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Abstract. For a convex domain K , let H(K ) be a circumscribed polygon with at most six
sides whose area is minimal, and let H̃(K ) be an inscribed hexagon with at most six sides
whose area is maximal. According to the celebrated result by L. Fejes Tóth [6], if a hexagon
contains n non-overlapping congruent copies of K , then its area is at least n · A(H(K )),
and if n pairwise non-crossing congruent copies of K cover a hexagon, then its area is at
most n · A(H̃(K )). Here two convex domains C1 and C2 are non-crossing if there exist
complementary half-planes l− and l+ such that l− ∩ C1 ⊂ C2 and l+ ∩ C2 ⊂ C1. In
this paper we generalize the results of L. Fejes Tóth to packings inside or coverings of any
convex domain provided that the number of copies is high enough. In the case of packings of
centrally symmetric domains, our results are optimal. Finally, let K be centrally symmetric,
and let Dn be the convex domain with minimal area containing n non-overlapping congruent
copies of K . Then we show that R(Dn)/r(Dn) stays bounded as n tends to infinity.

1. Introduction

For a given convex domain K , let H(K ) be a circumscribed polygon with at most six
sides whose area is minimal. It is well known (see [6]) that if a polygon P having at
most six sides contains n non-overlapping congruent copies of K , then

A(P) ≥ n · A(H(K )). (1)

In this paper we provide a stronger version of this theorem:

Theorem 1. If a convex domain D contains n non-overlapping congruent copies of a
convex domain K , then

A(D) ≥ n · A(H(K ))

provided that n ≥ N where N depends only on K .
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We show in Section 3 that the N in Theorem 1 does depend on K (even for centrally
symmetric domains), and cannot be chosen to be an absolute constant. This fact was
already known to L. Fejes Tóth.

The constant A(H(K )) is not optimal in Theorem 1 for the typical convex domain
K (in the sense of the Baire category, see [7] for typical properties of convex domains).
This can be shown by extending the method of G. Fejes Tóth [4]. On the other hand, if K
is centrally symmetric, then one can choose H(K ) to be centrally symmetric according
to Dowker [2]. Thus there exists a lattice tiling by translates of H(K ), and hence taking
large domains as D shows that the constant A(H(K )) is optimal in Theorem 1 in this
case. The proof of Theorem 1 also yields

Corollary 2. For a centrally symmetric convex domain K that is not a parallelogram,
let Dn be a convex domain with minimal area that contains n non-overlapping congruent
copies of K . Then

c1 ·
√

n < r(Dn) < R(Dn) < c2 ·
√

n,

where the positive constants c1 and c2 depend on K .

Just as L. Fejes Tóth [6], we need some extra assumptions in case of coverings: We call
two convex domains C1 and C2 non-crossing if there exist complementary half-planes
l− and l+ such that l− ∩ C1 ⊂ C2 and l+ ∩ C2 ⊂ C1. We note that translates are always
non-crossing. For a convex domain K , let H̃(K ) be an inscribed hexagon with at most
six sides whose area is maximal.

Theorem 3. If a convex domain D is covered by n non-crossing congruent copies of a
convex domain K , then

A(D) ≤ n · A(H̃(K ))

provided that n ≥ Ñ where Ñ depends only on K .

If K is centrally symmetric, then one can choose H̃(K ) to be centrally symmetric
according to Dowker [2]. Thus there exists a lattice tiling by translates of H̃(K ), and
hence taking large domains as D shows that the constant A(H̃(K )) is optimal in The-
orem 3. On the other hand, the constant A(H̃(K )) is not optimal in Theorem 3 for the
typical convex domain K . This can be shown by extending the method of G. Fejes Tóth
and Zamfirescu [5].

The Ñ in Theorem 3 can be most probably chosen to be an absolute constant. For
translative coverings, Ñ = 26 works according to G. Fejes Tóth [3].

It is widely believed that Theorem 3 holds without the assumption that the copies are
non-crossing. This conjecture seems to be rather obvious to believe, yet it may happen
that a convex domain D can be covered by n congruent copies of a convex domain K , but
it cannot be done in a pairwise non-crossing manner. We recall the following example
due to Heppes: Let D be a unit square, and let K be the convex hull of the midpoints
of the sides of D and two opposite vertices. Then K and a rotated image by π/2 cover
D. On the other hand, it is not hard to see that two non-crossing copies of K cannot
cover D.
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The arguments in this paper are variations of the original proofs in [6]. In particular,
they depend on the Dowker theorems (see [2]).

2. Imitating a Cell Decomposition

One of the fundamental observations in [6] was that the average side for a cell decom-
position of a convex domain is at most six. First we improve on this bound if the number
of the edges on the boundary are large.

A planar topological cell complex � is a collection of finitely many two-cells, edges
(the one-cells) and vertices (the zero-cells). The edges are Jordan arcs (that are convex
arcs in this paper), and the endpoints of the edges are among the vertices. In addition, the
two-cells are regions that are bounded by finitely many edges. The fundamental property
that makes� a cell complex is that the intersection of any two of the cells is a cell itself.
We write fi (�) to denote the number of i-cells of �. Then the Euler formula yields

Proposition 4. Let� be topological cell complex such that supp� is a convex domain,
and each vertex is of degree at least three. We write k1, . . . , kf2(�) to denote the numbers
of sides of the two-cells, and b to denote the number of edges of � that are contained in
exactly one two-cell. Then

f2(�)∑

i=1

(6− ki ) ≥ b + 6.

Proof. Since 3 · f0(�) ≤ 2 · f1(�), we deduce by the Euler formula f0(�)− f1(�)+
f2(�) = 1 that

6 · f2(�) ≥ 2 · f1(�)+ 6.

On the other hand, counting the number of sides of each two-cell shows that
∑ f2(�)

i=1 ki =
2 · f1(�)− b.

The first step in order to prove Theorem 1 would be to define a cell decomposition of
D into convex cells such that each cell contains exactly one of the congruent copies of
K . The only little problem is that such a cell decomposition may not exist, therefore we
save the essential properties of a cell decomposition following the ideas in [6].

Lemma 5. Let D be a convex domain that contains the non-overlapping convex do-
mains K1, . . . , Kn . Then there exist non-overlapping convex domains	1, . . . ,	n ⊂ D
satisfying the following properties:

(i) Ki ⊂ 	i .
(ii) 	1, . . . ,	n cover ∂D.

(iii) 	i is bounded by ki ≥ 2 convex arcs that we call edges. The edges intersecting
int D are segments, and the rest of the edges are the maximal convex arcs of
∂D ∩	i .



188 K. Böröczky, Jr.

(iv) The number b of edges contained in ∂D satisfy

n∑

i=1

(6− ki ) ≥ b + 6.

Proof. Let 	1, . . . ,	n be non-overlapping convex domains such that Ki ⊂ 	i ⊂ D,
and the total area covered by the convex domains 	1, . . . ,	n is maximal under these
conditions. Since two non-overlapping convex sets can be separated by a line, each 	i

is the intersection of a polygon Pi and D. Now int Pi ∩ ∂D consists of finitely many
convex arcs whose closures we call edges of 	i . The set of vertices of 	i consists of
the endpoints of its edges in ∂D, and all the vertices of some Pj that are contained
in 	i ∩ int D. These vertices divide ∂	i ∩ int D into finitely many segments whose
closures form the rest of the edges of 	i .

Now 	1, . . . ,	n may not cover D, and the closure of a connected component of
int D\⋃n

i=1	i is called a hole. The maximality of A(	i ) yields that each hole Q is
a possibly non-convex domain that is bounded by finitely many convex arcs s1, . . . , sk

with the following properties: sj−1 and sj share a common endpoint for j = 1, . . . , k
(where s0 = sk) that is a vertex of some 	i , and no other intersection occurs among
s1, . . . , sk , and no other vertices of any 	i are contained in Q. We note that each sj is
contained either in the boundary of D or in a straight edge of 	i .

We may assume that s1 intersects int D, and is contained in the edge e1 of	i1 . Since
A(P1) is maximal, we deduce that one endpoint v2 of s1 lies in the relative interior of
e1. We may assume that v2 is the common endpoint of s1 and s2. Then s2 is contained
in an edge e2 of some 	i2 where v2 is an endpoint of e2, and the other endpoint v3 of s2

lies in the relative interior of e2. Now we obtain by induction that sj is contained in an
edge ej of some 	i j , and, for j = 2, . . . , k, the common endpoint vj of sj−1 and sj is
a vertex of ej , and lies in the relative interior of ej−1. We also deduce that the common
endpoint v1 of sk and s1 is a vertex of e1, and lies in the relative interior of ek , and hence
Q is a convex polygon that is contained in the interior of D. In particular, we conclude
that 	1, . . . ,	n cover ∂D.

Finally, in order to estimate the average number of sides of	1, . . . ,	n , we construct
a related topological cell decomposition� of D. If there exists no hole, then	1, . . . ,	n

defines a cell decomposition, and (iv) follows directly from Proposition 4. Otherwise
let {Q1, . . . , Qm} be the set of holes, and let qj ∈ int Qj . The idea for defining � is to
shrink each Qj to qj . The two-cells of � are 	∗1, . . . ,	

∗
n, where 	∗i is the union of 	i

and all triangles of the form conv{qj , s} such that s is a side of Qj and e ⊂ 	i . We note
that 	∗i and 	∗j do not overlap for i �= j . Now an edge of � is either an edge of some
	i contained in ∂D, or of the form 	∗i ∩	∗j for i �= j if it contains a segment.

Let us assume that the intersection of 	∗i and 	∗j , i �= j , contains a segment. Then
	∗i ∩	∗j is the union of 	i ∩	j and any segment qkv where the hole Qk has one–one
sides in 	i and 	j , and these two sides meet at v. We call the vertex v of some 	i a
dead vertex if it is the common vertex for two holes, and not the vertex for any other	j .
Therefore the family of vertices for � is the union of the vertices of	1, . . . ,	n except
for the dead vertices, and � is actually a topological cell complex. Now 	∗i has at least
as many edges as 	i has, and hence (iv) is a consequence of Proposition 4.
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3. Packing Congruent Domains

For a convex domain K and n ≥ 3, we write tK (n) to denote the minimal area of polygons
with at most n sides containing K . In particular, tK (6) = A(H(K )). According to the
Dowker theorem for circumscribed polygons (see [2]), tK (n) is a convex function of n.
We define tK (2) = 2 · tK (3). Since tK (3) ≤ 2 · tK (4), the function tK (n) stays convex
even for n ≥ 2.

In order to prove Theorem 1, we may assume that K is not a polygon with at most
five sides, and hence tK (5) > tK (6) holds. In this case we verify that there exist positive
constants γ1 and γ2 depending on K such that

A(D) > n · A(H(K ))+ γ1 · P(D)− γ2. (2)

We write K1, . . . , Kn to denote the non-overlapping congruent copies of K , and we
may assume that D is the convex hull of these domains. Let 	1, . . . ,	n be the convex
domains associated to K1, . . . , Kn by Lemma 5. In this proof, σ always denotes an edge
of some 	i that is contained in ∂D. Let σ ⊂ 	i . We write xi to denote the centre
of a circle with radius r(K ) inscribed into Ki , and C(σ, xi ) to denote the union of all
segments connecting xi to the points of σ . Now any tangent lines to ∂D at the points of
σ avoid Ki , which in turn yields that

A (C(σ, xi )) ≥ 1
2 · r(K ) · |σ |,

where | · | stands for the arc length. We deduce that there exist positive constants λ and
c1 such that if |σ | > λ, then

A (C(σ, xi )) ≥ tK (2)+ c1 · |σ |. (3)

Next we assume that |σ | ≤ λ, and let p and q denote the endpoints of σ . The total
curvature α(σ) is defined to be the variation of the angle of the tangent from p to q
along σ (it might be larger than π ). If α(σ) > 0, then σ intersects 	i because D is the
convex hull of K1, . . . , Kn . Therefore there exist positive α < π/6 and β depending on
λ and K satisfying the following property: if α(σ) < α, then the other edge of 	i at p
encloses an angle larger than β with the segment pq, and a similar property holds for q.
Let Q(σ ) be the quadrilateral that is bounded by the line pq, the lines of the other edges
of	i at p and q , and the tangent of σ that is parallel to pq. Then there exists a constant
c2 depending on λ, α and β such that if α(σ) < α, then

A (Q(σ )) ≤ c2 · α(σ). (4)

We deduce by (3) and (4) that

A(	i ) ≥ tK (ki )+
∑

σ⊂	i
|σ |>λ

c1 · |σ | −
∑

σ⊂	i
|σ |≤λ
α(σ)<α

c2 · α(σ)−
∑

σ⊂	i
|σ |≤λ
α(σ)≥α

tK (2).

Since the total curvature of ∂D is 2π , it follows that

A(D) ≥
n∑

i=1

tK (ki )+
∑

|σ |>λ
c1 · |σ | − c2 · 2π − 2π

α
· tK (2). (5)



190 K. Böröczky, Jr.

Now the concavity of tK (n) yields that

tK (ki ) ≥ A(H(K ))+ (tK (5)− tK (6)) · (6− ki ).

We write b to denote the number of edges of	1, . . . ,	n that are contained in ∂D. Then
Lemma 5(iv) yields that

n∑

i=1

tK (ki ) ≥ n · A(H(K ))+ (tK (5)− tK (6)) · b

≥ n · A(H(K ))+
∑

|σ |≤λ

tK (5)− tK (6)

λ
· |σ |.

In turn, we conclude (2) by (5). Now A(D) ≥ n · A(K ) and the isoperimetric inequal-
ity yield that P(D) > 2

√
A(K )/π · √n, therefore A(D) > n · A(H(K )) holds for

large n.

One may hope that the N in Theorem 1 can be chosen to be an absolute constant.
We now present an example showing that this is not the case, not even if K is centrally
symmetric: Let ε > 0 be small, and consider in a coordinate system the convex hull of
the points p = (1, 0), q = (0, 1), and the hyperbole arc with the equation x · y = ε in
the positive corner. We write γ to denote the arc between p and q on the boundary. We
define K to be the centrally symmetric convex domain whose boundary consists of γ
and three other arcs congruent with γ . If s is the segment with length 4(n − 1) parallel
to the first coordinate axis, then s + K contains n non-overlapping translates of K , and

A(s + K ) = (n − 1) · 4+ A(K ) = n · 4− ε · ln 1

4ε
− 2ε.

On the other hand, any tangent to the hyperbole arc and the coordinate axes enclose a
triangle of area 2ε, and hence A(H(K )) ≥ 4 − 12ε. Therefore the N of Theorem 1
satisfies

N ≥ 1

12
· ln 1

4ε
.

Finally, we investigate the shape of the optimal packing. Let K be a centrally sym-
metric convex domain that is not a parallelogram, and let Dn be a convex domain with
minimal area that contains n non-overlapping congruent copies of K .

We may assume that H(K ) is centrally symmetric according to Dowker [2], and hence
there exits a tiling of the plane by translates of H(K ). If Bn is a circle with minimal
radius that contains n tiles, then

A(Dn) ≤ A(Bn) ≤ n · A(H(K ))+ γ · √n, (6)

where γ depends on K . We deduce by (2) that the perimeter of Dn satisfies P(Dn) ≤
γ ′ ·√n for large n and for some constant γ ′ depending on K . Therefore r(Dn) · P(Dn) >

A(Dn) yields that r(Dn) > A(K )/γ ′ · √n. We conclude R(Dn) = O(
√

n), which fact
completes the proof of Corollary 2.
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4. Coverings by Non-Crossing Congruent Domains

For any finite non-crossing covering of a convex domain D, there exists an associated cell
decomposition of D. This fact was observed by L. Fejes Tóth (see [6]) but his argument
seemed to have some gaps. A rather long detailed proof was provided in [1]. Here we
present an argument for the sake of completeness.

Lemma 6. Let D be a convex domain that is covered by the pairwise non-crossing
convex domains K1, . . . , Kn such that no (n − 1) copies out of K1, . . . , Kn cover D.
Then there exists a cell decomposition of D into the two-cells	1, . . . ,	n ⊂ D, satisfying
the following properties:

(i) 	i ⊂ Ki .
(ii) We write ki to denote the number of edges of	i , and b to denote the total number

of edges contained in ∂D. Then

n∑

i=1

(6− ki ) ≥ b + 6.

Proof. There exists a covering 	1, . . . ,	n of D by convex, compact sets such that
each	i ⊂ Ki , the sets	1, . . . ,	n are pairwise non-crossing, and

∑
i A(	i ) is minimal

under the previous two conditions. Now each	i is a convex domain because each Ki is
needed in order to cover D.

We suppose that there exist some 	i and 	j , i �= j , that overlap, and seek a con-
tradiction. The idea is that we can cut off a small part of certain 	i in a way that the
resulting family still forms a non-crossing cover of D. The difficulty is to ensure that the
resulting family is pairwise non-crossing.

For i < j , we write li j to denote some line that witnesses that 	i and 	j are non-
crossing, and l+i j and l−i j to denote the half-planes such that l+i j ∩ 	j contains l+i j ∩ 	i ,
and l−i j ∩ 	i contains l−i j ∩ 	j , respectively. We may assume that 	2 overlaps l−12, and
hence there exists a supporting line l to 	2 that intersects 	2 in a single point p where
p ∈ int l−12.

After possibly renumbering the domains 	3, . . . ,	n , let 	2, . . . ,	m , 2 ≤ m ≤ n,
form the family of	i , i ≥ 2, such that p ∈ 	i , and p has a neighbourhood Ui such that
	i ∩Ui ⊂ 	2 ∩Ui . Then there exists a half-plane l̃+ such that the line l̃ bounding l̃+ is
parallel to l, the interior of l̃+ contains p, and l̃+∩	i ⊂ l̃+∩	2 holds for i = 2, . . . ,m.
In addition we may assume that if a domain 	k or a line li j does not contain p, then it
does not intersect the cap l̃+ ∩	2.

We define 	′i to be the closure of 	i\l̃+ if i = 2, . . . ,m, and 	′i = 	i otherwise.
Then	′1, . . . ,	

′
n cover D because l̃+ ∩	2 lies in l−12 ∩	1. It also follows that each	′i

is a convex domain and 	′i ⊂ Ki . Now li j witnesses that 	′i and 	′j are non-crossing
for any i < j unless 2 ≤ i ≤ m, j > m, p ∈ li j and 	′j = 	j overlaps l−i j . In this
case we distinguish two possibilities: If 	′i and 	′j do not overlap, then they are readily

non-crossing. Otherwise, the half-line l̃ ∩ l−i j intersects ∂	j in a point p′ ∈ int l−i j . Let
q �= p be the other endpoint of li j ∩ 	j , and hence the line p′q witnesses that 	′i
and 	′j are non-crossing. Since the total area of 	′1, . . . ,	

′
n is less than the total area
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of 	1, . . . ,	n , we have arrived at a contradiction. Therefore 	1, . . . ,	n determine a
topological cell decomposition of D, and hence (ii) is a consequence of Proposition 4.

For a convex domain K , we write t̃K (n) to denote the maximal area of an inscribed
polygon with at most n sides. In particular, A(H̃(K )) = t̃K (6). We also define t̃K (2) = 0.
Since t̃K (3) ≥ 1

2 tK (4), the function t̃K (n) is concave for n ≥ 2 according to the Dowker
theorem for inscribed polygons (see [2]).

In order to prove Theorem 3, we may assume that D is not a polygon with at most five
sides, and hence t̃K (6) > t̃K (5). We may also assume that no n−1 out of the n congruent
copies cover D. Let	1, . . . ,	n form the cell decomposition of Lemma 6. We write	′i
to denote the convex hull of the ki vertices of 	 where 	′i might be a segment. Then
A(	′i ) ≤ t̃K (ki ) holds by definition, and hence the concavity of t̃K (n) yields that

A(	′i ) ≤ t̃K (6)+ (t̃K (6)− t̃K (5)) · (ki − 6).

We conclude by Lemma 6(ii) that

n∑

i=1

A(	′i ) ≤ n · A(H̃(K ))− (t̃K (6)− t̃K (5)) · (b + 6). (7)

Let σ be an edge of � that is contained in ∂D, and write α(σ) to denote the total
curvature of σ . Since σ is contained in a translate of K , it is not hard to see that

A(conv σ) ≤ c · α(σ)
holds for some c depending on K . Now the total curvature of ∂D is 2π , and hence

A(D) ≤
n∑

i=1

A(	′i )+ c · 2π.

Thus Theorem 3 follows by (7) if b ≥ c · 2π/(t̃K (6)− t̃K (5)). Finally let b < c · 2π/
(t̃K (6)− t̃K (5)). Since the perimeter of D is at most b·P(K ), the isoperimetric inequality
yields A(D) < A0 where A0 depends only on K . Therefore we may choose Ñ =
A0/A(H̃(K )).
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Geometry, K. Böröczky and G. Fejes Tóth (eds), János Bolyai series, North-Holland, Amsterdam, 1994.
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