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Abstract

Two consequences of the stability version of the one dimensional
Prékopa-Leindler inequality are presented. One is the stability ver-
sion of the Blaschke-Santaló inequality, and the other is a stability
version of the Prékopa-Leindler inequality for even functions in higher
dimensions, where a recent stability version of the Brunn-Minkowski
inequality is also used in an essential way.

1 The problem

Our main theme is some consequences of the Prékopa-Leindler inequality in
one dimension. The inequality itself, due to A. Prékopa [28] and L. Leindler
[23], was generalized in A. Prékopa [29] and [30], C. Borell [9], and in H.J.
Brascamp, E.H. Lieb [11]. Various applications are provided and surveyed
in K.M. Ball [1], F. Barthe [4], and R.J. Gardner [16]. The following mul-
tiplicative version from [1], is often more useful and is more convenient for
geometric applications.

∗Supported by OTKA grants 068398 and 75016, and by the EU Marie Curie TOK
project DiscConvGeo, and FP7 IEF grant GEOSUMSETS.
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THEOREM 1.1 (Prékopa-Leindler) If m, f, g are non-negative integrable
functions on R satisfying m( r+s

2
) ≥

√
f(r)g(s) for r, s ∈ R, then∫

R
m ≥

√∫
R
f ·
∫
R
g.

S. Dubuc [13] characterized the equality case if the integrals of f, g,m
above are positive, and K.M. Ball, K.J. Böröczky [3] even provided the fol-
lowing stability version.

THEOREM 1.2 There exists an positive absolute constant c with the fol-
lowing property: If m, f, g are non-negative integrable functions with positive
integrals on R such that m is log-concave, m( r+s

2
) ≥

√
f(r)g(s) for r, s ∈ R,

and ∫
R
m ≤ (1 + ε)

√∫
R
f ·
∫
R
g,

for ε > 0, then there exist a > 0, b ∈ R such that∫
R
|f(t)− am(t+ b)| dt ≤ c · 3

√
ε| ln ε|

4
3 ·
∫
R
m(t) dt∫

R
|g(t)− a−1m(t− b)| dt ≤ c · 3

√
ε| ln ε|

4
3 ·
∫
R
m(t) dt.

Remark If f and g are log-concave probability distributions then a = 1
can be assumed, and if in addition f and g have the same expectation, then
even b = 0 can be assumed.

As it was observed by C. Borell [9], and later independently by K.M. Ball
[1], assigning to any function H : [0,∞]→ [0,∞] the function h : R→ [0,∞]
defined by h(x) = H(ex)ex, we have the version Theorem 1.3 of the Prékopa-
Leindler inequality. We note that if H is log-concave and decreasing, then h
is log-concave.

THEOREM 1.3 If M,F,G : [0,∞] → [0,∞] integrable functions satisfy
M(
√
rs) ≥

√
F (r)G(s) for r, s ≥ 0, then∫ ∞

0

M ≥

√∫ ∞
0

F ·
∫ ∞
0

G.
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Therefore we deduce the following statement by Theorem 1.2:

COROLLARY 1.4 There exists a positive absolute constant c with the fol-
lowing property: If M,F,G : [0,∞] → [0,∞] are integrable functions with
positive integrals such that M is log-concave and decreasing, M(

√
rs) ≥√

F (r)G(s) for r, s ∈ [0,∞], and∫ ∞
0

M ≤ (1 + ε)

√∫ ∞
0

F ·
∫ ∞
0

G,

for ε > 0, then there exist a, b > 0, such that∫ ∞
0

|F (t)− aM(b t)| dt ≤ c · 3
√
ε| ln ε|

4
3 ·
∫ ∞
0

M(t) dt∫ ∞
0

|G(t)− a−1M(b−1t)| dt ≤ c · 3
√
ε| ln ε|

4
3 ·
∫ ∞
0

M(t) dt.

Remark If in adddition F and G are decreasing log-concave probability
distributions then a = b can be assumed. The condition that M is log-
concave and decreasing can be replaced by the one that M(et) is log-concave.

2 A stability version of the Blaschke-Santaló

inequality

Based on the approach in the PhD thesis K.M. Ball [1], in this section we
show how to provide a stability version of the Blaschke-Santaló inequality
using the stability version Corollary 1.4 of the Prékopa-Leindler inequality
in one one dimension.

We write o to denote the origin of Rn, 〈·, ·〉 to denote the standard scalar
product. We write | · | to denote the Lebesgue measure in Rn, where the
Lebesgue measure of the empty set is 0. Let Bn be the unit Euclidean ball
with volume κn = |Bn|. A convex body K in Rn is a compact convex set
with non–empty interior. If z ∈ intK, then the polar of K with respect to z
is the convex body

Kz = {x ∈ Rn : 〈x− z, y − z〉 ≤ 1 for any y ∈ K}.

It is easy to see that (Kz)z = K, and the volume product |K|·|Kz| is invariant
under affine maps fixing z. According to L.A. Santaló [32] (see also M. Meyer
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and A. Pajor [25]), there exists a unique z ∈ intK minimizing |Kz|, which
is called the Santaló point of K. In this case z is the centroid of Kz. The
celebrated Blaschke-Santaló inequality states that if z is the Santaló point
(or centroid) of K, then

|K| · |Kz| ≤ κ2n, (1)

with equality if and only if K is an ellipsoid. The inequality was proved
by W. Blaschke [6] for n ≤ 3, and by L.A. Santaló [32] for all n. The case
of equality was characterized by J. Saint-Raymond [31] among o-symmetric
convex bodies, and by C.M. Petty [27] among all convex bodies (see also M.
Meyer and A. Pajor [25], D. Hug [20], and M. Meyer and S. Reisner [26] for
simpler proofs).

A natural tool is the Banach-Mazur distance δBM(K,M) of the convex
bodies K and M , which is defined by

δBM(K,M) = ln min{λ ≥ 1 : K−x ⊂ Φ(M−y) ⊂ λ(K−x) for Φ ∈ GL(n), x, y ∈ Rn}.

Here, unlike in K.M. Ball, K.J. Böröczky [3], we introduce a logarithm into
the definition of the Banach-Mazur distance to simplify various formulae. In
particular, if K and M are o-symmetric, then x = y = o can be assumed,
and in this case δBM(K,M) = δBM(Ko,M o). It follows from a theorem of
F. John [21] that δBM(K,Bn) ≤ lnn for any convex body K in Rn (see also
K.M. Ball [2]).

K.J. Böröczky [10] proved a stability version of the Blaschke-Santaló in-
equality. One of the main tools in that paper is to reduce the problem to
o-symmetric convex bodies with axial rotational symmetry; namely, combin-
ing Theorem 1.4 and Lemma 2.1 in [10] yields the following.

LEMMA 2.1 For any n ≥ 2 there exists γ̃ > 0 depending only on n, such
that if K is a convex body in Rn with Santaló point z, then one finds an
o-symmetric convex body C with axial rotational symmetry, and satisfying
δBM(C,Bn) ≥ γ̃δBM(K,Bn)2 and |C| · |Co| ≥ |K| · |Kz|.

Remark: If K is o-symmetric, then even δBM(C,Bn) ≥ γ̃δBM(K,Bn).

Now we are ready to prove our main result in this section:

THEOREM 2.2 If K is a convex body in Rn, n ≥ 3, with Santaló point z,
and

(1 + ε)|K| · |Kz| > κ2n for ε > 0,
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then for some γ > 0 depending only on n, we have

δBM(K,Bn) < γ ε
1

3(n+1) | log ε|
4

3(n+1) .

Remark: If K is o-symmetric, then the exponent 1
3(n+1)

occuring in Theo-

rem 2.2 can be replaced by 2
3(n+1)

.
Taking K to be the convex body resulting from Bn by cutting off two

opposite caps of volume ε shows that the exponent 1/(3(n + 1)) cannot be
replaced by anything larger than 2/(n+1) even for o-symmetric convex bodies
with axial rotational symmetry. Therefore the exponent of ε is of the correct
order. In addition if the error in Corollary 1.4 could be reduced to ε, then
we would have the stability version of the Blaschke-Santaló inequality of the
correct order.

We note that the exponent of ε is 1/(6n) in the stability version of the
Blaschke-Santaló inequality proved in K.J. Böröczky [10].

Proof of Theorem 2.2: Let C be the o-symmetric convex body provided
by Lemma 2.1. Moreover let u be a unit vector, and let α > 0 such that
αu ∈ ∂C and a section C ∩ (u⊥ + tu) for t ∈ (−α, α) is an (n − 1)-ball of
radius ϕ(t), and of area F (t) = ϕ(t)n−1κn−1. In turn α−1u ∈ ∂Co, and if
t ∈ (−α−1, α−1), then Co ∩ (u⊥ + tu) is an (n − 1)-ball of radius ψ(t), and
of area G(t) = ψ(t)n−1κn−1. We observe that for t ∈ (−1, 1), Bn ∩ (u⊥ + tu)

is an (n − 1)-ball of radius (1 − t2)
1
2 and of area M(t) = (1 − t2)

n−1
2 κn−1.

We define F (t) = 0, G(t) = 0 and M(t) = 0 if t ≥ α, t ≥ α−1, and t ≥ 1,
respectively. For v ∈ u⊥, r ∈ (−α, α) and s ∈ (−α−1, α−1), we have

ϕ(r) · ψ(s) = 〈ru+ ϕ(r)v, su+ ψ(s)v〉 − rs ≤ 1− rs.

In particular M(
√
rs) ≥

√
F (r)G(s), and(∫ ∞

0

M

)2

=
κ2n
4
≤ (1 + ε)|C| · |Co|

4
= (1 + ε)

(∫ ∞
0

F

)(∫ ∞
0

G

)
.

Therefore we may apply Corollary 1.4, and deduce that there exist a, b > 0
such that ∫ ∞

0

|aF (b t)−M(t)| dt ≤ c · 3
√
ε| ln ε|

4
3 · κn. (2)

Let Φ be the linear transform such that Φu = b−1u, and if v ∈ u⊥ then

Φv = a
1

n−1v. Therefore C̃ = ΦC is an o-symmetric convex body with axial
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symmetry around Ru such that

δBM(C̃, Bn) = δBM(C,Bn) ≥ γ̃δBM(K,Bn)2, (3)

and the area of C̃ ∩ (u⊥ + tu) is aF (b t) for any t ∈ (0, b−1α). In particular

|C̃∆Bn| ≤ 2c · 3
√
ε| ln ε|

4
3 · κn, (4)

where ∆ denotes the symmetric difference. Let us show that (4) forces ∂C̃
to be contained in a thin spherical shell. If a cap of Bn of depth h is disjoint
from C̃, then its volume is less than |C̃∆Bn|. Since the cap contains a cone
of height h whose base is an (n− 1)-ball of radius

√
h, we have

(1− γ1|C̃∆Bn|
2

n+1 )Bn ⊂ C̃.

for some γ1 > 0 depending only on n.

Next we set s = γ1|C̃∆Bn|
2

n+1 . Let us assume that a point p ∈ C̃ is of
distance t from Bn where s < t < 1

4
. The points where the tangent lines

from p touch (1− s)Bn determine a cap of (1− s)Bn whose depth is between

t/2 and 2t. It follows that C̃\Bn contains a cone of height t, whose base is
an (n− 1)-ball of radius

√
t/8. Therefore there exists γ2 > 0 depending only

on n, such that

C̃ ⊂ (1 + γ2|C̃∆Bn|
2

n+1 )Bn.

Finally we conclude Theorem 2.2 by (3) and (4). 2

As it is explained in K.J. Böröczky [10], the stability version Theorem 2.2
yields stability versions with the same order of the error term for two basic
affine invariant inequalities. The first is the affine isoperimetric inequality
of W. Blaschke [5] or [7] (see L.A. Santaló [32] for n ≥ 4), and the other is
the isoperimetric inequality for the geominimal surface area by C.M. Petty
[27]. The monograph K. Leichtweiß [22], and the survey paper E. Lutwak
[24] provide introductions into the by now classical theory of these notions.

3 The stability version of the Brunn-Minkowski

inequality due to Figalli, Maggi, Pratelli

For any α, β > 0, and measurable sets X, Y, Z ⊂ Rn with

αX + βY ⊂ Z,
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the Brunn-Minkowski inequality says that

|Z|
1
n ≥ α|X|

1
n + β|Y |

1
n .

Obviously the case α = β = 1 yields the general case.
Since the days of H. Minkowski, there are stability versions of the Brunn-

Minkowski inequality if X and Y are convex bodies, mostly in terms of the
so called Hausdorff metric, see the survey paper H. Groemer [18]. In higher
dimensions, the best estimates are due to V.I. Diskant [12] and H. Groemer
[17].

Recently A. Figalli, F. Maggi, A. Pratelli [14] and [15] obtained an optimal
stability version of the Brunn-Minkowski inequality in terms of the volume
difference. To define the “homothetic distance” A(K,C) of convex bodies K

and C, let α = |K|−1
n and β = |C|−1

n , and let

A(K,C) = min {|αK∆(x+ βC)| : x ∈ Rn} .

We observe that |αK∩(x+βC)| 1n is a concave function of x ∈ αK−βC by the
Brunn-Minkowski inequality. Therefore if both K and C are o-symmetric,
and |C| = |K|, then

A(K,C) = |K∆C|/|K|. (5)

Next let

σ(K,C) = max

{
|C|
|K|

,
|K|
|C|

}
.

THEOREM 3.1 (Figalli,Maggi,Pratelli) For γ∗ = ( (2−2
n−1
n )

3
2

122n7 )2, and any
convex bodies K and C in Rn,

|K + C|
1
n ≥ (|K|

1
n + |C|

1
n )

[
1 +

γ∗

σ(K,C)
1
n

· A(K,C)2

]
.

We will need the product form of the Brunn-Minkowski inequality. Since

1

2

(
|K|

1
n + |C|

1
n

)
= |K|

1
2n |C|

1
2n

[
1 +

1

2

(
σ(K,C)

1
4n − σ(K,C)

−1
4n

)2]
≥ |K|

1
2n |C|

1
2n

[
1 +

(σ(K,C)− 1)2

32n2σ(K,C)
4n−1
2n

]
,

we conclude with σ = σ(K,C) that∣∣1
2
(K + C)

∣∣ ≥√|K| · |C| [1 +
(σ − 1)2

32nσ2
+
nγ∗

σ
1
n

· A(K,C)2
]
. (6)
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4 Prékopa-Leindler inequality in higher di-

mensions for even functions

Let f, g,m : Rn → [0,∞] be such that m(x+y
2

) ≥
√
f(x)g(y) for x, y ∈ Rn,

and for t > 0, let

Φt = {x ∈ Rn : f(x) ≥ t} and F (t) = |Φt|
Ψt = {x ∈ Rn : g(x) ≥ t} and G(t) = |Ψt|
Ωt = {x ∈ Rn : m(x) ≥ t} and M(t) = |Ωt|.

As it was observed in K.M. Ball [1], the condition on f, g,m yields that if
Φr,Ψs 6= ∅ for r, s > 0, then

1
2
(Φr + Ψs) ⊂ Ω√rs. (7)

Therefore the Brunn-Minkowski inequality yields that

M(
√
rs) ≥

(
F (r)

1
n +G(s)

1
n

2

)n

≥
√
F (r) ·G(s) (8)

for all r, s > 0. In particular we deduce the Prékopa-Leindler inequality by
Theorem 1.3, as∫

Rn

m =

∫ ∞
0

M(t) dt ≥

√∫ ∞
0

F (t) dt ·
∫ ∞
0

G(t) dt =

√∫
Rn

f ·
∫
Rn

g.

The main goal of this section is to prove a stability version of the Prékopa-
Leindler inequality at least for even functions. First let

ω(ε) = 3
√
ε| ln ε|

4
3 ,

which is the error estimate in Theorem 1.2 (and hence the error estimate in
Corollary 1.4). If ϕ and ψ are real functions, then we write ϕ � ψ if there
exists a γ > 0 depending only on n such that |ϕ| ≤ γ · ψ.

THEOREM 4.1 If m, f, g : Rn → [0,∞] are even and integrable such that
m is log-concave, m(x+y

2
) ≥

√
f(x)g(y) for x, y ∈ Rn, and∫

Rn

m ≤ (1 + ε)

√∫
Rn

f ·
∫
Rn

g
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for ε > 0, then there exists a > 0 such that∫
Rn

|a f(x)−m(x)| dx �
√
ω(ε)

∫
Rn

m∫
Rn

|a−1g(x)−m(x)| dx �
√
ω(ε)

∫
Rn

m.

Proof: As in the one dimensional case (see K.M. Ball, K.J. Böröczky [3],
Section 6), we may assume that f, g : Rn → [0,∞] are even and log-concave
probability distributions. We may also assume that ε ∈ (0, ε0) where ε0 ∈
(0, 1) is chosen in a suitable way and depends only on n.

We define Φt,Ψt,Ωt and F (t), G(t),M(t) analogously as at the beginning
of the section. We observe that Φt,Ψt,Ωt are o-symmetric convex bodies, and
F (t), G(t),M(t) are decreasing and log-concave, and F,G are probability
distributions on [0,∞]. Since

∫∞
0
M =

∫
Rn m ≤ (1 + ε), it follows from

Corollary 1.4 that there exists some b > 0 such that∫ ∞
0

|bF (bt)−M(t)| dt � ω(ε)∫ ∞
0

|b−1G(b−1t)−M(t)| dt � ω(ε).

We may assume that b ≥ 1. For x ∈ Rn, we define

f̃(x) = b−1f(b
−1
n x)

g̃(x) = b g(b
1
nx).

The main strategy of the proof is as follows. First we verify∫
Rn

|f̃(x)− g̃(x)| dx�
√
ω(ε). (9)

Along the way, we establish b− 1�
√
ω(ε), which in turn yields∫

Rn

|f(x)− g(x)| dx�
√
ω(ε). (10)

Finally we conclude Theorem 4.1 from (10) and (7).
For t > 0, let

Φ̃t = {x ∈ Rn : f̃(x) ≥ t} where Φ̃t = b
1
n Φbt if Φ̃t 6= ∅

Ψ̃t = {x ∈ Rn : g̃(x) ≥ t} where Ψ̃t = b
−1
n Ψb−1t if Ψ̃t 6= ∅.
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These sets satisfy ∫ ∞
0

| |Φ̃t| −M(t)| dt � ω(ε)∫ ∞
0

| |Ψ̃t| −M(t)| dt � ω(ε),

and (7) yields that if Φ̃t 6= ∅ and Ψ̃t 6= ∅ for t > 0, then

1
2
(b

−1
n Φ̃t + b

1
n Ψ̃t) ⊂ Ωt. (11)

The main task is to estimate the L1 distance of f̃ and g̃ using∫
Rn

|f̃(x)− g̃(x)| dx =

∫ ∞
0

|Φ̃t∆Ψ̃t| dt.

We dissect [0,∞) into I and J , where t ∈ I, if 3
4
M(t) < |Φ̃t| < 5

4
M(t) and

3
4
M(t) < |Ψ̃t| < 5

4
M(t), and t ∈ J otherwise. If t ∈ J , then

|Φ̃t∆Ψ̃t| ≤ |Φ̃t|+ |Ψ̃t| ≤ 10
(
| |Φ̃t| −M(t)|+ | |Ψ̃t| −M(t)|

)
.

Therefore ∫
J

|Φ̃t∆Ψ̃t| dt� ω(ε). (12)

In addition if ε0 is small enough, then∫
J

M(t) dt ≤ 4

∫
J

(
| |Φ̃t| −M(t)|+ | |Ψ̃t| −M(t)|

)
dt� ω(ε) <

1

2
. (13)

Turning to I, it follows from the Prékopa-Leindler inequality and (13)
that ∫

I

M(t) dt ≥ 1−
∫
J

M(t) dt >
1

2
. (14)

For t ∈ I, we define α(t) = |Φ̃t|/M(t) and β(t) = |Ψ̃t|/M(t), and hence
3
4
< α(t), β(t) < 5

4
, and∫ ∞

0

M(t) · (|α(t)− 1|+ |β(t)− 1|) dt� ω(ε). (15)
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In addition let

σ(t) = σ
(
b

−1
n Φ̃t, b

1
n Ψ̃t

)
= max

{
b2β(t)

α(t)
,
α(t)

b2β(t)

}
η(t) =

(σ(t)− 1)2

32nσ(t)2
+

nγ∗

σ(t)
1
n

· A(Φ̃t, Ψ̃t)
2,

where γ∗ comes from Theorem 3.1. It follows from α(t), β(t) > 3
4
, (6) and

(11) that

M(t) ≥ M(t) ·
√
α(t) · β(t)(1 + η(t))

≥ M(t) · (1−max{0, 1− α(t)} −max{0, 1− β(t)}) (1 + η(t))

≥ M(t) · (1− |α(t)− 1| − |β(t)− 1|+ 1
2
η(t)).

In particular (15) yields ∫
I

M(t) · η(t) dt� ω(ε). (16)

Next we estimate b. Let t ∈ I. If α(t) ≥ bβ(t) then

|α(t)− 1|+ |β(t)− 1| ≥
√
b− 1√
b
≥ b− 1

2b
≥ (b− 1)2

32nb2
.

If α(t) < bβ(t) then σ(t) > b, and

η(t) >
(b− 1)2

32nb2
.

We deduce by (14), (15) and (16) that

(b− 1)2

64nb2
≤
∫
I

M(t)·(b− 1)2

32nb2
dt ≤

∫ ∞
0

M(t)·(η(t) + |α(t)− 1|+ |β(t)− 1|) dt� ω(ε).

Since b−1
b
> 1

2
if b > 2, we deduce that

b− 1�
√
ω(ε). (17)

It also follows that σ(t) < 2 if ε0 is small enough, and hence A(Φ̃t, Ψ̃t)
2 �

η(t).
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For t ∈ I, we deduce using (5) that

|Φ̃t∆Ψ̃t|2 ≤ 3
[
|α(t)

−1
n Φ̃t∆β(t)

−1
n Ψ̃t|2 + |α(t)

−1
n Φ̃t∆Φ̃t|2 + |β(t)

−1
n Ψ̃t∆Ψ̃t|2

]
= 3

[
A(Φ̃t, Ψ̃t)

2 + |α(t)− 1|2 + |β(t)− 1|2
]
·M(t)2.

In turn we have(∫
I

|Φ̃t∆Ψ̃t| dt
)2

≤
∫
I

|Φ̃t∆Ψ̃t|2

M(t)
dt

∫
I

M(t) dt

�
∫
I

A(Φ̃t, Ψ̃t)
2 ·M(t) dt+ ω(ε)

�
∫
I

η(t) ·M(t) dt+ ω(ε)� ω(ε).

Combining this estimate with (12) yields∫
Rn

|f̃(x)− g̃(x)| dx =

∫ ∞
0

|Φ̃t∆Ψ̃t| dt�
√
ω(ε). (18)

Turning to the L1 distance of f and g, f(b
−1
n x) ≥ f(x) for x ∈ Rn and

the estimate (17) on b yield∫
Rn

|f − f̃ | ≤
∫
Rn

(f − b−1f) +

∫
Rn

[b−1f(b
−1
n x)− b−1f(x)] dx

= 2(1− b−1)�
√
ω(ε).

Similarly
∫
Rn |g(x)− g̃(x)| dx�

√
ω(ε), therefore (18) implies∫

Rn

|f(x)− g(x)| dx =

∫ ∞
0

|Φt∆Ψt| dt ≤ γ1
√
ω(ε) (19)

for a γ1 > 0 depending only on n.
Finally, we compare f and m. It follows by (7) that if Φt,Ψt 6= ∅ for

t > 0, then
Φt ∩Ψt ⊂ Ωt. (20)

Using the γ1 of (19), we have

1− γ1
√
ω(ε) ≤

∫ ∞
0

|Φt| dt−
∫ ∞
0

|Φt∆Ψt| dt

≤
∫ ∞
0

|Φt ∩Ψt| dt ≤
∫ ∞
0

|Ωt| dt ≤ 1 + ε.

12



Since (20) yields that

|Φt∆Ωt| ≤ |Φt∆Ψt|+ |Ωt| − |Φt ∩Ψt|,

we conclude that∫
Rn

|f(x)−m(x)| dx =

∫ ∞
0

|Φt∆Ωt| dt�
√
ω(ε).

Similarly we have
∫
Rn |g(x)−m(x)| dx�

√
ω(ε). 2
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d’Habilitation, 2008.
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