

ln f dν
} ≥ 1 +

1

2

∫  √
f√∫
f dν

− 1

2

dν.

12



Proof: We note that for a, b ≥ 0, we have

a+ b

2
−
√
a
√
b =

1

2

(√
a−
√
b
)2

. (16)

Here we choose b = 1 and
a =

f∫
f dν

.

Integrating (16) with this choice of a, b against ν, we get

1−
∫ √

f dν√∫
f dν

=
1

2

∫  √
f√∫
f dν

− 1

2

dν.

Since 1− x ≥ 1−
√
x for x ∈ [0, 1], we obtain

1−
(∫ √

f dν
)2∫

f dν
≥ 1

2

∫  √
f√∫
f dν

− 1

2

dν.

Jensen’s inequality yields (∫ √
f dν

)2

≥ exp

{∫
ln f dν

}
,

and hence we conclude Lemma 4.2 by observing that (d/c)− 1 ≥ 1− (c/d) for any c, d > 0. 2

Lemma 4.3 Let k ≥ n + 1, t1, . . . , tk > 0, and let v1, . . . , vk ∈ Rn satisfy
∑k

i=1 vi ⊗ vi = Idn.
Then

det

(
k∑
i=1

tivi ⊗ vi

)
≥ θ∗

k∏
i=1

t
〈vi,vi〉
i

where

θ∗ = 1 +
1

2

∑
1≤i1<...<in≤k

det[vi1 , . . . , vin ]2
(√

ti1 · · · tin
t0

− 1

)2

,

t0 =

√ ∑
1≤i1<...<in≤k

ti1 · · · tin det[vi1 , . . . , vin ]2.

Proof: In this argument, I always denotes some subset of {1, . . . , k} of cardinality n. For I =
{i1, . . . , in}, we define

dI := det[vi1 , . . . , vin ]2 and tI := ti1 · · · tin .

13



From
∑k

i=1 vi ⊗ vi = Idn and (13) we obtain

∑
I

dI = 1 and det

(
k∑
i=1

tivi ⊗ vi

)
=
∑
I

tIdI ,

where the summations extend over all sets I ⊂ {1, . . . , k} of cardinality n. It follows that the
discrete measure µ on the n element subsets of {1, . . . , k} defined by µ({I}) = dI is a probability
measure. According to Lemma 4.2, writing t0 =

√∑
I tIdI , we deduce that

det

(
k∑
i=1

tivi ⊗ vi

)
=
∑
I

tIdI ≥

(
1 +

1

2

∑
I

dI

(√
tI
t0
− 1

)2
)∏

I

tdII . (17)

The factor ti is used in
∏

I t
dI
I exactly

∑
I, i∈I dI times. Moreover, (13) applied to the vectors

v1, . . . , vi−1, vi+1, . . . , vk implies

∑
I, i∈I

dI =
∑
I

dI −
∑
I, i 6∈I

dI = 1− det

(∑
j 6=i

vj ⊗ vj

)

= 1− det (Idn − vi ⊗ vi) = 〈vi, vi〉.

Substituting this into (17) yields the lemma. 2

To estimate from below (in the proof of Lemma 7.2) the factor θ∗ in Lemma 4.3, we use the
following observation.

Lemma 4.4 If a, b, x > 0, then

(xa− 1)2 + (xb− 1)2 ≥ (a2 − b2)2

2(a2 + b2)2

Proof: Differentiating f(x) = (xa − 1)2 + (xb − 1)2 for fixed a, b with respect to x shows that
f attains its minimum at x = a+b

a2+b2
. Thus

(xa− 1)2 + (xb− 1)2 ≥ (a− b)2

a2 + b2
=

(a2 − b2)2

(a2 + b2)(a+ b)2
≥ (a2 − b2)2

2(a2 + b2)2
. 2

5 Polytopes close to a regular simplex
We prove two quantitative statements about the approximation of a polytope by a simplex. First,
we provide a lemma which will allow us to put a given orthonormal basis into a more convenient
position by a small rotation.
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Lemma 5.1 Let e ∈ Sn−1, and let τ ∈ (0, 1/(2n)). If w1, . . . , wn is an orthonormal basis of Rn

such that
1√
n
− τ < 〈e, wi〉 <

1√
n

+ τ for i = 1, . . . , n,

then there exists an orthonormal basis w̃1, . . . , w̃n such that 〈e, w̃i〉 = 1√
n

and ∠(wi, w̃i) < nτ
for i = 1, . . . , n.

Proof: For i = 1, . . . , n, let

〈e, wi〉 =
1√
n

+ αi, and hence |αi| < τ.

It follows that

1 = ‖e‖2 =
n∑
i=1

(
1√
n

+ αi

)2

< 1 +
2√
n

(
n∑
i=1

αi

)
+ nτ 2,

which in turn yields that〈
e,

n∑
i=1

wi

〉
=
√
n+

n∑
i=1

αi >
√
n− n

√
n

2
τ 2 >

∥∥∥∥∥
n∑
i=1

wi

∥∥∥∥∥ cos(nτ),

since cos(nτ) ≤ 1 − 1
2
nτ 2 for τ ∈ (0, 1/(2n)) and n ≥ 2. In particular, ∠(e,

∑n
i=1wi) < nτ .

We define w̃i = Φ(wi) for i = 1, . . . , n, where Φ is the orthogonal transformation, which rotates∑n
i=1wi into

√
n e via their acute angle in the two-dimensional linear subspace L containing

them, and fixing all vectors in L⊥. Then 〈e, w̃i〉 = 〈Φ−1(e), wi〉 =
√
n
−1〈
∑n

j=1wj, wi〉 = 1/
√
n

for i = 1, . . . , n. 2

For convex bodies containing the origin in their interiors, we introduce a very specific dis-
tance from regular simplices whose centroid is the origin. If K is a convex body with 0 ∈ intK,
then we define

d(K) := ln min{λ ≥ 1 : sT n ⊂ ΦK ⊂ λsT n for s > 0 and Φ ∈ O(n)}.

Clearly, d(K) = 0 if and only if K is a regular simplex with centroid at the origin.

Lemma 5.2 Let Z be a polytope, and let S be a regular simplex circumscribed about Bn. As-
sume that the facets of Z and S touch Bn at u1, . . . , uk and w1, . . . , wn+1, respectively. Fix
η ∈ (0, 1/(9n)). If for any i ∈ {1, . . . , k} there exists some j ∈ {1, . . . , n + 1} such that
∠(ui, wj) ≤ η, then

(1− 3nη)S ⊂ Z ⊂ (1 + 3nη)S.

In particular, d(Z) < 9nη.
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Proof: The lemma follows from the following statement: If ∠(u1, w1) ≤ η then the tangent plane
to Bn at u1 contains −λw2, where

(1− 3nη)n ≤ λ ≤ (1 + 3nη)n. (18)

In order to prove this assertion, we observe that λ−1 = cos∠(−w2, u1). Moreover, we write
∠(−w2, u1) = α + β, where α = ∠(−w2, w1) with cosα = 1/n and tanα < n, and |β| ≤ η.
Since

| cos β − 1− tanα sin β| ≤ 1

2
η2 + nη = (n+ 1)η

and
| cos β − tanα sin β| ≥ 1− 1

2
η2 − nη = 1− (n+ η/2)η ≥ 1

2
,

we obtain∣∣∣∣1− λ

n

∣∣∣∣ =

∣∣∣∣∣1−
(

cos(α + β)

cosα

)−1
∣∣∣∣∣ =

∣∣1− (cos β − tanα sin β)−1
∣∣ ≤ 2(n+ 1)η,

which in turn yields (18).
To conclude the proof, we first observe that the vertices of S are −nw1, . . . ,−nwn+1. To

verify the left inclusion, let H−(u) := {x ∈ Rn : 〈x, u〉 ≤ 1} for u ∈ Sn−1. We have shown that
−λwi ∈ H−(u1) for i ∈ {2, . . . , k}, and trivially this also holds for i = 1. Hence, (18) yields
that (1−3nη)(−nwi) ⊂ H−(u1), and therefore (1−3nη)S ⊂ H−(u1). Repeating this argument
for u2, . . . , uk, we obtain (1− rnη)S ⊂ Z.

As to the right inclusion, let tv ∈ Z, where v ∈ Sn−1 and t > 0. We can assume that v is in
the positive hull of−w2, . . . ,−wn+1. Then there is some i ∈ {1, . . . , k} such that ∠(ui, w1) ≤ η.
By (18), for j = 2, . . . , n + 1 there are tj ∈ (0, (1 + 3nη)n) such that 〈ui,−tjwj〉 = 1. There
are αr ≥ 0 such that tv = α2(−w2) + . . .+ αn+1(−wn+1), and therefore

〈ui, tv〉 =
n+1∑
j=2

〈ui, tj−1αj(−tjwj)〉 =
n+1∑
j=2

αj
tj
. (19)

In particular, this shows that 〈ui, v〉 > 0. Since tv ∈ Z, it is sufficient to prove that tv ∈
(1 + 3nη)S in the case where 〈ui, tv〉 = 1. But then (19) implies that

tv =
n+1∑
j=2

αj
tj

(−tjwj) ∈ conv{−t2w2, . . . ,−tn+1wn+1} ⊂ (1 + 3nη)S,

and hence Z ⊂ (1 + 3nη)S. 2

Lemma 5.3 Let Z be a polytope, and let S be a regular simplex circumscribed about Bn. Fix
γ = 9 · 2n+2n2n+2 and η ∈ (0, γ−1). Assume that the facets of Z and S touch Bn at u1, . . . , uk
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and w1, . . . , wn+1, respectively. If ∠(ui, wi) ≤ η for i = 1, . . . , n + 1 and ∠(uk, wi) ≥ γη for
i = 1, . . . , n+ 1, then

V (Z) ≤
(

1− mini=1,...,n+1 ∠(uk, wi)

2n+2n2n

)
V (S).

Proof: Let H+ := {x ∈ Rn : 〈x, uk〉 ≥ 1}, and let Fi be the facet of S touching Bn at wi. We
may assume that ∠(uk, w1) ≤ ∠(uk, wi) for i ≥ 2, and hence 〈uk, w1〉 > 0.

First, we estimate V (S ∩H+). Let z be the closest point of H+ ∩ F1 to w1. In particular, we

have ‖z − w1‖ ≤ 1, while F1 contains the (n− 1)-ball of radius
√

n+1
n−1

> 1 + 1
n

centered at w1.

Thus F1 ∩ H+ contains a regular (n − 1)-simplex of height 1
n

, and in turn a congruent copy of
1

2n2 F1. In addition, the distance of w1 from any Fi, i ≥ 2, is 1 + 1
n

, thus the distance of z from
Fi is at least

1/n

‖z − w1‖+ (1/n)

(
1 +

1

n

)
>

h

2n2
,

where h = n + 1 is the height of S. We deduce that H+ ∩ S contains a point whose distance
from F1 is at least h

2n2 sin∠(uk, w1), and hence

V (S ∩H+) ≥
(

1

2n2

)n−1 ∠(uk, w1)

4n2
V (S) =

∠(uk, w1)

2n+1n2n
V (S).

Let Z0 be the simplex whose facets touch Bn at u1, . . . , un+1. Hence

(1− 3nη)S ⊂ Z0 ⊂ (1 + 3nη)S

by Lemma 5.2. It follows that

V (Z0 ∩H+) ≥ V (S ∩H+)− (V (S)− V ((1− 3nη)S))

≥ ∠(uk, w1)

2n+1n2n
V (S)− 3n2η V (S).

Since (1 + 3nη)n ≤ 1 + 6n2η, we have

V (Z) ≤ V (Z0)− V (Z0 ∩H+)

≤ V ((1 + 3nη)S)−
(
∠(uk, w1)

2n+1n2n
− 3n2η

)
V (S)

≤
(

1 + 9n2η − ∠(uk, w1)

2n+1n2n

)
V (S)

≤
(

1− ∠(uk, w1)

2n+2n2n

)
V (S),

which completes the proof. 2
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6 The transportation map
The argument of F. Barthe [4] uses the transportation map ϕ : (0,∞) → R between the expo-
nential and the standard Gaussian density, and hence

1− e−t =

∫ t

0

e−s ds =
1√
π

∫ ϕ(t)

−∞
e−s

2

ds. (20)

Clearly, ϕ is strictly increasing and ϕ(ln 2) = 0.

Lemma 6.1 If t ≥ 4, then
√

2 < ϕ(t) <
√
t, 1

3
√
t
< ϕ′(t) < 1 and ϕ′′(t) < − 1

12t3/2
.

Proof: The definition (20) of ϕ can be written in the form

e−t =
1√
π

∫ ∞
ϕ(t)

e−s
2

ds. (21)

According to the Gordon-Mill inequality (or Mill’s ratio, see R. D. Gordon [20], L. Dümbgen
[15, (2)], or by a straightforward direct argument), if z > 0, then

e−z
2

2
√
πz
· 2z2

2z2 + 1
<

1√
π

∫ ∞
z

e−s
2

ds <
e−z

2

2
√
πz
. (22)

We deduce from the left-hand side of (22) that

e−4 <
1√
π

∫ ∞
√

2

e−s
2

ds,

which in turn implies ϕ(4) >
√

2 by (21). From (21) and the right-hand side of (22), we deduce
that ϕ(t) <

√
t for t > 4.

We turn to the estimation of derivatives. Differentiating (21), we get

e−t =
e−ϕ(t)2ϕ′(t)√

π
, t > 0. (23)

In particular, this shows that ϕ′(t) > 0 for t > 0. Equation (23) combined with the right-hand
side of (22) leads to

2ϕ(t)ϕ′(t) < 1 for t > ln 2. (24)

Taking the logarithm of (23), we deduce the formula

−t = − log
√
π − ϕ(t)2 + logϕ′(t), (25)

and differentiating this implies

ϕ′′(t) = ϕ′(t)(2ϕ(t)ϕ′(t)− 1). (26)
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Therefore ϕ′′(t) < 0 follows on the one hand from ϕ′(t) > 0, and on the other hand from
ϕ(t) ≤ 0 if t ≤ ln 2, and from (24) if t > ln 2. Thus ϕ′(t) < ϕ′(ln 2) =

√
π/2 < 1 by (23) for

t > ln 2.
We also estimate ϕ′′ in terms of ϕ. To this end, we use an improved version of the right-

hand side of the Gordon-Mill inequality (22) (see L. Dümbgen [15, (2)], or by a simple direct
argument); namely

1√
π

∫ ∞
z

e−s
2

ds <
e−z

2

2
√
πz
· 2z2 + 2

2z2 + 3
, z > 0.

We deduce from this and the left-hand side of (22) that if z ≥
√

2, then

e−z
2

3
√
πz

<
1√
π

∫ ∞
z

e−s
2

ds <
e−z

2

2
√
πz

(
1− 1

4z2

)
.

If t > 4, then ϕ(t) >
√

2, thus

1

3ϕ(t)
< ϕ′(t) =

√
πeϕ(t)2−t <

1

2ϕ(t)

(
1− 1

4ϕ(t)2

)
. (27)

In particular, ϕ′(t) > 1
3
√
t
, and combining (24) and (27) yields

ϕ′′(t) = ϕ′(t)(2ϕ(t)ϕ′(t)− 1) < − ϕ′(t)

4ϕ(t)2
<

−1

12ϕ(t)3
for t > 4, (28)

which completes the argument. 2

7 Circumscribed polytopes
F. Barthe [4] proves the Brascamp-Lieb inequality for functions in one variable in full generality.
This section is based on K. M. Ball’s [3] interpretation of F. Barthe’s argument in the special
case needed for the geometric application. Since our stability argument uses in an essential way
that the Brascamp-Lieb inequality is required only for the exponential density function, we do
not separate the statement of the Brascamp-Lieb inequality.

Proposition 7.1 is the main ingredient for the proofs of Theorem 1.1, Theorem 1.3 and The-
orem 1.5. We recall that if K is a convex body with 0 ∈ int K, then d(K) is the minimal λ such
that there exists a regular simplex S whose centroid is the origin and S ⊂ K ⊂ eλS.

In the following, we use the abbreviation N := n(n + 3)/2. In this section, we consider the
case n ≥ 3, although (with slightly different constants) the proof extends also to the case n = 2.
In the plane, however, we can argue in a different way to obtain results of optimal order. For this
reason we defer the two-dimensional case to Section 11.
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Proposition 7.1 Let µ be a discrete, centred, isotropic measure on Sn−1. Let n ≥ 3. Assume
that the cardinality of suppµ is at most N + 1, and let τ ∈ (0, n−240n). If

V (Z(µ)) > (1− τ)V (T n),

then there exists a regular simplex S circumscribed about Bn such that

δH(suppµ, suppµS) < n60nτ 1/4 and d(Z(µ)) < n60nτ 1/4.

Before we prove Proposition 7.1, we first set up the corresponding notions following
K. M. Ball [1], [2], and then prove the preparatory statement Lemma 7.2.

Let suppµ = {u1, . . . , uk}, and let ci = µ({ui}). Then
∑k

i=1 ciui⊗ui = Idn,
∑k

i=1 ciui = 0
and k ≤ N + 1.

We now embed Rn into Rn × {0} = Rn+1 and write en+1 for the unit vector in Rn+1 orthog-
onal to Rn. We define

ũi := −
√

n

n+ 1
ui +

√
1

n+ 1
en+1 ∈ Sn and c̃i :=

n+ 1

n
ci for i = 1, . . . , k,

and hence
k∑
i=1

c̃i ũi ⊗ ũi = Idn+1,

k∑
i=1

c̃iũi =
√
n+ 1 en+1, (29)

k∑
i=1

c̃i = n+ 1. (30)

We observe that if Z(µ) is a regular simplex circumscribed about Bn, then k = n + 1 and
ũ1, . . . , ũn+1 are an orthonormal basis of Rn+1.

Next we consider the open cone

C := {y ∈ Rn+1 : 〈y, ũi〉 > 0, i = 1, . . . , k} (31)

= {x+ ren+1 ∈ Rn+1 : x ∈ Rn, r > 0, 〈x, ui〉 < r/
√
n, i = 1, . . . , k} (32)

and the map Θ : C → Rn+1 defined by

Θ(y) :=
k∑
i=1

c̃i ϕ(〈y, ũi〉) ũi,

where 〈y, ũi〉 > 0 by (31). In particular, the differential of Θ is

dΘ(y) =
k∑
i=1

c̃i ϕ
′(〈y, ũi〉) ũi ⊗ ũi.
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We observe that dΘ is positive definite since ϕ′ is positive and

〈z, dΘ(y)z〉 =
k∑
i=1

c̃i ϕ
′(〈y, ũi〉) 〈z, ũi〉2.

It follows that Θ is injective.
From (32) we conclude that the section {y ∈ C : 〈y, en+1〉 = r} of C for r > 0 is a translate

of int((r/
√
n)Z(µ)). Therefore∫

C

e−〈y,
√
n+1 en+1〉 dy =

∫ ∞
0

∫
r√
n
Z

e−
√
n+1 r dx dr (33)

= V (Z(µ))

∫ ∞
0

(
r√
n

)n
e−
√
n+1 rdr

= V (Z(µ))V (T n)−1.

By first applying (29), then (25), and finally (30), we deduce that∫
C

e−〈y,
√
n+1 en+1〉 dy =

∫
C

exp

(
−

k∑
i=1

c̃i〈y, ũi〉

)
dy (34)

=

∫
C

exp

(
k∑
i=1

c̃i(− log
√
π − ϕ(〈y, ũi〉)2 + logϕ′(〈y, ũi〉)

)
dy

= π−
n+1
2

∫
C

exp

(
−

k∑
i=1

c̃iϕ(〈y, ũi〉)2

)
k∏
i=1

ϕ′(〈y, ũi〉)c̃i dy. (35)

For each fixed y ∈ C, we estimate the product of the two terms in (35) after the integral sign.
To estimate the first term in (35), we apply (8) with θi = ϕ(〈y, ũi〉), and hence the definition

of Θ yields

exp

(
−

k∑
i=1

c̃iϕ(〈y, ũi〉)2

)
≤ exp

(
−‖Θ(y)‖2

)
. (36)

To estimate the second term, we apply Lemma 4.3 with vi =
√
c̃i ũi and ti = ϕ′(〈y, ũi〉), and

write θ(y) and t0(y) to denote the corresponding θ∗ ≥ 1 and t0. In particular,

θ(y) = 1 +
1

2

∑
1≤i1<...<in+1≤k

c̃i1 · · · c̃in+1 det[ũi1 , . . . , ũin+1 ]
2

×

(√
ϕ′(〈y, ũi1〉) · · ·ϕ′(〈y, ũin+1〉)

t0(y)
− 1

)2

, (37)
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and Lemma 4.3 yields
k∏
i=1

ϕ′(〈y, ũi〉)c̃i ≤ θ(y)−1 det (dΘ(y)) . (38)

We conclude that

V (Z(µ)) ≤ V (T n)

π
n+1
2

∫
C

θ(y)−1e−‖Θ(y)‖2 det (dΘ(y)) dy (39)

≤ V (T n)

π
n+1
2

∫
Rn+1

e−‖z‖
2

dz =
nn/2(n+ 1)(n+1)/2

n!
= V (T n). (40)

According to Lemma 3.1, used for vi =
√
c̃i ũi, i = 1, . . . , k, we may assume that

c̃1 · · · c̃n+1 det[ũ1, . . . , ũn+1]2 ≥
(

k

n+ 1

)−1

. (41)

Then, in particular, the vectors ũ1, . . . , ũn+1 are linearly independent. Since each factor on the
left-hand side of (41) is at most 1 (compare (10)), the product of the remaining factors is at least(

k
n+1

)−1
. For Lemma 7.2, we define

ε := n60nτ 1/4 < 1 and ω :=
1

35n54n+1n2n
. (42)

In the following lemma, we adopt the assumptions and the notation from above.

Lemma 7.2 Let the assumptions of Proposition 7.1 be satisfied. If i ∈ {1, . . . , k}, then c̃i ≤ ω2ε2

or ∠(ũi, ũj) ≤ ωε for some j ∈ {1, . . . , n+ 1}.

Proof: If i ∈ {1, . . . , n+ 1}, we can choose j = i and then have ∠(ũi, ũi) = 0. Thus it remains
to consider the cases where i ∈ {n+ 2, . . . , k}. For this, we proceed by contradiction and hence
assume that there is some i ∈ {n + 2, . . . , k} such that c̃i > ω2ε2 and ∠(ũi, ũj) > ωε for all
j ∈ {1, . . . , n + 1}. Under this assumption, we will identify a subset Ξ of C with reasonably
large volume such that

θ(y) ≥ 1 + γ0 ε
4 for y ∈ Ξ, (43)

where γ0 := n−18n−78 depends on n (see (50)). From this we will then deduce a contradiction.
Since ũ1, . . . , ũn+1 are linearly independent, there are uniquely determined λ1, . . . , λn+1 ∈ R

such that
ũi = λ1ũ1 + . . .+ λn+1ũn+1. (44)

We adjust the indices of ũ1, . . . , ũn+1 so that

λ1 ≥ . . . ≥ λn+1.

Since 〈ũj, en+1〉 = 1/
√
n+ 1 for j = 1, . . . , k, we have λ1 + . . .+λn+1 = 1, and thus we obtain

λ1 ≥ 1
n+1

. Combining c̃1 ≤ 1, (41), and (44), we thus conclude that

c̃2 . . . c̃n+1c̃i det[ũ2, . . . , ũn+1, ũi]
2 ≥ ω2ε2

(n+ 1)2

(
k

n+ 1

)−1

> ω0ε
2, (45)
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where we define ω0 := n−10n−30. The inequality on the right-hand side is confirmed by an
elementary calculation, which is based on k ≤ N + 1 and n! ≥

√
2πn (n/e)n.

Next we construct the set Ξ for which (43) is satisfied. The open convex cone

C0 :=

{
y ∈ Rn+1 : 〈y, en+1〉 > ‖y‖

n√
n2 + 1

}
satisfies C0 ⊂ C. In fact, if y = x+ ren+1 ∈ C0 with x ∈ Rn and r > 0, then

r >
√
‖x‖2 + r2

n√
n2 + 1

.

But this is equivalent to ‖x‖ < r/n, which in turn implies that 〈x, ui〉 < r/
√
n for i = 1, . . . , k,

hence y ∈ C.
Writing α and β to denote the acute angles with cosα = 〈ũj, en+1〉 = 1√

n+1
, j = 1, . . . , k,

and cos β = n√
n2+1

, we have α−β < ∠(y, ũj) < α+β for y ∈ C0 and j = 1, . . . , k. For y ∈ C0

and j = 1, . . . , k, we deduce that

〈y, ũj〉 < ‖y‖
n+
√
n√

(n2 + 1)(n+ 1)
< ‖y‖ 2√

n
, (46)

〈y, ũj〉 > ‖y‖
n−
√
n√

(n2 + 1)(n+ 1)
> ‖y‖ 1

5
√
n
. (47)

To verify the left inequality in (46), we consider y = x + ren+1 ∈ C0 with ‖y‖ = 1. Then
‖x‖2 + r2 = 1 and r > n/

√
n2 + 1. Hence

〈y, ũj〉 = −
√

n

n+ 1
〈x, uj〉+

r√
n+ 1

≤
√

n

n+ 1

√
1− r2 +

r√
n+ 1

=: f(r).

Since f is decreasing for r ≥ n/
√
n2 + 1, the assertion follows. Similarly,

〈y, ũj〉 ≥ −
√

n

n+ 1

√
1− r2 +

r√
n+ 1

=: g(r)

and g is increasing for r ≥ n/
√
n2 + 1, which yields the first inequality in (47).

We also observe that the section {y ∈ C0 : 〈y, en+1〉 = t} is an (n− 1)-ball of radius t/n for
t > 0. Now we are ready to define

Ξ :=

{
y ∈ C0 : 20

√
n < 〈y, en+1〉 < 40

√
n and 〈y, ũi − ũ1〉 >

ωε√
n

}
.

Since by assumption ‖ũi − ũ1‖ > ωε/2, Ξ contains a right cylinder of height 20
√
n whose base

is an (n−1)-dimensional regular simplex S∗ of circumradius 1/
√
n. Let S0 be an n-dimensional

regular simplex whose facet is S∗. Since the height of S0 is less than 2/
√
n, we have

V (Ξ) >
n 20
√
n

2/
√
n
V (S0) =

10 n2

n3n/2
V (T n). (48)
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Using (46) and (47), we also get

4 < 〈y, ũj〉 < 120 for y ∈ Ξ and j = 1, . . . , k. (49)

For y ∈ Ξ, we estimate θ(y) from below using the n-tuples (1, . . . , n+1) and (2, . . . , n+1, i)

of indices in (37) (note that in addition to (45) we also have
(

k
n+1

)−1 ≥ ω0). We deduce by first
applying (41), (45) and Lemma 4.4, secondly ϕ′(〈y, ũj〉) < 1 for j = 1, . . . , k (see Lemma 6.1),
and thirdly by 〈y, ũi − ũ1〉 > ωε√

n
and ϕ′′(t) < −12−4 for 4 < t < 120 (see Lemma 6.1) that

θ(y) ≥ 1 +
1

2

(ϕ′(〈y, ũ1〉)− ϕ′(〈y, ũi〉))2

2(ϕ′(〈y, ũ1〉) + ϕ′(〈y, ũi〉))2
ω0ε

2

> 1 +
(ϕ′(〈y, ũ1〉)− ϕ′(〈y, ũi〉))2

16
ω0ε

2

> 1 +
ω2ω0

16 n 128
ε4 > 1 + n−18n−78 ε4. (50)

According to (49) and Lemma 6.1, if y ∈ Ξ and j = 1, . . . , k, then ϕ(〈y, ũj〉)2 < 120 and
ϕ′(〈y, ũj〉) > 1

33
. It follows from (36) and (38), taking into account (30), that

e−‖Θ(y)‖2 det (dΘ(y)) ≥ exp

(
−

k∑
j=1

c̃jϕ(〈y, ũj〉)2

)
k∏
j=1

ϕ′(〈y, ũj〉)c̃j

≥ e−120(n+1) 33−(n+1) ≥ e−124(n+1) ≥ e−186n. (51)

Recall that γ0 = n−18n−78 and observe that (50) implies that

1− θ(y)−1 ≥ γ0ε
4

1 + γ0ε4
≥ 1

2
γ0ε

4. (52)

Now we use (48), (51) and (52), and argue as for (39) and (40), to obtain

V (Z(µ)) ≤ V (T n)

π
n+1
2

∫
C

e−‖Θ(y)‖2 det (dΘ(y)) dy

− V (T n)

π
n+1
2

∫
C

(
1− θ(y)−1

)
e−‖Θ(y)‖2 det (dΘ(y)) dy

≤ V (T n)− V (T n)

π
n+1
2

∫
Ξ

(
1− θ(y)−1

)
e−‖Θ(y)‖2 det (dΘ(y)) dy

≤ V (T n)

[
1− 1

π
n+1
2

∫
Ξ

1
2
γ0ε

4e−186n dy

]
≤ V (T n)

[
1− V (Ξ)

2π
n+1
2

γ0ε
4e−186n

]
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≤ V (T n)

[
1− 5n2V (T n)

n
3n
2 π

n+1
2

γ0ε
4e−186n

]
≤
(
1− n−240nε4

)
V (T n) = (1− τ)V (T n),

where we used (42) in the last step. This contradicts the assumptions of Proposition 7.1, and
hence proves Lemma 7.2. 2

Proof of Proposition 7.1: For i = 1, . . . , k, we define ṽi :=
√
c̃iũi ∈ Rn+1, hence ‖ṽi‖ =√

c̃i. Lemma 7.2 ensures that the assumptions for the application of Lemma 3.2 are satisfied for
ṽ1, . . . , ṽk in Rn+1 with η = ωε < 1/(3

√
k). Hence, by Lemma 3.2 there is an orthonormal

basis w̄1, . . . , w̄n+1 of Rn+1 such that ∠(ṽi, w̄i) < 3
√
kωε for i = 1, . . . , n + 1. Writing αi =

∠(en+1, w̄i) and βi = ∠(en+1, ṽi) = ∠(en+1, ũi), we get∣∣∣∣〈en+1, w̄i〉 −
1√
n+ 1

∣∣∣∣ = | cosαi − cos βi| ≤ |αi − βi| ≤ ∠(w̄i, ṽi) < 3
√
kωε.

Since 3
√
kωε < 1/(2(n + 1)), we can apply Lemma 5.1, which yields the existence of an

orthonormal basis w̃1, . . . , w̃n+1 in Rn+1 such that 〈en+1, w̃i〉 = 1/
√
n+ 1 and ∠(w̃i, w̄i) ≤

(n+ 1)3
√
kωε. But then

∠(w̃i, ũi) ≤ ∠(w̃i, w̄i) + ∠(w̄i, ũi, ) ≤ 3(n+ 1)
√
kωε+ 3

√
kωε ≤ 8n2ωε.

For i = 1, . . . , n+ 1, we define

wi =

√
n+ 1

n

(
−w̃i +

√
1

n+ 1
en+1

)
∈ Rn,

and hence there exists a regular simplex S whose facets touchBn atw1, . . . , wn+1. Subsequently,
we use that

1− 1

2
t2 < cos t < 1− 3

8
t2 for t ∈ (0, 1).

Since
1− 〈wi, ui〉 =

n+ 1

n
(1− 〈w̃i, ũi〉) ≤

n+ 1

n

1

2
(8n2 ωε)2 ≤ 48n4ω2ε2,

we deduce that ∠(wi, ui) < 12n2ωε for i = 1, . . . , n+ 1.
We observe that γ = 9 · 2n+2n2n+2 from Lemma 5.3 and ω = (35n54n+1n2n)−1 satisfy

1

9n2n−2
≤ 12γn2ω ≤ 1

9n
, (53)

and claim that
δH(suppµ, suppµS) < 12γn2ωε ≤ 1

9n
ε =

1

9n
n60nτ 1/4. (54)
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Let us suppose that contrary to (54), there exists some i ∈ {n+ 2, . . . , k} such that ∠(ui, wj) ≥
12γn2ωε for j = 1, . . . , n + 1. To apply Lemma 5.3, we note that ε < 1 and (53) yield that
12n2ωε < γ−1. Since ε = n60nτ 1/4 > n240nτ , we conclude from (53) that

V (Z(µ)) ≤
(

1− 12γn2ωε

2n+2n2n

)
V (T n) < (1− τ)V (T n).

This contradicts the condition on µ, and hence implies (54). Finally, combining (54) and
Lemma 5.2 yields d(Z(µ)) < n60nτ 1/4. 2

8 Proofs of Theorems 1.1 and 1.3
We assume that Bn is the ellipsoid of maximal volume inside the convex body K in Rn, and
hence there exist u1, . . . , uk ∈ Sn−1 ∩ ∂K and c1, . . . , ck > 0 such that

∑k
i=1 ciui ⊗ ui = Idn

and
∑k

i=1 ciui = o, where
n+ 1 ≤ k ≤ n(n+ 3)/2. (55)

We write Z to denote the circumscribed polytope whose faces touch Bn at u1, . . . , uk; namely,

Z = {x ∈ Rn : 〈x, ui〉 ≤ 1, i = 1, . . . , k}.

For any x ∈ ∂K, let ux denote an exterior unit normal at x, which is unique (almost every-
where) and measurable with respect to the (n− 1)-dimensional Hausdorff-measure on ∂K. We
note that

V (K) =

∫
∂K

〈x, ux〉
n

dx ≥ S(K)

n
. (56)

It follows from (56) that

S(K)n

V (K)n−1
≤ nnV (K) ≤ nnV (Z) ≤ nnV (T n) =

S(T n)n

V (T n)n−1
. (57)

Lemma 8.1 Let ε ∈ (0, 1).

(i) If d(Z) ≤ ε/(4n2) and δBM(K,T n) ≥ ε, then

S(K)n

V (K)n−1
≤
(

1− 1

e2

(ε
e

)n) S(T n)n

V (T n)n−1
.

(ii) If d(Z) ≤ ε/(4n2) and δvol(K,T
n) ≥ ε, then

S(K)n

V (K)n−1
≤
(

1− ε

8

) S(T n)n

V (T n)n−1
.
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Proof: Let γ := 1/(4n2). Then we may assume that

e−γε T n ⊂ Z ⊂ eγε T n. (58)

Hence, we have 4nγε ≤ 1
n

.
For the proof of (ii), we first choose λ > 0 such that V (T n) = V (λZ). Then (58) yields that

e−γε ≤ λ ≤ eγε. Therefore, again by (58) we obtain

δvol(Z, T
n) ≤ V ((λZ)∆T n)

V (T n)
≤ λnenγε − λne−nγε

≤ 2nγελnenγε ≤ 2nγεe2nγε ≤ 2nγε(1 + 4nγε)

≤ 4nγε ≤ ε/2,

where we used that et ≤ 1 + 2t for 0 ≤ t ≤ 1/2.
Let η, ν ≥ 0 satisfy V (K) = V (ηZ) and V (Z) = (1 + ν)V (K), and hence η = (1 + ν)−1/n.

It follows from δvol(K,T
n) ≥ ε that

ε/2 ≤ δvol(Z,K) ≤ V ((ηZ)∆K)

V (K)
≤ 2V (Z\K)

V (K)
≤ 2ν,

and hence (57) yields that

S(K)n

V (K)n−1
≤ nnV (K) = nn(1 + ν)−1V (Z) ≤ (1 + ν)−1 S(T n)n

V (T n)n−1

≤
(

1 +
ε

4

)−1 S(T n)n

V (T n)n−1
≤
(

1− ε

8

) S(T n)n

V (T n)n−1
.

We turn to (i). It follows from δBM(K,T n) ≥ ε and (58) that there is a vertex v of T n such
that

eγε−εv 6∈ intK.

In particular, there exists a half-space H+ containing eγε−εv, and disjoint from intK. Since
p = eγε−εv is the centroid of the simplex p + λT n ⊂ e−γεT n for λ := e−γε − eγε−ε, a result by
B. Grünbaum [26, p. 1260, (iii)] yields that

V (H+ ∩ (p+ λT n)) >
λn

e
V (T n).

Therefore, using (58) we deduce that

V (Z \K) ≥ V (H+ ∩ (e−γεT n)) >
λn

e
V (T n) =

e−nγε(1− e2γε−ε)n

e
V (T n)

≥ 1

e2

(ε
e

)n
V (T n).
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Hence, by (57) we get

V (K) +
1

e2

(ε
e

)n
V (T n) ≤ V (Z) ≤ V (T n),

and therefore

V (K) ≤
(

1− 1

e2

(ε
e

)n)
V (T n).

Now the proof can be completed as in the previous case by using once again (57). 2

Proofs of Theorems 1.1 and 1.3: If d(Z) > ε/(4n2), then Proposition 7.1 can be applied by
(55), and implies that

V (Z) ≤ (1− 4−4n−248nε4)V (T n) ≤ (1− n−250nε4)V (T n).

In turn, we conclude Theorem 1.3 and Theorem 1.1 by (57).
If d(Z) ≤ ε/(4n2), then Lemma 8.1 (i) yields Theorem 1.3, and Lemma 8.1 (ii) implies

Theorem 1.1. 2

For the sake of completeness we provide the following fact, which is mentioned in the intro-
duction.

Lemma 8.2 Let K,M be convex bodies in Rn. Then δvol(K,M) ≤ 2en
2
δBM(K,M) and

δBM(K,M) ≤ γ δvol(K,M)
1
n , where γ is a constant which depends on n.

Proof: The assertions follow from [12, Section 5]. Since the first assertion is used explicitly (in
the introduction) and the definitions of the distances used here differ from those given in [12],
we outline the short argument for the first inequality.

Since δvol and δBM are translation invariant in both arguments, we can assume that 0 ∈ K,M
and K ⊂M ⊂ eδK, where δ := δBM, and therefore V (K) ≤ V (M) ≤ enδV (K) or

1 ≤
(
V (M)

V (K)

) 1
n

≤ eδ.

Thus we conclude that
e−δK0 ⊂M0 ⊂ eδK0,

where K0 := V (K)−
1
nK and M0 := V (M)−

1
nM . But then

V (K0∆M0) ≤ V ((eδK0) \K0) + V ((eδM0) \M0) ≤ 2
(
eδ − 1

)
≤ 2δeδ.

Now the assertion follows since δBM(K,M) ≤ n2. 2
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9 Proof of Theorem 1.4
Throughout the proof, we have n = 2. The argument is based on [28], which we briefly recall.
For a convex body K in Rn and u ∈ Sn−1, we write H−(K, u) for the supporting half-space of
K which contains K and has exterior unit normal u, and H(K, u) for its bounding hyperplane.

For the proof, we assume that

ir(K) ≥ (1− ε)ir(T 2). (59)

Let IR(K) := S(K)2/V (K) for a convex body K in R2. Then ir(T 2) = IR(T 2). Let T1

be a triangle of maximal area contained in K. We can assume that T1 is a regular triangle
centred at 0 with height 1, whose vertices are denoted by p1, p2, p3. Let u1, u2, u3 ∈ S1 denote
the exterior normal vectors of the edges of T1. Then the lines H(T1,−ui), i = 1, 2, 3, pass
through the vertices of T1 and bound a regular triangle T2 of height 2 which contains K. Choose
qi ∈ K ∩H(K, ui) and let xi ∈ [0, 1] be the distance of qi from H(T1, ui) for i = 1, 2, 3. Then

T1 ⊂ P1 := conv{p1, p2, p3, q1, q2, q3} ⊂ K ⊂
3⋂
i=1

H−(K, ui) ∩
3⋂
i=1

H−(K,−ui) =: P2 ⊂ T2.

Let x := (x1 + x2 + x3)/3 ∈ [0, 1]. Elementary geometric arguments show (see [28]) that

S(P2) = (1 + x)S(T2) and V (P1) = (1 + 3x)V (T2),

and therefore

ir(K) ≤ IR(K) ≤ S(P2)2

V (P1)
≤
(

1− x(1− x)

1 + 3x

)
ir(T 2).

From (59) we conclude that (1 + 3x)−1x(1− x) ≤ ε, and thus x(1− x) ≤ 4ε.
If x ≤ 1/2, then x ≤ 8ε and thus xi ≤ 24ε for i = 1, 2, 3. If x ≥ 1/2, then in fact x ≥ 1−8ε

and hence xi ≥ 1− 24ε for i = 1, 2, 3. In the first case, we conclude that

T1 ⊂ K ⊂ P2 ⊂ (1 + 72ε)T1,

which implies
δBM(K,T 2) ≤ ln(1 + 72ε) ≤ 72ε.

In the second case, we find a regular triangle T centred at 0 and homothetic to T2 such that
T ⊂ K ⊂ T2 whose edges have distance at least (2/3)− 24(2/3)

√
3 ε from 0. This shows that

δBM(K,T 2) ≤ ln

(
1

1− 24
√

3ε

)
≤ 72ε

for ε ≤ 1/72. This completes the proof in both cases.
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10 Isotropic measures: proof of Theorem 1.5
Our proof of Theorem 1.5 will be based on Proposition 7.1. For this reason we have to ensure
that we can switch from a centred, isotropic measure µ on Sn−1 to a discrete, centred, isotropic
measure on Sn−1 with support contained in the support of µ and whose support has bounded
cardinality. That this can indeed be achieved is shown by the following lemma.

Recall that N = n(n+ 3)/2.

Lemma 10.1 Let µ be a centred, isotropic measure on Sn−1. Then there exists a discrete, cen-
tred, isotropic measure µ0 on Sn−1 such that supp µ0 ⊂ supp µ and the cardinality of supp µ0 is
at most N + 1.

Proof: We consider the map F : supp µ → RN given by F (u) := (u⊗ u, u). Here we interpret
u⊗ u as the upper triangular part (including the main diagonal) of the symmetric matrix u⊗ u,
and thus we identify the vectors (u⊗ u, u) with vectors in RN . Since supp µ ⊂ Sn−1 is compact
and F is continuous, the image set F (supp µ) ⊂ RN is compact as well. Then also the convex
hull of this image set, conv(F (supp µ)) ⊂ RN is compact. The probability measure µ̄ := µ/n
has the same support as µ and satisfies(∫

Sn−1

u⊗ u dµ̄(u),

∫
Sn−1

u dµ̄(u)

)
=

(
1

n
Idn, 0

)
∈ RN .

Let Dl be a decomposition of Sn−1 into finitely many disjoint Borel sets of diameter at most 1/l,
l ∈ N. We put D∗l := {∆ ∈ Dl : ∆ ∩ supp µ̄ 6= ∅}. For ∆ ∈ D∗l , we fix some v∆ ∈ ∆ ∩ supp µ̄.
Then

µ̄l :=
∑

∆∈D∗l

µ̄(∆)δ[v∆]

is a discrete probability measure on Sn−1 and supp µ̄l ⊂ supp µ̄. Moreover, µ̄l → µ̄ in the weak
topology as l→∞. Therefore, we conclude that∑

∆∈D∗l

µ̄(∆) (v∆ ⊗ v∆, v∆) =

(∫
Sn−1

v ⊗ v dµ̄l(v),

∫
Sn−1

v dµ̄l(v)

)
→
(

1

n
Idn, 0

)

in RN as l→∞. This shows that(
1

n
Idn, 0

)
∈ cl conv(F (supp µ̄)) = conv(F (supp µ̄)).

By Carathéodory’s theorem (see, e.g., [38, Theorem 1.1.4]) there exist k ≤ N + 1 vectors
u1, . . . , uk ∈ supp µ̄ ⊂ Sn−1 such that(

1

n
Idn, 0

)
∈ conv(F ({u1, . . . , uk})),
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that is, there exist α1, . . . , αk ≥ 0 with α1 + . . .+ αk = 1 such that(
1

n
Idn, 0

)
=

k∑
i=1

αiF (ui) =
k∑
i=1

αi(ui ⊗ ui, ui).

This shows that with ci := nαi for i = 1, . . . , k the measure

µ0 :=
k∑
i=1

ciδ[ui]

satisfies all requirements. 2

For the proof of Theorem 1.5 we can assume that ε ∈ (0, n−268n), since otherwise n70nε
1
4 ≥

n3n and the assertion is trivial. For the given measure µ there is a measure µ0 as described in
Lemma 10.1. Combined with the assumption of Theorem 1.5 this yields that

(1− ε)V (T n) ≤ V (Z(µ)) ≤ V (Z(µ0)).

Hence we can apply Proposition 7.1 and obtain a regular simplex S circumscribed aboutBn with
contact points w1, . . . , wn+1 and such that

δH(supp µ0, supp µS) ≤ n60nε
1
4 . (60)

If supp µ0 = supp µ̄, the proof is finished. Hence, let u∗ ∈ supp(µ̄) \ supp(µ0) and let Z∗ be the
polytope circumscribed to Bn with contact points supp(µ0) ∪ {u∗}. Then we have

(1− ε)V (T n) ≤ V (Z(µ)) ≤ V (Z∗).

Let η := n60nε
1
4 < γ−1 = (9 · 2n+2n2n+2)−1. From (60) we conclude that we can assume that

supp µ0 = {u1, . . . , uk}, k ≥ n + 1, with ∠(ui, wi) ≤ η for i = 1, . . . , n + 1. Assume that
∠(u∗, wi) ≥ γη for i = 1, . . . , n+ 1. Then Lemma 5.3 implies that

(1− ε)V (T n) ≤ V (Z∗) ≤
(

1− γη

2n+2n2n

)
V (T n),

and therefore γη ≤ 2n+2n2nε, which contradicts ε ≤ 1. This shows that ∠(u∗, wi) < γη for some
i ∈ {1, . . . , n + 1}. Since γη ≤ n67nε

1
4 , it finally follows that δH(supp µ̄, supp µS) ≤ n67nε

1
4 ,

which proves the theorem. 2

Finally, we justify the remark following Theorem 1.5 by establishing the next lemma. For
w ∈ Sn−1 and ε ≥ 0, we consider U(w, ε) := {u ∈ Sn−1 : ∠(u,w) ≤ ε}, that is, the closed
spherical (geodesic) ball with centre w and radius ε.
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Lemma 10.2 Let S be a regular simplex circumscribed about Bn with contact points
w1, . . . , wn+1 ∈ Sn−1, let µ be a centred, isotropic Borel measure on Sn−1, and let ε ∈ (0, 1/2).
If δH(supp µ, supp µS) ≤ ε, then∣∣∣∣µ(U(wi, ε))−

n

n+ 1

∣∣∣∣ ≤ 2nε, i = 1, . . . , n+ 1.

Proof: Let the map G : Sn−1 → Sn be defined by

G(u) := −
√

n

n+ 1
u+

√
1

n+ 1
en+1.

Since µ is centred and isotropic, we obtain

Idn+1 =
n+ 1

n

∫
Sn−1

G(u)⊗G(u) dµ(u).

By assumption, supp µ ⊂
⋃n+1
i=1 U(wi, ε) and the union is disjoint. For u ∈ U(wi, ε) and x ∈ Sn,

using the triangle and the Cauchy-Schwarz inequality as well as the fact that G(u), G(wi) and x
are unit vectors, we get

‖〈G(u), x〉G(u)− 〈G(wi), x〉G(wi)‖ ≤ 2‖G(u)−G(wi)‖ ≤ 2‖u− wi‖ ≤ 2ε.

Hence, for any x ∈ Sn,∥∥∥∥∥x− n+ 1

n

n+1∑
i=1

µ(U(wi, ε))〈G(wi), x〉G(wi)

∥∥∥∥∥
=
n+ 1

n

∥∥∥∥∥
∫
Sn−1

〈G(u), x〉G(u) dµ(u)−
n+1∑
i=1

µ(U(wi, ε))〈G(wi), x〉G(wi)

∥∥∥∥∥
≤ n+ 1

n

n+1∑
i=1

∫
U(wi,ε)

‖〈G(u), x〉G(u)− 〈G(wi), x〉G(wi)‖ dµ(u)

≤ n+ 1

n
2ε

n+1∑
i=1

µ(U(wi, ε)) = 2(n+ 1)ε.

The special choice x = G(wi), for some i ∈ {1, . . . , n + 1}, together with the fact that
G(w1), . . . , G(wn+1) is an orthonormal basis of Rn+1 then yields

|1− ((n+ 1)/n)µ(U(wi, ε)| ≤ 2(n+ 1)ε,

from which the assertion follows. 2
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Let the assumptions of Lemma 10.2 be satisfied. Furthermore, let f : Sn−1 → R be lipschitz
with lipschitz constant ‖f‖L. Here the definition of the lipschitz constant is based on the geodesic
distance on Sn−1. Since µ and µS have the same total measure n, we can replace f by f − f(e1)
in the following estimation, and therefore we can assume that the sup norm ‖f‖∞ of f satisfies
‖f‖∞ ≤ 4‖f‖L. Thus, we get∣∣∣∣∫

Sn−1

f dµ−
∫
Sn−1

f dµS

∣∣∣∣ ≤ n+1∑
i=1

∫
U(wi,ε)

|f − f(wi)| dµ+
n+1∑
i=1

|f(wi)|2nε

≤ ‖f‖Lεn+ ‖f‖∞2n(n+ 1)ε

≤ 13n2ε‖f‖L,

which yields the asserted bound for the Wasserstein distance dW (µ, µS).

11 Proof of Theorem 1.6
We state the next lemma in general dimensions although we will need it only in the plane.

Lemma 11.1 Let µ be a centred and isotropic Borel measure on Sn−1. Let v ∈ Sn−1 be given.
Then there is some u∗ ∈ supp µ such that 〈u∗, v〉 ≥ 1/n.

Proof: We fix v ∈ Sn−1 and define S+ := {u ∈ Sn−1 : 〈u, v〉 ≥ 0} and S− := Sn−1 \ S+. Since
µ is centred and 〈u, v〉 ≥ −1, we have

−
∫
S+

〈u, v〉 dµ(u) =

∫
S−

〈u, v〉 dµ(u) ≥ −µ(S−),

and hence
µ(S−) ≥

∫
S+

〈u, v〉 dµ(u). (61)

Choose u∗ ∈ supp µ such that 〈u∗, v〉 = max{〈u, v〉 : u ∈ supp µ}. The maximum exists as
supp µ is compact. It is also clear (since µ is centred) that u∗ ∈ S+. Then (61) implies∫

S+

〈u, v〉2 dµ(u) ≤ 〈u∗, v〉
∫
S+

〈u, v〉 dµ(u) ≤ 〈u∗, v〉µ(S−). (62)

In addition, we have∫
S−

〈u, v〉2 dµ(u) ≤
∫
S−

|〈u, v〉| dµ(u) = −
∫
S−

〈u, v〉 dµ(u) =

∫
S+

〈u, v〉 dµ(u)

≤ 〈u∗, v〉µ(S+). (63)
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Using (62), (63), the isotropy of µ and µ(Sn−1) = n, we conclude

1 =

∫
Sn−1

〈u, v〉2 dµ(u) =

∫
S+

〈u, v〉2 dµ(u) +

∫
S−

〈u, v〉2 dµ(u)

≤ 〈u∗, v〉µ(S−) + 〈u∗, v〉µ(S+) = 〈u∗, v〉µ(Sn−1) = n〈u∗, v〉,

which yields the assertion. 2

We say that a non-empty closed subset X of S1 is proper, if for any v ∈ S1, there exists some
u ∈ X such that 〈v, u〉 ≥ 1

2
. A closed set X ⊂ S1 is proper if and only if the angle of two

consecutive points of X is at most 2π/3.
For a non-empty closed set X ⊂ S1, let d0(X) be the minimum of δH(X, σ) where σ runs

through the set of contact points of the regular triangles circumscribed about B2. If X is proper,
then clearly d0(X) ≤ π/3.

Lemma 11.2 If X ⊂ S1 is proper, and d0(X) ≥ η for η ∈ (0, π
6
], then there exist u, v ∈ X such

that η ≤ ∠(u, v) ≤ 2π
3
− η.

Proof: We prove the lemma by contradiction, thus we suppose that for any u, v ∈ X , we have

either ∠(u, v) < η or ∠(u, v) > 2π
3
− η ≥ π

2
> 2η. (64)

The set X has at least four elements since X is proper and d0(X) > 0. Thus there exist u′1, v
′
1 ∈

X such that 0 < ∠(u′1, v
′
1) ≤ π

2
. We deduce from (64) that ∠(u′1, v

′
1) < η. According to

(64), there exists v1 ∈ X such that ∠(u′1, v1) is maximal under the conditions ∠(u′1, v1) < η
and v′1 ∈ pos{u′1, v1}. Similarly, there exists u1 ∈ X such that ∠(u1, v1) is maximal under the
conditions ∠(u1, v1) < η and u′1 ∈ pos{u1, v1}.

As X is proper, there exists u2 ∈ X such that lin v1 separates u1 and u2, and ∠(u2, v1) is
minimal under the conditions ∠(u2, v1) ≤ 2π

3
and that lin v1 separates u1 and u2. We actually

have
π
2
≤ 2π

3
− η < ∠(u2, v1) ≤ 2π

3
, (65)

since ∠(u2, v1) < η would imply η ≤ ∠(u2, u1) < 2η, contradicting (64). In particular, we have
X ∩ pos{u2, v1} = {u2, v1}. Similarly, there exists v3 ∈ X such that linu1 separates v1 and v3,
and

π
2
≤ 2π

3
− η < ∠(v3, u1) ≤ 2π

3
, (66)

moreover X ∩ pos{v3, u1} = {v3, u1}. It also follows from (65) and (66) that u2 and v3 are not
opposite, and the shorter arc of S1 connecting them does not contain u1 and v1.

Finally, let v2 ∈ X ∩pos{u2, v3}maximize ∠(v2, u2) under the condition ∠(v2, u2) < η, and
let u3 ∈ X ∩ pos{u2, v3} maximize ∠(u3, v3) under the condition ∠(u3, v3) < η. Here possibly
v2 = u2 or u3 = v3. If there were w ∈ X∩ int pos{v2, u3}, then ∠(w, v3) > π

2
and ∠(w, u2) > π

2

would follow from (64), what is absurd. Therefore X ∩ pos{u3, v2} = {u3, v2}, and

π
2
≤ 2π

3
− η < ∠(u3, v2) ≤ 2π

3
, (67)
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Now the arcs S1 ∩ pos{u1, v2}, S1 ∩ pos{u2, v3} and S1 ∩ pos{u3, v1} cover S1 by their
constructions, thus

∠(u1, v2) + ∠(u2, v3) + ∠(u3, v1) > 2π. (68)

In particular, one of ∠(u1, v2), ∠(u2, v3) and ∠(u3, v1) is larger than 2π
3

by (68).
If ∠(u1, v2) > 2π

3
, then we define p3 ∈ S1 in such a way that −p3 is the midpoint of the arc

S1 ∩ pos{u1, v2}. For i = 1, 2, let pi ∈ S1 satisfy ∠(pi, p3) = 2π
3

in such a way that p1 and p2

lie on the same side of lin p3 where u1 and v2 lie, respectively. In particular, p1, p2 and p3 are
vertices of a regular triangle. We deduce using (66) and (67) that

p1, p2 ∈ pos{u1, v2} and ∠(u1, v2) < 2π
3

+ 2η. (69)

For i = 1, 2, it follows from (69) that if w ∈ S1 ∩ pos{ui, vi}, then ∠(w, pi) < η. In addition,
(66) and (67) yield that if w ∈ S1 ∩ pos{u3, v3}, then ∠(w, p1) < η, and hence d0(X) < η,
which is a contradiction. If ∠(u2, v3) > 2π

3
or ∠(u3, v1) > 2π

3
in (68), then similar arguments

lead to a contradiction, which completes the proof of Lemma 11.2. 2

In the following, we use the fact (T) that for 0 ≤ β ≤ α ≤ 2π/3 the function

F (t) = tan

(
α + t

2

)
+ tan

(
β − t

2

)
=

2 sin
(
α+β

2

)
cos
(
α+β

2

)
+ cos

(
t+ α−β

2

)
is increasing for 0 ≤ t ≤ min{β, 2π

3
− α}.

After these preparations, we turn to the proof of Theorem 1.6.
Proof: It is sufficient to prove that if η ∈ (0, π

6
], and d0(suppµ) ≥ η, then

V (Z(µ)) ≤
(

1− η

8

)
V (T 2). (70)

Indeed, if d0(suppµ) > 32ε, then 8ε < π/6, since d0(suppµ) ≤ 2π/3 by Lemma 11.1. But
then the preceding claim can be applied with η = 8ε.

Now we turn to the proof of the claim. It follows from Lemma 11.2 that there exist u1, u2 ∈
suppµ such that

η ≤ ∠(u1, u2) ≤ 2π
3
− η. (71)

Since by Lemma 11.1 suppµ is proper, there exist u3, . . . , uk ∈ suppµ, k ≥ 4, such that
u1, . . . , uk (in this order) lie on S1 and form a proper set. Then

V (Z(µ)) ≤ 2
k∑
i=1

tan
(αi

2

)
,
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where α1 = ∠(u1, u2) ∈ [η, 2π
3
− η], αi = ∠(ui, ui+1) with uk+1 := u1 and 0 ≤ αi ≤ 2π/3.

Applying repeatedly (T) to pairs of the angles α2, . . . , αk, it follows that

2
k∑
i=1

tan
(αi

2

)
= 2

(
tan
(α1

2

)
+ tan

(
2π − 4π

3
− α1

2

)
+ 2 tan

(π
3

))
= 2

(
tan
(α1

2

)
+ tan

(π
3
− α1

2

)
+ 2
√

3
)

≤ 2
(

tan
(η

2

)
+ tan

(π
3
− η

2

)
+ 2
√

3
)

≤ 2

( √
3

1
2

cos
(
η − π

3

) + 2
√

3

)
≤
(

1− η

8

)
6
√

3

=
(

1− η

8

)
V (T 2),

which proves the assertion. 2

12 Proof of Theorem 1.2
Let K be a convex body in R2 whose John ellipsoid is the Euclidean unit ball. As before (at
the beginning of Section 8), the contact points of K and B2 define a discrete, centred, isotropic
measure µ and a polytope Z = Z(µ) which contains K.

If V (Z) ≥ (1 − ε)V (T 2) with some ε ∈ (0, 1), then Theorem 1.6 implies the existence of
a regular simplex S circumscribed about B2 such that δH(supp µ, supp µS) ≤ 32 ε. Choosing
η := 32 ε < 1/18, that is with ε < 1/(18 · 32), we see from Lemma 5.2 that d(Z) < 18 · 32 ε.
Hence, if d(Z) ≥ 18 · 32 ε and ε < 1/(18 · 32), then V (Z) < (1 − ε)V (T 2), and therefore
S(K)2/V (K) ≤ (1 − ε)ir(T 2). On the other hand, if d(Z) < 18 · 32 ε and δvol(K,T

2) ≥
16 · 18 · 32 ε, then Lemma 8.1 (ii) implies that

S(K)2

V (K)
≤
(

1− 1

8
16 · 18 · 32 ε

)
ir(T 2) = (1− 16 · 32 ε)ir(T 2),

provided that 16 · 18 · 32 ε < 1. This implies the assertion of the theorem. 2
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[12] K. J. Böröczky, M. Henk: Cone volume measure and stability. arXiv:1407.7272.
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