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Abstract

We prove a stability version of the Prékopa-Leindler inequality.

1 The problem

Our main theme is the Prékopa-Leindler inequality, due to A. Prékopa [16]
and L. Leindler [14]. Soon after its proof, the inequality was generalized in
A. Prékopa [17] and [18], C. Borell [7], and in H.J. Brascamp, E.H. Lieb [8].
Various applications are provided and surveyed in K.M. Ball [1], F. Barthe
[5], and R.J. Gardner [13]. The following version from [1], is often more
useful and is more convenient for our purposes.

THEOREM 1.1 (Prékopa-Leindler) If m, f, g are non-negative integrable
functions on R satisfying m( r+s

2
) ≥

√
f(r)g(s) for r, s ∈ R, then∫

R
m ≥

√∫
R
f ·
∫

R
g.

S. Dubuc [9] characterized the equality case under the restriction that the
integrals of f, g,m above are positive. To explain this characterization, we
need to recall that a non-negative real function h on R is log-concave if for
any x, y ∈ R and λ ∈ (0, 1), we have

h((1− λ)x+ λy) ≥ h(x)1−λh(y)λ.

∗Supported by OTKA grants 068398 and 75016, and by the EU Marie Curie TOK
project DiscConvGeo and FP7 IEF grant GEOSUMSETS.
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In other words, the support of h is an interval, and log h is concave on the
support. Now in [9] it is proved that equality holds in the Prékopa-Leindler
inequality if and only if there exist a > 0, b ∈ R and a log-concave h with
positive integral on R such that for a.e. t ∈ R, we have

m(t) = h(t)

f(t) = a · h(t+ b)

g(t) = a−1 · h(t− b).

In addition for all t ∈ R, we have m(t) ≥ h(t), f(t) ≤ a · h(t + b) and
g(t) ≤ a−1 · h(t− b).

Our goal is to prove the following stability version of the Prékopa-Leindler
inequality.

THEOREM 1.2 There exists an absolute positive constant c with the fol-
lowing property. If m, f, g are non-negative integrable functions with positive
integrals on R such that m is log-concave, m( r+s

2
) ≥

√
f(r)g(s) for r, s ∈ R,

and ∫
R
m ≤ (1 + ε)

√∫
R
f ·
∫

R
g,

for ε > 0, then there exist a > 0, b ∈ R such that∫
R
|f(t)− am(t+ b)| dt ≤ c · 3

√
ε| ln ε|

4
3 · a ·

∫
R
m(t) dt∫

R
|g(t)− a−1m(t− b)| dt ≤ c · 3

√
ε| ln ε|

4
3 · a−1 ·

∫
R
m(t) dt.

REMARK 1.3 The statement also holds if the condition that m is log con-
cave, is replaced by the condition that both f and g are log-concave. The
reason is that the function

m̃(t) = sup{
√
f(r)g(s) : t = r+s

2
}

is log-concave in this case.

REMARK 1.4 Most probably, the optimal error estimate in Theorem 1.2
is of order ε. This cannot be proved using the method of this note; namely,
by proving first an estimate on the quadratic transportation distance.
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The paper is organised as follows. In Section 2 we establish the main
properties of log-concave functions that we need, and we introduce the trans-
portation map in Section 3. After translating the hypothesis

∫
Rm ≤ (1 +

ε)
√∫

R f ·
∫

R g into an estimate for the transportation map, we estimate the

quadratic transportation distance between our two functions in Section 4.
Based on this, we estimate the L1 distance of f and g in Section 5, which
leads to the proof of Theorem 1.2 in Section 6. We note that the upper
bound in Section 5 for the L1 distance of two log-concave probability dis-
tributions in terms of the their quadratic transportation distance is close to
being optimal.

Another way to prove the Prékopa-Leindler inequality on R is using
the “one-dimensional Brunn-Minkowski inequality”; namely that the outer
Lebesgue measure of X + Y is at least the sum of the measures of the two
Lebesgue measurable X, Y ⊂ R. For this proof, one assumes that the two
functions on R have the same bounded supremum, and then apply the one-
dimensional Brunn-Minkowski inequality to the level sets. Unlike the trans-
portation argument (see Section 3), this proof works for any pair of bounded
functions, but we see no way that it would lead to a stability version of the
Prékopa-Leindler inequality on R.

REMARK 1.5 It is not clear whether the condition in Theorem 1.2 that m
be log-concave is necessary for there to be a stability estimate.

REMARK 1.6 Given α, β ∈ (0, 1) with α + β = 1, we also have the fol-
lowing version of the Prékopa-Leindler inequality: If m, f, g are non-negative
integrable functions on R satisfying m(αr + βs) ≥ f(r)αg(s)β for r, s ∈ R,
then ∫

R
m ≥

(∫
R
f

)α(∫
R
g

)β
.

The method of this note also yields the corresponding stability estimate, ex-
cept that the c in the new version of Theorem 1.2 depends on α. For this
statement, the formula

1 + T ′(x)

2
√
T ′(x)

= 1 +
(1− T ′(x))2

2
√
T ′(x)(1 +

√
T ′(x))2

,

used widely in this note should be replaced with Koebe’s estimate

α + βT ′(x)

T ′(x)β
≥ 1 +

min{α, β}(1− T ′(x))2

T ′(x)β(1 +
√
T ′(x))2
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as long as T ′(x) is “not too large”, or, if T ′(x) is “large”, the estimate
α+βT ′(x)
T ′(x)β

> βT ′(x)α.

REMARK 1.7 The Prékopa-Leindler inequality also holds in Rn for n ≥ 2.
One possible approach to finding a higher dimensional analogue of the sta-
bility statement is to use Theorem 1.2 and a suitable stability version of the
injectivity of the Radon transform on log-concave functions. Here the diffi-
culty is caused by the fact that the Radon transform is notoriously unstable
even on the space of smooth functions. Another possible approach is to com-
bine Theorem 1.2 with the recent stability version of the Brunn-Minkowski
inequality due to A. Figalli, F. Maggi, A. Pratelli [11] and [12], improving on
L.Esposito, N.Fusco, C.Trombetti [10]. This approach has been successfully
applied in K.M. Ball, K.J. Böröczky [4] at least for even functions. Actu-
ally the Brunn-Minkowski inequality is equivalent to the Prékopa-Leindler
inequality (see for example K.M. Ball [3] or F. Barthe [5]). A third pos-
sible approach to have a stability version of the Prékopa-Leindler inequality
in Rn is to use mass transportation as in A. Figalli, F. Maggi, A. Pratelli
[11] and [12]. Unfortunately the fact that the corresponding functions are not
constants on their supports makes the problem much more complicated for a
transportation argument than the Brunn-Minkowski inequality.

2 Some elementary properties of log-concave

probability distributions on R
Let h be a log-concave probability distribution on R. In this section we
discuss various useful elementary properties of h. Many of these properties
are implicit or explicit in many places.

First, assuming h(t0) = a · bt0 for a, b > 0, and t1 < t0 < t2, we have

if h(t1) ≥ a · bt1 , then h(t2) ≤ a · bt2 ,
if h(t2) ≥ a · bt2 , then h(t1) ≤ a · bt1 . (1)

Next we write wh and µh to denote the median and mean of h; namely,∫ wh

−∞
h =

∫ ∞
wh

h =
1

2
and µh =

∫
R
xh(x) dx.

Our first goal is to describe in Proposition 2.2 how a log-concave proba-
bility distribution is concentrated around its median.
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PROPOSITION 2.1 Suppose f and g are positive, θ is an increasing func-
tion on (a, b), and there exists c ∈ (a, b) such that f(t) ≤ g(t) if t ∈ (a, c),

and f(t) ≥ g(t) if t ∈ (c, b). If
∫ b
a
g(t) dt =

∫ b
a
f(t) dt then∫ b

a

θ(t)g(t) dt ≤
∫ b

a

θ(t)f(t) dt.

Proof: Since both factors of (θ(t) − θ(c))(f(t) − g(t)) change sign at c, the

product is non-negative. Therefore
∫ b
a
g(t) dt =

∫ b
a
f(t) dt yields∫ b

a

θ(t)f(t) dt−
∫ b

a

θ(t)g(t) dt =

∫ b

a

(θ(t)− θ(c))(f(t)− g(t)) dt ≥ 0. 2

PROPOSITION 2.2 If h is a log-concave probability distribution on R
then for w = wh and µ = µh, we have

(i) h(w) · |w − µ| ≤ ln
√
e/2.

(ii) h(w) · e−2h(w)|x−w| ≤ h(x) ≤ h(w) · e2h(w)|x−w| if |x− w| ≤ ln 2
2h(w)

.

(iii) h(x) ≤ 2h(w) for x ∈ R.

(iv) If x > w then
∫∞
x
h ≤ h(x)

2h(w)
.

(v) If x > w and
∫∞
x
h = ν > 0, then∫ ∞

x

(t− w)h(t) dt ≤ ν

4h(w)
· (1− ln 2ν)∫ ∞

x

(t− w)2h(t) dt ≤ ν

8h(w)2
· [(ln 2ν)2 − 2 ln 2ν + 2].

Remark All estimates are optimal.
Proof: After replacing h by a ·h(a(t−w)) for a = 1

2h(w)
, we may assume that

w = 0, and h(w) = 1
2
. It is natural to compare h near 0 to the probability

distribution

ϕ(x) =

{ 1
2
· e−x if x ≥ − ln 2

0 if x < − ln 2,

which satisfies wϕ = 0, and ϕ(0) = h(0). We observe that logϕ is a linear
and h is a log-concave function on [− ln 2,∞], and hence the set of all x ∈
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[− ln 2,∞] with h(x) > ϕ(x) is an interval (possibly empty). Since ϕ(0) =
h(0) and

∫∞
0
h =

∫∞
0
ϕ, there exists some v > 0 such that

h(x) ≥ ϕ(x) provided x ∈ [0, v]
h(x) ≤ ϕ(x) provided x ≥ v or x ∈ [− ln 2, 0].

(2)

In particular
∫ 0

−∞ h =
∫ 0

−∞ ϕ,
∫∞

0
h =

∫∞
0
ϕ and Proposition 2.1 yield

− ln
e

2
=

∫ 0

−∞
xϕ(x) dx+

∫ ∞
0

xϕ(x) dx

≤
∫ 0

−∞
xh(x) dx+

∫ ∞
0

xh(x) dx = µ.

Comparing h to ϕ(−x) shows that µ ≤ ln e
2
, and in turn, we deduce (i).

Turning to (ii), the upper bound directly follows from (2), and its con-
sequence h(x) ≤ ϕ(−x) for x ∈ [0, ln 2] by symmetry. To prove the lower
bound, we may assume that x > 0. According to h(0) = 1

2
and the log-

concavity of h, it is enough to check the case x = ln 2. Therefore we suppose
that

h(ln 2) < 1/4,

and seek a contradiction. Since h is log-concave, there exists some a ∈ R
such that

h(x) < 1
4
e−a(x−ln 2) for x ∈ R.

Here h(0) = 1
2

yields that a > 1.
We observe that 1

4
e−a(x0−ln 2) = 1

2
ex0 for x0 = a−1

a+1
ln 2, and applying the

analogue of (2) to ϕ(−x), we obtain that h(x) ≤ 1
2
ex for x ∈ [0, x0]. In

particular∫ ∞
0

h <

∫ x0

0

1
2
exdx+

∫ ∞
x0

1
4
e−a(x−ln 2)dx =

(
1

a
+ 1

)
2−

2
a+1 − 1

2
.

Differentiation shows that the last expression is first strictly decreasing, and
after that strictly increasing in a ≥ 1. Since the value of this last expression
is 1

2
both at a = 1 and at a =∞, we deduce that

∫∞
0
h < 1

2
. This is absurd,

therefore we have proved (ii).
To prove (iii), we may assume x > 0 and h(x) ≥ 1, and hence (ii) yields

that x ≥ ln 2. Since h(t) ≥ 1
2
e
t
x

ln 2h(x) for t ∈ [0, x] by the log-concavity of h
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and h(0) = 1
2
, we have

1

2
≥
∫ x

0

h ≥
∫ x

0

1

2
e
t
x

ln 2h(x)dt =
x(2h(x)− 1)

2 ln 2h(x)
.

As s−1
ln s

> 1
ln 2

for s > 2, we conclude h(x) ≤ 1.
For (iv), recall that 2h(w) = 1. In particular, (iv) holds if h(x) ≥ 1

2
as∫ x

0
h < 1

2
. Thus we assume that h(x) < 1

2
, and hence h(x) = 1

2
e−x0 for some

x0 > 0. If x ≥ x0, then the log-concavity of h and h(0) = 1
2

yield∫ x

0

h(t) dt ≥
∫ x

0

1
2
e−

tx0
x dt =

x

x0

∫ x0

0

1
2
e−t dt ≥

∫ x0

0

1
2
e−t dt,

therefore ∫ ∞
x

h(t) dt ≤
∫ ∞
x0

1
2
e−t dt = h(x).

On the other hand, if x < x0, then h(x) = 1
2
e−ax for a = x0/x > 1. It

follows from the log-concavity of h and h(0) = 1
2

that h(t) ≤ 1
2
e−at for t > x.

Therefore ∫ ∞
x

h(t) dt ≤
∫ ∞
x

1
2
e−at dt = h(x)/a < h(x).

Finally, we prove (v). Let x1 = − ln 2ν, which satisfies that
∫∞
x
h(t) dt =∫∞

x1

1
2
e−t dt. It follows from (2) that x1 ≥ x. We define two functions f

and g on [x,∞). Let f(t) = 1
2
e−t if t ≥ x1, and let f(t) = 0 if t ∈ [x, x1).

In addition let g = h|[x,∞). These two functions satisfy the conditions in
Proposition 2.1, therefore for α ≥ 0, we have∫ ∞

x

tαh(t) dt =

∫ ∞
x

tαg(t) dt ≤
∫ ∞
x

tαf(t) dt =

∫ ∞
x1

tαe−t

2
dt.

Evaluating the last integral for α = 1, 2 yields (v). 2

Next we discuss various consequences of Proposition 2.2.

COROLLARY 2.3 Let h be a log-concave probability density function on
R, and let

∫∞
x
h = ν ∈ (0, 1

2
]. Then

(i) h(x) · e−
h(x)|t−x|

ν ≤ h(t) ≤ h(x) · e
h(x)|t−x|

ν if |t− x| ≤ ν ln 2
h(x)

;
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(ii) If ν ∈ (0, 1
6
), w = wh and µ = µh, then∫ ∞

x

|t− µ|h(t) dt ≤ ν

2h(w)
· | ln ν|∫ ∞

x

|t− µ|2h(t) dt ≤ 5ν

4h(w)2
· (ln ν)2.

Remark The order of all estimates is optimal, as it is shown by the example
of h(t) = e−|t|/2.
Proof: To prove (i), let |t − x| ≤ ν ln 2

h(x)
. There exists a unique λ ∈ R, such

that for the function

h̃(t) =

{
h(t) if t ≥ x;
min{h(t), h(x) · eλ(t−x)} if t ≤ x.

,

we have
∫ x
−∞ h̃ = ν. We note that h̃ is log-concave, and λ ≥ −h(x)

ν
. In

particular 1
2ν
h̃ is a log-concave probability distribution whose median is x,

and hence Proposition 2.2 (ii) yields h(t) ≥ h̃(t) ≥ h(x) · e
−h(x)|t−x|

ν . Since for

s = 2x− t, we have h(s) ≥ h(x) · e
−h(x)|s−x|

ν , we conclude (i) by (1).
For (ii), we may assume that h(w) = 1

2
, and hence Proposition 2.2 (i)

yields that |w − µ| ≤ ln e
2
. Since ln 2ν ≤ −1, we deduce by Proposition 2.2

(v) that ∫ ∞
x

|t− µ|h(t) dt ≤
∫ ∞
x

[|t− w|+ |w − µ|]h(t) dt

≤ ν · (− ln 2ν) + ν · ln e
2
< ν · | ln ν|.

In addition∫ ∞
x

(t− µ)2h(t) dt ≤
∫ ∞
x

2[(t− w)2 + (w − µ)2]h(t) dt

≤ ν · 5(ln 2ν)2 + ν · 2(ln e
2
)2 < 5ν · (ln ν)2. 2
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3 The transportation map for log-concave prob-

ability distributions, and the Prékopa-Leindler

inequality

Let f and g be log-concave probability distributions on R, and let If and Ig
denote the open intervals that are the supports of f and g, respectively. We
define the transportation map T : If → Ig by the identity∫ x

−∞
f(t) dt =

∫ T (x)

−∞
g(t) dt. (3)

Among other things T is monotone increasing, bijective, and differentiable
on If , and for any x ∈ If , we have

f(x) = g(T (x))T ′(x). (4)

Remark Using (3), the transportation map T : R → R can be defined
for any two probability distributions f and g, and T is naturally monotone
increasing. In addition (4) holds for almost all x provided that the product
of two numbers out of which one is zero and the other is undefined is under-
stood as zero.

For log-concave probability distributions f , g, and an integrable function
m on R satisfying m( r+s

2
) ≥

√
f(r)g(s) for r, s ∈ R, one proof of the Prékopa-

Leindler inequality runs as follows:

1 =

∫
R
f =

∫
If

√
f(x) ·

√
g(T (x))T ′(x) dx

≤
∫
If

m

(
x+ T (x)

2

)√
T ′(x) dx

≤
∫
If

m

(
x+ T (x)

2

)
· 1 + T ′(x)

2
dx

=

∫
1
2

(If+Ig)

m(x) dx ≤
∫

R
m.

The basic fact that we will exploit is this. If we know that
∫

Rm ≤ 1 + ε
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then, using (4) in the last inequality, we have

ε ≥
∫
If

m

(
x+ T (x)

2

)
·
(

1 + T ′(x)

2
−
√
T ′(x)

)
dx

≥
∫
If

√
f(x) ·

√
g(T (x))T ′(x)

(
1 + T ′(x)

2
√
T ′(x)

− 1

)
dx

=

∫
If

f(x) ·
(1−

√
T ′(x))2

2
√
T ′(x)

dx. (5)

As long as T ′ is not too large, the integrand is at least about f(x)(1 −
T ′(x))2 and using a Poincaré inequality for the density f we can bound the
integral of this expression from below by the transportation cost

∫
f(x)(x−

T (x))2. The main technical issue is to handle the places where T ′ is large.

4 The quadratic transportation distance

Let f and g be log-concave probability distributions on R with zero mean;
namely,

0 =

∫
R
x f(x) dx =

∫
R
y g(y) dy.

In this section we show that (5) yields an upper bound for the quadratic
transportation distance ∫

If

f(x)(T (x)− x)2dx

between f and g.

LEMMA 4.1 If f and g are log-concave probability distributions on R with
zero mean, and (5) holds for ε ∈ (0, 1

48
), then∫

If

f(x)(T (x)− x)2dx ≤ 220f(wf )
−2 · ε| ln ε|2,

where wf is the median as mentioned earlier.
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Remark The optimal power of ε is most probably ε2 in Lemma 4.1 (com-
pare Example 7.1). To improve the estimate, we should improve on (6) if
R(x) = T (x)− x where T is the transportation map for another log-concave
probability distribution. One may possibly use that T (x) − x is of at most
logarithmic order.
Proof: The main tool in the proof of Lemma 4.1 is the Poincaré inequality for
log-concave measures which can be found in (1.3) and (4.2) of S.G. Bobkov
[6]. This guarantees that h is a log-concave probability distribution on R, and
the function R on R is locally Lipschitz with expectation µ =

∫
R h(x)R(x) dx,

then∫
R
h(x)(R(x)− µ)2 dx =

∫
R
h(x)R(x)2 dx− µ2 ≤ h(wh)

−2 ·
∫

R
h(x)R′(x)2 dx.

(6)
By symmetry we may assume that g(wg) ≤ f(wf ), and by scaling that

f(wf ) = 1
2
. Let T be the transportation map from f to g, and let S be its

inverse, thus for x ∈ If and y ∈ Ig, we have

f(x) = g(T (x))T ′(x) and g(y) = f(S(y))S ′(y). (7)

Suppose that for some x ∈ R with
∫∞
x
f = ν ∈ (0, 1

2
], we have g(T (x)) ≤

1
16
f(x). If x ≤ t ≤ x + ν ln 2

f(x)
then Corollary 2.3 (i) yields f(t) ≥ f(x) ·

e−
f(x)(t−x)

ν ≥ 1
2
f(x). On the other hand, the log-concavity of g and Proposi-

tion 2.2 (iii) yield that if x ≤ t < x + ν ln 2
f(x)

, then g(t) < 2g(x) ≤ 1
4
f(t). In

particular T ′(t) > 4 by (7), and hence (compare (5))

ε ≥
∫

R

(1−
√
T ′(t))2

2
√
T ′(t)

f(t) dt >

∫ x+ ν ln 2
f(x)

x

f(x)

4
· e−

f(x)(t−x)
ν dt =

ν

8
.

A similar argument for f(−x) and g(−x) shows that if
∫ x
−∞ f = ν and

g(T (x)) ≤ 1
16
f(x) then ν < 8ε.

We define x1, x2, y1, y2 by∫ x1

−∞
f =

∫ ∞
x2

f =

∫ y1

−∞
g =

∫ ∞
y2

g = 8ε <
1

6
.

The argument above yields that if x ∈ (x1, x2), then T ′(x) ≤ 16 and g(T (x)) ≥
1
16
f(x), and hence g(wg) ≥ 1

32
. As the means of f and g are zero, we deduce
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by Corollary 2.3 (ii) and (7) that∫
R\[x1,x2]

|x|f(x) dx ≤ 24ε| ln ε|; (8)∫
R\[x1,x2]

|T (x)|f(x) dx =

∫
R\[y1,y2]

|y|g(y) dy ≤ 28ε| ln ε|; (9)∫
R\[x1,x2]

x2f(x) dx ≤ 27ε(ln ε)2; (10)∫
R\[x1,x2]

T (x)2f(x) dx =

∫
R\[y1,y2]

y2g(y) dy ≤ 215ε(ln ε)2. (11)

Since (T (x)− x)2 ≤ 2[T (x)2 + x2], we have∫
R\[x1,x2]

(T (x)− x)2f(x) dx ≤ 217ε(ln ε)2. (12)

Next we consider the log-concave probability distribution

f̃(t) =

{
(1− 16ε)−1f(t) if t ∈ [x1, x2]

0 if t ∈ R\[x1, x2].

To estimate f̃(wf̃ ), we define z1 = wf − ln 2, and z2 = wf + ln 2. Since

f(wf ) = 1
2
, Proposition 2.2 (ii) applied to f yields∫

R\[z1,z2]

f̃(x) dx ≤ (1− 16ε)−1

(
1− 16ε−

∫ z2

z1

e−|x−wf |

2
dx

)
<

1

2
.

It follows that |wf̃−wf | < ln 2, and hence we deduce again by Proposition 2.2
(ii) that

f̃(wf̃ ) >
1

4
.

For the expectation

µ =

∫
R
(T (x)− x)f̃(x) dx,

we have the estimate

|µ| = (1− 16ε)−1

∣∣∣∣∫
R\[x1,x2]

(T (x)− x)f(x) dx

∣∣∣∣ ≤ 210ε| ln ε|.
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If x ∈ (x1, x2), then T ′(x) ≤ 16, thus the expression in (5) satisfies

(1−
√
T ′(x))2

2
√
T ′(x)

=
(T ′(x)− 1)2

2(1 +
√
T ′(x))2

√
T ′(x)

≥ (T ′(x)− 1)2

200
> 2−8(T ′(x)− 1)2.

We deduce using (6) and (5) that∫
[x1,x2]

(T (x)− x)2f(x) dx ≤
∫

R
(T (x)− x)2f̃(x) dx

≤ µ2 + f̃(wf̃ )
−2

∫
R
(T ′(x)− 1)2f̃(x) dx

≤ 220ε2| ln ε|2 + 213

∫ x2

x1

(1−
√
T ′(x))2

2
√
T ′(x)

f(x) dx

≤ 220ε2| ln ε|2 + 213ε. (13)

Therefore combining (12) and (13), completes the proof of Lemma 4.1. 2

5 The L1 and quadratic transportation dis-

tances

Our goal is to estimate the L1 distance of two log-concave probability distri-
butions f and g in terms of their quadratic transportation distance. In this
section, T always denotes the transportation map T : If → Ig satisfying∫ x

−∞
f(t) dt =

∫ T (x)

−∞
g(t) dt.

We prepare Theorem 5.3 by Propositions 5.1 and 5.2. While the ideas for
Propositions 5.1 and 5.2 are rather simple-minded, they still lead to the
essentially optimal (up to a logarithmic factor) estimate of Theorem 5.3.

When we write A � B for expressions A and B, then we mean that
|A| ≤ c · B where c > 0 is an absolute constant, independent of all the
quantities occurring in A and B. In addition A ≈ B means that A� B and
B � A.

13



PROPOSITION 5.1 Let f and g be log-concave probability distributions
on R satisfying

∫ z
−∞ f ≥ ν and

∫∞
z
f ≥ ν for ν ∈ (0, 1

2
] and z ∈ R. If either∫ z

−∞ g ≤ ν/2 or
∫∞
z
g ≤ ν/2, then∫ z+ ν

f(z)

z− ν
f(z)

(T (x)− x)2f(x) dx� ν3

f(z)2
.

Proof: We may assume that
∫∞
z
g ≤ ν/2. It follows from Corollary 2.3 (i)

that if z < x ≤ z +
ν ln 3

2

f(z)
then

∫ x

z

f ≤
∫ z+

ν ln 3
2

f(z)

z

f(z)e
f(z)|t−z|

ν dt = ν/2,

and hence T (x) ≤ z. Therefore

∫ z+
ν ln 3

2
f(z)

z+
ν ln 5

4
f(z)

(T (x)− x)2f(x) dx�
∫ z+

ν ln 3
2

f(z)

z+
ν ln 5

4
f(z)

(
ν ln 5

4

f(z)

)2
f(z)

2
dx� ν3

f(z)2
. 2

PROPOSITION 5.2 Let f and g be log-concave probability distributions
on R satisfying

∫ z
−∞ f ≥ ν and

∫∞
z
f ≥ ν, moreover

∫ z
−∞ g ≥ ν/2 and

∫∞
z
g ≥

ν/2 for ν > 0 and z ∈ R. If g(z) 6= f(z) and ∆ = ν ln 2
3f(z)

· min{| ln g(z)
f(z)
|, 3},

then ∫ z+∆

z−∆

(T (x)− x)2f(x) dx� ν3

f(z)2
·min

{∣∣∣∣ln g(z)

f(z)

∣∣∣∣ , 3}4

.

Remark If in addition e−3f(z) ≤ g(z) ≤ e3f(z), then the arguments in
Cases 2 and 3 show that the interval [z − ∆, z + ∆] of integration can be
replaced by [z − ∆

150
, z + ∆

150
], and if x ∈ [z − ∆

150
, z + ∆

150
], then

1
3
| ln g(z)

f(z)
| ≤ | ln g(x)

f(x)
| ≤ 5

3
| ln g(z)

f(z)
|.

Proof: According to Corollary 2.3 (i), if z −∆ ≤ x ≤ z + ∆, then

f(z)/2 ≤ f(z) · e
−f(z)|x−z|

ν ≤ f(x) ≤ f(z) · e
f(z)|x−z|

ν ≤ 2f(z). (14)

Similarly if z − ν ln 2
2g(z)

≤ x ≤ z + ν ln 2
2g(z)

, then

g(z)/2 ≤ g(z) · e
−2g(z)|x−z|

ν ≤ g(x) ≤ g(z) · e
2g(z)|x−z|

ν ≤ 2g(z). (15)
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We may assume
T (z) ≤ z.

For the rest of the argument, we distinguish four cases.

Case 1 g(z) ≥ e3f(z).
In this case, ∆ = ν ln 2

f(z)
. We note that,

ln 2

2 · e3
<

ln 2

10
<

3 ln 2

10
< ln

5

4
. (16)

Since ν ln 2
2g(z)

< ∆
10

, (15) yields that if x ≥ z + ∆
10

, then∫ x

z

g >
ν

4
. (17)

However (14) and (16) imply that if z < x ≤ z + 3∆
10

, then∫ x

z

f <
ν

4
. (18)

Since T (z) ≤ z, (17) and (18) yield that if z + 2∆
10
≤ x ≤ z + 3∆

10
, then

T (x) ≤ z + ∆
10

. In particular∫ z+ 3∆
10

z+ 2∆
10

(T (x)− x)2f(x) dx ≥
∫ z+ 3∆

10

z+ 2∆
10

(
∆

10

)2
f(z)

2
dx� ∆3f(z).

Case 2 f(z) < g(z) ≤ e3f(z).

Let λ = (f(z)
g(z)

)
1
3 ≥ 1/e. Since 2g(z) ≤ 2e3f(z) < 50f(z) and ∆ = ν ln 2

3f(z)
ln g(z)

f(z)
,

if z ≤ x ≤ z + 1
50

∆, then (14) and (15) yield

λ · f(z) ≤ f(x) ≤ λ−1 · f(z) and λ · g(z) ≤ g(x) ≤ λ−1 · g(z).

In particular if z ≤ s, t ≤ z + 1
50

∆, then f(s)
g(t)
≤ λ. We deduce that if

z < x ≤ z + 1
150

∆ then ∫ x

z

f ≤
∫ z+λ(x−z)

z

g.

Thus T (x) ≤ z + λ(x− z) by T (z) ≤ z, and hence

x− T (x) ≥ (1− λ)(x− z) = λ

(
1

λ
− 1

)
(x− z) ≥ x− z

3e
· ln g(z)

f(z)
.
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It follows that ∫ z+ ∆
150

z+ ∆
300

(T (x)− x)2f(x) dx� ∆3f(z) ln
g(z)

f(z)
.

Case 3 e−3f(z) ≤ g(z) < f(z).

Let λ = (f(z)
g(z)

)
1
3 ≤ e. Since ∆ = ν ln 2

3f(z)
ln f(z)

g(z)
, if z − 1

2
∆ ≤ x ≤ z, then (14)

and (15) yield

λ−1 · f(z) ≤ f(x) ≤ λ · f(z) and λ−1 · g(z) ≤ g(x) ≤ λ · g(z).

In particular if z− 1
2
∆ ≤ s, t ≤ z, then f(s)

g(t)
≥ λ. We deduce that if z− 1

2e
∆ <

x ≤ z then ∫ z

x

f ≥
∫ z

z−λ(z−x)

g.

Thus T (x) ≤ z − λ(z − x) by T (z) ≤ z, and hence

x− T (x) ≥ (λ− 1)(z − x) ≥ z − x
3
· ln f(z)

g(z)
.

It follows that ∫ z− ∆
300

z− ∆
150

(T (x)− x)2f(x) dx� ∆3f(z) ln
f(z)

g(z)
.

Case 4 g(z) ≤ e−3f(z).
Since ∆ = ν ln 2

f(z)
, if z−∆ ≤ x ≤ z, then (14) and (15) yield that f(x) ≥ f(z)/2

and g(x) ≤ 2g(z), respectively. In particular if z − ∆ ≤ s, t ≤ z, then
f(s) ≥ 2g(t). We deduce that if z − 1

2
∆ < x ≤ z then∫ z

x

f ≥
∫ z

z−2(z−x)

g.

Thus T (x) ≤ z − 2(z − x) by T (z) ≤ z, and hence x − T (x) ≥ z − x. It
follows that ∫ z−∆

4

z−∆
2

(T (x)− x)2f(x) dx� ∆3f(z). 2
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THEOREM 5.3 If f and g are log-concave probability distributions on R,
and

∫
If
f(x)(T (x)− x)2dx = ε · f(wf )

−2 for ε ∈ (0, 1), then∫
R
|f(x)− g(x)| dx� 3

√
ε| ln ε|

2
3 .

Remark According to Example 7.2, the exponent 1
3

of ε is optimal in
Theorem 5.3.
Proof: It is enough to prove the statement if ε < ε0, where ε0 ∈ (0, 1

2
) is an

absolute constant specified later. We may assume that f(wf ) = 1, and hence
f(x) ≤ 2 for any x ∈ R by Proposition 2.2 (iii), and for the inverse S of T ,∫

If

f(x)(T (x)− x)2dx =

∫
Ig

g(y)(S(y)− y)2dy ≤ ε.

For x ∈ R, we define

ν(x) = min

{∫ x

−∞
f,

∫ ∞
x

f

}
,

ν̃(x) = min

{∫ x

−∞
g,

∫ ∞
x

g

}
.

First we estimate g. Since ν(wf ) = 1
2
, if ε0 is small enough then Propo-

sitions 5.1 and 5.2 yield that ν̃(wf ) >
1
4

and g(wf ) ≤ 2, respectively. We
conclude by Proposition 2.2 (ii) that g(wg) ≤ 4, and hence g(x) ≤ 8 for any
x ∈ R by Proposition 2.2 (iii).

It follows by f(x) ≤ 2 and Proposition 5.1 that there exists a positive
constant c1 such that if ν(x) ≥ c1

3
√
ε then ν̃(x) ≥ ν(x)/2. Now applying

Proposition 5.1 to g, and possibly increasing c1, we have the following: If
ν(x) ≥ c1

3
√
ε then ν̃(x) ≤ 2ν(x). Finally, possibly increasing c1 further, if

ν(x) ≥ c1
3
√
ε, then | ln g(x)

f(x)
| ≤ ln 2 by Proposition 5.2. We choose ε0 small

enough to satisfy 2c1
3
√
ε0 <

1
2
.

For z ∈ R, we define ∆(z) = ν ln 2
450f(z)

· | ln g(z)
f(z)
|. We assume ν(z) ≥ c1

3
√
ε,

and hence 1
2
≤ g(z)

f(z)
≤ 2. It follows by Corollary 2.3 (i) that and f(x) ≥ f(z)/2

ν(x) ≤ 2ν(z) if x ∈ [z − ∆(z), z + ∆(z)]. We deduce using Proposition 5.2
and its remark that there exists an absolute constant c2 such that assuming
g(z) 6= f(z), we have∫ z+∆(z)

z−∆(z)

ν(x)2

f(x)
·
∣∣∣∣ln g(x)

f(x)

∣∣∣∣3 dx ≤ c2

∫ z+∆(z)

z−∆(z)

(T (x)− x)2f(x) dx. (19)
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We define z1 < z2 by the properties ν(z1) = ν(z2) = 2c1
3
√
ε. We observe

that if g(z) 6= f(z) and some x ∈ [z −∆(z), z + ∆(z)] satisfies ν(x) ≥ 2c1
3
√
ε

then ν(z) ≥ c1
3
√
ε. It is not hard to show based on (19) that∫ z2

z1

ν(x)2

f(x)
·
∣∣∣∣ln g(x)

f(x)

∣∣∣∣3 dx ≤ c2

∫
R
(T (x)− x)2f(x) dx.

Since f(x) ≤ 2 and |f(x)−g(x)|
f(x)

≤ 4| ln g(x)
f(x)
| for x ∈ [z1, z2], we deduce∫ z2

z1

ν(x)2|f(x)− g(x)|3

f(x)2
dx = 4

∫ z2

z1

ν(x)2

f(x)

(
|f(x)− g(x)|

f(x)

)3

dx

≤ 44

∫ z2

z1

ν(x)2

f(x)

∣∣∣∣ln g(x)

f(x)

∣∣∣∣3 dx ≤ 44c2ε.

It follows by the Hölder inequality that∫ z2

z1

|f(x)− g(x)| dx =

∫ z2

z1

ν(x)
2
3 |f(x)− g(x)|
f(x)

2
3

· f(x)
2
3

ν(x)
2
3

dx

≤
[∫ z2

z1

ν(x)2|f(x)− g(x)|3

f(x)2
dx

] 1
3

×

×
[∫ z2

z1

f(x)

ν(x)
dx

] 2
3

.

Here f(x) = |ν ′(x)|, therefore

∫ z2

z1

|f(x)− g(x)| dx ≤ (44c2ε)
1
3

[∫ wf

z1

ν ′(x)

ν(x)
dx+

∫ z2

wf

−ν ′(x)

ν(x)
dx

] 2
3

= (44c2ε)
1
3

[
2 · ln 1

2
− 2 · ln(2c1

3
√
ε)
] 2

3 � 3
√
ε| ln ε|

2
3 .

On the other hand, ν̃(xi) ≤ 2ν(xi) = 4c1
3
√
ε, i = 1, 2, yields that∫ z1

−∞
|f(x)− g(x)| dx ≤ 6c1

3
√
ε and

∫ ∞
z2

|f(x)− g(x)| dx ≤ 6c1
3
√
ε,

and in turn we conclude Theorem 5.3. 2
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6 The proof of Theorem 1.2

For a non-negative, bounded, and not identically zero function h on R, its
log-concave hull is

h̃(x) = inf{p(x) : p is a log-concave function s.t. h(t) ≤ p(t) for t ∈ R}.

This h̃ is log-concave and h(t) ≤ h̃(t) for all t ∈ R, therefore we may take
minimum in the definition. Next we present a definition of h̃ in terms of lnh.
Let Jh be the set of all x ∈ R with h(x) > 0, and let

Ch = {(x, y) ∈ R2 : x ∈ Jh and y ≤ lnh(x)}.

This Ch is convex if and only if h is log-concave. In addition Jh̃ is the convex
hull of Jh, and the interior of Ch̃ is the interior of the convex hull of Ch. We
also observe that for any unit vector u ∈ R2, we have

sup{〈u, v〉 : v ∈ Ch} = sup{〈u, v〉 : v ∈ Ch̃}. (20)

Let f , g and m be the functions in Theorem 1.2. The condition of the
Prékopa-Leindler inequality is equivalent with

1
2
(Cf + Cg) ⊂ Cm, (21)

where Cf +Cg is the Minkowski sum of the two sets. Choose x0, y0 ∈ R such

that f(x0) > 0 and g(y0) > 0. For any x ∈ R, m(x+x0

2
) ≥

√
f(x0)g(x) and

m(x+y0

2
) ≥

√
f(x)g(y0), and hence

f(x) ≤
m(x+y0

2
)2

g(y0)
and g(x) ≤

m(x0+x
2

)2

f(x0)
.

Since m is log-concave function with finite integral, it is bounded, thus f and
g are bounded, as well. Therefore we may define the log-concave hull of f
and g of f̃ and g̃, respectively. It follows that f̃(x) ≥ f(x) and g̃(y) ≥ g(y).

Since m is log-concave, (20) and (21) yield that m(x+y
2

) ≥
√
f̃(x)g̃(y) for

x, y ∈ R. We may assume that f̃ and g̃ are probability distributions with
zero mean, and f̃(wf̃ ) = 1. It follows that∫

R
f ≥ 1− ε,

∫
R
g ≥ 1− ε,

∫
R
m ≤ 1 + ε. (22)
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Next applying (5), Lemma 4.1 and Theorem 5.3 to f̃ and g̃, we conclude∫
R
|f̃(t)− g̃(t)| dt� 3

√
ε| ln ε|

4
3 . (23)

In addition (22) yields∫
R
|f̃(t)− f(t)| dt ≤ ε and

∫
R
|g̃(t)− g(t)| dt ≤ ε. (24)

Therefore to complete the proof of Theorem 1.2, all we have to do is to
estimate

∫
R |m(t) − g̃(t)| dt. For this, let T : If̃ → Ig̃ be the transportation

map satisfying ∫ x

−∞
f̃(t) dt =

∫ T (x)

−∞
g̃(t) dt.

We note that R(x) = x+T (x)
2

is an increasing and bijective map from If̃ into
1
2
(If̃ + Ig̃). We define the function h : R → R as follows. If x 6∈ 1

2
(If̃ + Ig̃),

then h(x) = 0, and if x ∈ If̃ , then

h

(
x+ T (x)

2

)
=

√
f̃(x)g̃(T (x)).

We have h(x) ≤ m(x), and the proof of the Prékopa-Leindler inequality using
the transportation map in Section 3 shows that

∫
R h ≥ 1. We deduce by (22)

that ∫
R
|m(t)− h(t)| dt ≤ ε. (25)

To compare h to g̃, we note that
∫

R h ≤ 1 + ε implies∫
R
h(t)− g̃(t) dt ≤ ε. (26)

Let B ⊂ R be the set of all t ∈ R where g̃(t) < h(t), and hence B ⊂ 1
2
(If̃+Ig̃).

In addition let A = R−1B ⊂ If̃ . If t = x+T (x)
2
∈ B for x ∈ A then as g̃ is
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log-concave and f̃(x) = g̃(T (x))T ′(x), we have

[h(R(x))− g̃(R(x))] ·R′(x) ≤
[√

f̃(x)g̃(T (x))−
√
g̃(x)g̃(T (x))

]
· 1 + T ′(x)

2

≤ (f̃(x)− g̃(x)) ·
√
g̃(T (x))√
f̃(x)

· 1 + T ′(x)

2

= (f̃(x)− g̃(x)) ·

(
1 +

(1−
√
T ′(x))2

2
√
T ′(x)

)
.

In particular g̃(x) < f̃(x) for x ∈ A. It follows from (5) and (23) that∫
B

h(t)− g̃(t) dt =

∫
A

[h(R(x))− g̃(R(x))] ·R′(x) dx

≤
∫
If̃(x)

|f̃(x)− g̃(x)|+ f̃(x) ·
(1−

√
T ′(x))2

2
√
T ′(x)

dx

� 3
√
ε| ln ε|

4
3 .

It follows from (26) that
∫

R |h(t)− g̃(t)| dt� 3
√
ε| ln ε| 43 . Therefore combining

this estimate with (24) and (25) leads to
∫

R |m(t)− g(t)| dt� 3
√
ε| ln ε| 43 . In

turn we deduce
∫

R |m(t)− f(t)| dt� 3
√
ε| ln ε| 43 by (23) and (24). 2

REMARK 6.1 A careful check of the argument shows that the estimate for∫
R |m(t)− f(t)| dt and

∫
R |m(t)− g(t)| dt is of the same order as the estimate

for
∫

R |f̃(t)− g̃(t)| dt. Therefore to improve on the estimate in Theorem 1.2,
all one needs to improve is (23).

7 Appendix - Examples

Example 7.1 If f is an even log-concave probability distribution, g(x) =
(1 + ε) · f((1 + ε)x), and m(x) = (1 + ε) · f(x), then we have (5), and∫

If

f(x)(T (x)− x)2dx =
ε2

(1 + ε)2

∫
R
x2f(x)dx.

21



Example 7.2 Let f be the constant one on [−1
2
, 1

2
], and let g a modification

such that if |x| ≥ 1
2
− ε then

g(x) = e−
|x|− 1

2 +ε

ε .

In addition

m(x) =

{
1 if x ∈ [−1

2
, 1

2
]

e−
|x|− 1

2
ε otherwise.

In this case
∫

Rm = 1 + ε,∫
R
f(x) ·

(1−
√
T ′(x))2

2
√
T ′(x)

dx ≈ ε and

∫
R
|f(x)− g(x)| dx ≈ ε.

Moreover
∫

R f(x)(T ′(x)− 1)2dx =∞ and
∫

R f(x)(T (x)− x)2dx ≈ ε3.
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