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The mean width of random polytopes circumscribed around a convex
body

Károly J. Böröczky, Ferenc Fodor and Daniel Hug

ABSTRACT

Let K be a d-dimensional convex body, and let K(n) be the intersection of n halfspaces containing K
whose bounding hyperplanes are independent and identically distributed. Under suitable distributional
assumptions, we prove an asymptotic formula for the expectation of the difference of the mean widths
of K(n) and K, and another asymptotic formula for the expectation of the number of facets of K(n). These
results are achieved by establishing an asymptotic result on weighted volume approximation of K and by
“dualizing” it using polarity.

1. Introduction

Let K be a convex body (compact convex set with nonempty interior) in d-dimensional Euclidean
space Rd. The convex hull K(n) of n independent random points in K chosen according to the uniform
distribution is a common model of a random polytope contained in K. The famous four-point problem
of Sylvester [40] is the starting point of an extensive investigation of random polytopes of this type.
Beside specific probabilities as in Sylvester’s problem, important objects of study are expectations,
variances and distributions of various geometric functionals associated with K(n). Typical examples
of such functionals are volume, other intrinsic volumes, and the number of i-dimensional faces. In
their ground-breaking papers [30] and [31], Rényi and Sulanke considered random polytopes in the
Euclidean plane and proved asymptotic results for the expectations of basic functionals of random
polytopes in a convex domain K in the cases where K is sufficiently smooth or a convex polygon.
Since then most results have been in the form of asymptotic formulae as the number n of random
points tends to infinity.

In the last three decades, much effort has been devoted to exploring the properties of this particular
model of a random polytope contained in a d-dimensional convex body K. For instance, for a
sufficiently smooth convex body K, asymptotic formulae were proved for the expectation of the mean
width difference W (K)−W (K(n)) by Schneider and Wieacker [37], and for the volume difference
V (K)− V (K(n)) by Bárány [1]. The assumption of smoothness was relaxed in the case of the mean
width by Böröczky, Fodor, Reitzner and Vı́gh [6], and removed by Schütt [38] in the case of the
volume, general intrinsic volumes are treated in [7] under a weak smoothness assumption. Recently,
even variance estimates, laws of large numbers, and central limit theorems have been proved in different
settings in a sequence of contributions, for instance by Bárány, Reitzner, and Vu [3], [4], [28], [29], [41],
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[42]. For more details on the current state-of-the-art of this line of research, see the survey papers by
Weil and Wieacker [43], Gruber [15] and Schneider [35], and the recent monograph of Schneider and
Weil [36].

In a third paper, Rényi and Sulanke [32] suggested a model which is “dual” to the model of a random
polytope contained in a given convex body K (a random inscribed polytope), that is, they considered a
random polytope containing a given convex body (a random circumscribed polytope). Subsequently,
this approach has not received as much attention as the “inscribed case”, although it is closely
related to linear optimization (cf. [10], [33, §6]). There are various ways of producing circumscribed
random polytopes containing a given convex body. In this paper, we consider a model in which the
circumscribed polytope arises as an intersection of closed halfspaces whose bounding hyperplanes are
randomly chosen hyperplanes. The rough description of the probability model is the following, it is
described more precisely in Section 2, a more general setting is provided in Section 5. In Euclidean
space Rd, we consider hyperplanes that intersect the radius one parallel domain of a given convex body
K but miss the interior of K, and we use the restriction of the (suitably normalized) Haar measure
on the set of hyperplanes in Rd to provide an associated probability measure. For n independent
random hyperplanes H1, . . . ,Hn chosen according to this distribution, the intersection of the closed
halfspaces bounded by H1, . . . ,Hn and containing K determines a circumscribed random polyhedral
set containing K (which might be unbounded). The main goal of this article is to find asymptotic
formulae for the expectation of the difference of the mean widths of a random circumscribed polytope
and the given convex body K, and for the expectation of the number of facets of a circumscribed
random polyhedral set. These (and more general) results will be achieved by establishing general results
on weighted volume approximation of a given convex body by inscribed random polytopes. In all these
results, no regularity or curvature assumptions on K are requird.

As for earlier results, we mention the paper [47] by Ziezold who investigated circumscribed polygons
in the plane, and the doctoral dissertation [21] of Kaltenbach who proved asymptotic formulae for the
expectation of the volume difference and for the expectation of the number of vertices of circumscribed
random polytopes around a convex body, under the assumption that the boundary of the reference body
K is sufficiently smooth. Recently, Böröczky and Schneider [9] established upper and lower bounds
for the expectation of the mean width difference for a general convex body K. Furthermore, they also
proved asymptotic formulae for the expected number of vertices and facets of K(n), and an asymptotic
formula for the expectation of the mean width difference, under the assumption that the reference body
K is a simplicial polytope with r facets.

In [8], Böröczky and Reitzner discuss a different model of a random circumscribed polytope where
n independent random points are chosen from the boundary of a given smooth convex body K, and
the intersection of the supporting halfspaces of K at these points is the random polyhedral set under
consideration. This framework is again dual to the one considered by Schütt and Werner (see [36])
who study the expected volume of the convex hull of n independent random points chosen from the
boundary of a convex body satisfying a weak regularity assumption.

2. The probability space and the main goal

Let us first describe the setting for stating our results on circumscribed random polyhedral sets.
Throughout this article, K will denote a compact convex set with interior points (a convex body) in
d-dimensional Euclidean space Rd (d ≥ 2). We write 〈· , ·〉 for the scalar product and ‖ · ‖ for the norm
in Rd. For background on convexity, we refer to the monographs by Schneider [34] or by Gruber
[16]. Let V denote volume, and let Hj denote the j-dimensional Hausdorff measure. The unit ball
of Rd with center at the origin o is denoted by Bd, and Sd−1 is its boundary. We put αd := V (Bd)
and ωd := Hd−1(Sd−1) = dαd. The parallel body of K of radius 1 is K1 := K +Bd. Let H denote
the space (with its usual topology) of hyperplanes in Rd, and let HK be the subspace of hyperplanes
meeting K1 but not the interior of K. For H ∈ HK , the closed halfspace bounded by H that contains



MEAN WIDTH OF CIRCUMSCRIBED RANDOM POLYTOPES Page 3 of 25

K is denoted by H−. Let µ denote the motion invariant Borel measure on H, normalized so that
µ({H ∈ H : H ∩M 6= ∅}) is the mean width W (M) of M , for every convex body M ⊂ Rd. Let 2µK
be the restriction of µ to HK . Since µ(HK) = W (K +Bd)−W (K) = W (Bd) = 2, the measure
µK is a probability measure. For n ∈ N, letH1, . . . ,Hn be independent random hyperplanes in Rd, i.e.
independent H-valued random variables on some probability space (Ω,A,P), each with distribution
µK . The possibly unbounded intersection

K(n) :=
n⋂
i=1

H−i

of the halfspaces H−i , with Hi ∈ HK for i = 1, . . . , n, is a random polyhedral set. A major aim
of the present work is to investigate EW (K(n) ∩K1), where E denotes mathematical expectation.
The intersection with K1 is considered, since K(n) is unbounded with positive probability. Instead of
EW (K(n) ∩K1), we could consider E1W (K(n)), the conditional expectation of W (K(n)) under the
condition that K(n) ⊂ K1. Since EW (K(n) ∩K1) = E1W (K(n)) +O(γn) with γ ∈ (0, 1) (cf. [9]),
there is no difference in the asymptotic behaviors of both quantities, as n→∞. We also remark that,
for the asymptotic results, the parallel body K1 could be replaced by any other convex body containing
K in its interior; this would only affect some normalization constants.

Let ∂K denote the boundary of K. We call ∂K twice differentiable in the generalized sense at a
boundary point x ∈ ∂K if there exists a quadratic form Q on Rd−1, the second fundamental form of
K at x, with the following property: If K is positioned in such a way that x = o and Rd−1 is a support
hyperplane of K at o, then in a neighborhood of o, ∂K is the graph of a convex function f defined on
a (d− 1)-dimensional ball around o in Rd−1 satisfying

f(z) = 1
2 Q(z) + o(‖z‖2), (2.1)

as z → o. Alternatively, we call x a normal boundary point of K. If this is the case, we write κ(x) =
det(Q) to denote the generalized Gaussian curvature of K at x. Writing κ(x), we always assume
that ∂K is twice differentiable in the generalized sense at x ∈ ∂K. According to a classical result of
Alexandrov (see [34], [16]), ∂K is twice differentiable in the generalized sense almost everywhere with
respect to the boundary measure of K (Hd−1-almost all boundary points are normal boundary points).
Finally, we define the constant

cd =
(d2 + d+ 2)(d2 + 1)

2(d+ 3) · (d+ 1)!
Γ
(
d2 + 1
d+ 1

)(
d+ 1
αd−1

)2/(d+1)

(2.2)

(cf. J.A. Wieacker) [46], which will appear in the statements of our main results. In the following, we
simply write dx instead ofHd(dx).

The main asymptotic result concerning the expected difference of the mean widths of K(n) and K
is the following theorem. Generalizations of Theorem 2.1, and also of Theorem 2.2 below, which hold
under more general distributional assumptions, are provided in Section 5. There we also indicate the
connection to the p-affine surface area of a convex body.

THEOREM 2.1. If K is a convex body in Rd, then

lim
n→∞

n
2
d+1 E(W (K(n) ∩K1)−W (K)) = 2 cd ωd−

d−1
d+1

∫
∂K

κ(x)
d
d+1 Hd−1(dx).

Let fi(P ), i ∈ {0, . . . , d− 1}, denote the number of i-dimensional faces of a polyhedral set P . In
the statement of the following theorem, K(n) could be replaced by the intersection of K(n) with a
fixed polytope containing K in its interior without changing the right-hand side. Alternatively, instead
of E(fd−1(K(n))) we could consider the conditional expectation of fd−1(K(n)) under the assumption
that K(n) is contained in K1.
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THEOREM 2.2. If K is a convex body in Rd, then

lim
n→∞

n−
d−1
d+1 E(fd−1(K(n))) = cd ω

− d−1
d+1

d

∫
∂K

κ(x)
d
d+1 Hd−1(dx).

Both theorems will be deduced from a “dual” result on weighted volume approximation of convex
bodies by inscribed random polytopes which is stated in the subsequent section. The usefulness of
duality in random or best approximation has previously been observed e.g. in [21], [14], [11].

3. Weighted volume approximation by inscribed polytopes

For a given convex body, we introduce a class of inscribed random polytopes. LetC be a convex body
in Rd, let % be a bounded, nonnegative, measurable function on C, and letHdxC denote the restriction
of Hd to C. Assuming that

∫
C
%(x)Hd(dx) > 0, we choose random points from C according to the

probability measure

P%,C :=
(∫

C

%(x) dx
)−1

%HdxC.

Expectation with respect to P%,C is denoted by E%,C . The convex hull of n independent and identically
distributed random points with distribution P%,C is denoted by C(n) if % is clear from the context. This
yields a general model of an inscribed random polytope.

Generalizing a result by C. Schütt [38], we prove the following theorem.

THEOREM 3.1. For a convex body K in Rd, a probability density function % on K, and an
integrable function λ : K → R such that, on a neighborhood of ∂K relative to K, λ and % are
continuous and % is positive,

lim
n→∞

n
2
d+1 E%,K

∫
K\K(n)

λ(x) dx = cd

∫
∂K

%(x)
−2
d+1λ(x)κ(x)

1
d+1 Hd−1(dx) (3.1)

where cd is defined in (2.2).

The limit on the right-hand side of (3.1) depends only on the values of % and λ on the boundary of
K. In particular, we may prescribe any continuous, positive function % on ∂K. Then any continuous
extension of % to a probability density onK (there always exists such an extension) will satisfy Theorem
3.1 with the prescribed values of % on the right-hand side.

Our proof of Theorem 3.1 is inspired by the argument in C. Schütt [38] who considered the
special case % ≡ λ ≡ 1. We note that for Lemma 2 in [38], which is crucial for the proof in [38],
no explicit proof is provided, but reference is given to an analogous result in an unpublished note by
M. Schmuckenschläger. Besides a missing factor 1

2 , Lemma 2 does not hold in the generality stated in
[38]. For instance, it is not true for simplices. Most probably, this gap can be overcome, but still our
approach to prove Theorem 3.1, where Lemma 2 in [38] is replaced by the elementary Lemma 4.2,
might be of some interest.

The present partially new approach to Theorem 3.1 involves also some other interesting new features.
In particular, we do not need the concept of a Macbeath region. An outline of the proof is given below. It
should also be emphasized that the generality of Theorem 3.1 is needed for our study of circumscribed
random polyhedral sets via duality.

A classical argument going back to Efron shows that

E%,K
(
f0(K(n))

)
= n · E%,K

∫
K\K(n−1)

%(x) dx,
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which yields the following consequence of Theorem 3.1.

COROLLARY 3.2. For a convex bodyK in Rd, and for a probability density function % onK which
is continuous and positive in a neighborhood of ∂K relative to K,

lim
n→∞

n−
d−1
d+1 E%,K(f0(K(n))) = cd

∫
∂K

%(x)
d−1
d+1 κ(x)

1
d+1 Hd−1(dx)

where cd is defined in (2.2).

The proof of Theorem 3.1 is obtained through the following intermediate steps. Details are provided
in Section 4. Since the convex body K is fixed, we write E% and P% instead of E%,K and P%,K ,
respectively. The basic observation to prove Theorem 3.1 is that

E%
∫
K\K(n)

λ(x) dx =
∫
K

P%
(
x 6∈ K(n)

)
λ(x) dx, (3.2)

which is an immediate consequence of Fubini’s theorem. Throughout the proof, we may assume that
o ∈ int(K). The asymptotic behavior, as n→∞, of the right-hand side of (3.2) is determined by points
x ∈ K which are sufficiently close to the boundary of K. In order to give this statement a precise
meaning, scaled copies of K are introduced as follows. For t ∈ (0, 1), we define Kt := (1− t)K and
yt := (1− t)y for y ∈ ∂K. In Lemma 4.3, we show that

lim
n→∞

n
2
d+1

∫
K
n

−1
d+1

P%
(
x 6∈ K(n)

)
λ(x) dx = 0.

This limit relation is based on a geometric estimate of P%
(
x 6∈ K(n)

)
, provided in Lemma 4.1, and on

a disintegration result stated as Lemma 4.2.
For y ∈ ∂K, we write u(y) for some exterior unit normal of K at y. This exterior unit normal is

uniquely determined for Hd−1-almost all boundary points of K. Applying the disintegration result
again and using Lebesgue’s dominated convergence result, we finally get

lim
n→∞

n
2
d+1 E%

∫
K\K(n)

λ(x) dx =
∫
∂K

λ(y)J%(y)Hd−1(dy),

where

J%(y) = lim
n→∞

∫n −1
d+1

0

n
2
d+1 〈y, u(y)〉P%

(
yt 6∈ K(n)

)
dt

for Hd−1-almost all y ∈ ∂K. For the subsequent analysis, it is sufficient to consider a small cap of
K at a normal boundary point y ∈ ∂K. The case κ(y) = 0 is treated in Lemma 4.4. The main case
is κ(y) > 0. Here we reparametrize yt as ỹs, in terms of the probability content of a small cap of K
whose bounding hyperplane passes through yt. This implies that

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫n−1/2

0

n
2
d+1 P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds,

cf. (4.26). It is then a crucial step in the proof to show that the remaining integral asymptotically is
independent of the particular convex body K, and thus the limit of the integral is the same as for a
Euclidean ball (see Lemma 4.6). To achieve this, the integral is first approximated, up to a prescribed
error of order ε > 0, by replacing P%

(
ỹs 6∈ K(n)

)
by the probability of an event that depends only on

a small cap of K at y and on a small number of random points. This important step is accomplished
in Lemma 4.5. For the proofs of Lemmas 4.5 and 4.6 it is essential that the boundary of K near the
normal boundary point y can be suitably approximated by the osculating paraboloid of K at y.
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4. Proof of Theorem 3.1

To start with the actual proof, we fix some further notation. For y ∈ ∂K and t ∈ (0, 1), we define the
cap C(y, t) := {x ∈ K : 〈u(y), x〉 ≥ 〈u(y), yt〉} whose bounding hyperplane passes through yt and
has normal u(y). For u ∈ Rd \ {o} and t ∈ R, we define the hyperplaneH(u, t) := {x ∈ Rd : 〈x, u〉 =
t}, and the closed halfspaces H+(u, t) := {x ∈ Rd : 〈x, u〉 ≥ t} and H−(u, t) := {x ∈ Rd : 〈x, u〉 ≤
t} bounded by H(u, t). We denote by h(K, ·) = hK the support function of K, that is h(K,u) :=
max{〈x, u〉 : x ∈ K} for u ∈ Rd.

For y ∈ ∂K, the maximal number r ≥ 0 such that y − ru(y) + rBd ⊂ K is denoted by r(y). This
number is called the interior reach of the boundary point y. It is well known that r(y) > 0 for Hd−1-
almost all y ∈ ∂K. If r(y) > 0, there is a unique tangent plane of K at y. In particular, r(y) ≤ r(K)
where r(K) is the inradius of K. The convex hull of subsets X1, . . . , Xr ⊂ Rd and points z1, . . . , zs ∈
Rd is denoted by [X1, . . . , Xr, z1, . . . , zs].

For real functions f and g defined on the same space I , we write f � g or f = O(g) if there exists
a positive constant γ, depending only on K, % and λ, such that |f | ≤ γ · g on I . In general, we write
γ0, γ1, . . . to denote positive constants depending only on K, % and λ. The Landau symbol o(·) is
defined as usual. We further put R+ := [0,∞).

Finally, we observe that there exists a constant γ0 ∈ (0, 1) such that for y ∈ ∂K, we have

|〈y, u(y)〉| ≥ γ0‖y‖, and hence ‖y|u(y)⊥‖ ≤
√

1− γ2
0 · ‖y‖, (4.1)

where y|u⊥ denotes the orthogonal projection of y onto the orthogonal complement of the vector u ∈
Rd \ {o}. Subsequently, we always assume that n ∈ N.

LEMMA 4.1. There exists a constant δ > 0, depending on K and %, such that if y ∈ ∂K and t ∈
(0, δ), then

P%
(
yt 6∈ K(n)

)
�
(

1− γ1r(y)
d−1

2 t
d+1

2

)n
.

REMARKS.
(i) In addition, we may assume that on K \ int(Kδ), both functions %, λ are continuous, % is

positive and γ1r(K)
d−1

2 δ
d+1

2 < 1.
(ii) In the following, we will use the notion of a “coordinate corner”. Given an orthonormal basis

in a linear i-dimensional subspace L, the corresponding (i− 1)-dimensional coordinate planes
cut L into 2i convex cones, which we call coordinate corners (with respect to L and the given
basis).

Proof of Lemma 4.1. If r(y) = 0, then there is nothing to prove. So let r(y) > 0, thence u(y)
is uniquely determined. Choose an orthonormal basis in u(y)⊥, and let Θ′1, . . . ,Θ

′
2d−1 be the

corresponding coordinate corners in u(y)⊥. For i = 1, . . . , 2d−1 and t ∈ [0, 1], we define

Θi,t := C(y, t) ∩
(
yt +

[
Θ′i,R+y

])
.

If δ > 0 is small enough to ensure that % > 0 is positive and continuous in a neighborhood (relative to
K) of ∂K, then ∫

Θi,t

%(x) dx ≥ γ2 V (Θi,t).

If yt 6∈ K(n) and o ∈ K(n), then there exists a hyperplane H through yt, bounding the halfspaces H−

and H+, for which K(n) ⊂ H−. Moreover, there is some i ∈ {1, . . . , 2d−1} such that Θi,t ⊂ H+.
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Therefore

P%
(
yt 6∈ K(n), o ∈ K(n)

)
�

2d−1∑
i=1

(1− γ2V (Θi,t))
n
. (4.2)

Finally, we prove

V (Θi,t)� r(y)
d−1

2 t
d+1

2 , (4.3)

for i = 1, . . . , 2d−1. According to (4.1), there exist positive constants γ3, γ4 with γ3 ≤ 1 such that if
t ≤ γ3r(y), then (yt + Θ′i) ∩K contains a (d− 1)-ball of radius at least

γ4

√
r(y)2 − (r(y)− t)2 ≥ γ4

√
r(y)t,

and we are done. On the other hand, if t ≥ γ3r(y), then

V (Θi,t)� td � r(y)
d−1

2 t
d+1

2 .

To deal with the case o 6∈ K(n), we observe that there exists a positive constant γ5 ∈ (0, 1) such that
the probability measure of each of the 2d coordinate corners of Rd is at least γ5. If o 6∈ K(n), then
{x1, . . . , xn} is disjoint from one of these coordinate corners, and hence

P%(o 6∈ K(n)) ≤ 2d(1− γ5)n. (4.4)

Now the assertion follows from (4.2), (4.3) and (4.4).

Subsequently, the estimate of Lemma 4.1 will be used, for instance, to restrict the domain of
integration on the right-hand side of (3.2) (cf. Lemma 4.3) and to justify an application of Lebesgue’s
dominated convergence theorem (see (4.9)). For these applications, we also need that if c > 0 is such
that ω := c δ

d+1
2 < 1, then∫ δ
0

(
1− c t

d+1
2

)n
dt =

2
d+ 1

c
−2
d+1

∫ω
0

s
2
d+1−1(1− s)n ds� c

−2
d+1 · n

−2
d+1 , (4.5)

where we use that (1− s)n ≤ e−ns for s ∈ [0, 1] and n ∈ N.
The next lemma will allow us to decompose integrals in a suitable way.

LEMMA 4.2. If 0 ≤ t0 ≤ t1 < δ and h : K → [0,∞] is a measurable function, then∫
Kt0\Kt1

h(x) dx =
∫
∂K

∫ t1
t0

(1− t)d−1〈y, u(y)〉h(yt) dtHd−1(dy).

Proof. The map T : ∂K × [t0, t1]→ Kt0 \Kt1 , (y, t) 7→ (1− t)y, provides a bilipschitz
parametrization of Kt0 \Kt1 with (1− t)y = yt ∈ ∂Kt. The Jacobian of T , for Hd−1-almost all
y ∈ ∂K and t ∈ [t0, t1], is given by JT (y, t) = (1− t)d−1〈y, u(y)〉, where u(y) is the (Hd−1-almost
everywhere) unique exterior unit normal of ∂K at y. The assertion now follows from Federer’s
area/coarea theorem (see [13]).

In the following, we will use the important fact that, for α > −1,∫
∂K

r(y)αHd−1(dy) <∞, (4.6)

which is a result due to C. Schütt and E. Werner [39].
By decomposing λ in its positive and its negative part, we can henceforth assume that λ is a

nonnegative, integrable function.
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LEMMA 4.3. As n tends to infinity,∫
K
n

−1
d+1

P%
(
x 6∈ K(n)

)
λ(x) dx = o

(
n

−2
d+1

)
.

Proof. Let δ > 0 be chosen as in Lemma 4.1 and the subsequent remark. First, we consider a point
x in Kδ . Let ω be the minimal distance between the points of ∂K and Kδ , and let z1, . . . , zk be a
maximal family of points in K \ int(Kδ) such that ‖zi − zj‖ ≥ ω

4 for i 6= j. We define p0 > 0 by

p0 := min
{
P%
(
zi + ω

4 B
d
)

: i = 1, . . . , k
}
.

Let x ∈ Kδ . If x 6∈ K(n), then there exists a hyperplane H(u, t) such that x ∈ int(H+(u, t)) and
K(n) ⊂ H−(u, t). Since x ∈ Kδ , there exists a supporting hyperplaneH(u, h(Kδ, u)) ofKδ for which
K(n) ⊂ int(H−(u, h(Kδ, u))). If z ∈ H(u, h(Kδ, u)) ∩ ∂Kδ , then

z +
ω

2
u+

ω

2
Bd ⊂ K ∩H+(u, h(Kδ, u)).

By the maximality of the set {z1, . . . , zk}, we have

{z1, . . . , zk} ∩
(
z +

ω

2
u+

ω

4
Bd
)
6= ∅.

Let zj lie in the intersection. Then zj + ω
4B

d ⊂ H+(u, h(Kδ, u)), and hence xi /∈ zj + ω
4B

d for i =
1, . . . , n. This implies that, for x ∈ Kδ ,

P%
(
x 6∈ K(n)

)
≤ k(1− p0)n. (4.7)

Put ε := (2(d2 − 1))−1 and let n ≥ δ−(d+1). For y ∈ ∂K we show that∫ δ
n
−1
d+1

P%
(
yt 6∈ K(n)

)
dt� r(y)−

d
d+1n

−2
d+1−ε. (4.8)

In fact, if r(y) ≤ n−(d+1)ε, then Lemma 4.1 and (4.5) yield∫ δ
n
−1
d+1

P%
(
yt 6∈ K(n)

)
dt ≤

∫ δ
0

(
1− γ1r(y)

d−1
2 t

d+1
2

)n
dt

� r(y)−
d−1
d+1 n−

2
d+1

≤ r(y)−
d
d+1n−

2
d+1−ε,

where the assumption on r(y) is used for the last estimate.
If r(y) ≥ n−(d+1)ε and n ≥ n0, where n0 depends on K, % and λ, then Lemma 4.1 implies for all

t ∈ (n
−1
d+1 , δ) that

P%
(
yt 6∈ K(n)

)
�
(

1− γ1n
− d

2−1
2 ε− 1

2

)n
= (1− γ1n

−3/4)n ≤ e−γ1n
1/4
≤ r(K)−

d
d+1n

−2
d+1−ε,

which again yields (4.8). In particular, writing I to denote the integral in Lemma 4.3, we obtain from
Lemma 4.2, (4.7), (4.8) and (4.6) that

I �
∫
Kδ

P%
(
x 6∈ K(n)

)
λ(x) dx+

∫
∂K

∫ δ
n
−1
d+1

P%
(
yt 6∈ K(n)

)
dtHd−1(dy)

� k(1− p)n +
∫
∂K

r(y)−
d
d+1n

−2
d+1−εHd−1(dy)� n

−2
d+1−ε,

where we also used that λ is integrable on K and bounded on K \Kδ . This is the required estimate.
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It follows from (3.2), Lemma 4.3 and Lemma 4.2 that

lim
n→∞

n
2
d+1 E%

∫
K\K(n)

λ(x) dx

= lim
n→∞

n
2
d+1

∫
K

P%
(
x 6∈ K(n)

)
λ(x) dx

= lim
n→∞

∫
∂K

∫n −1
d+1

0

n
2
d+1 (1− t)d−1〈y, u(y)〉P%

(
yt 6∈ K(n)

)
λ(yt) dtHd−1(dy).

Lemma 4.1 and (4.5) imply that if y ∈ ∂K and r(y) > 0, then∫n −1
d+1

0

n
2
d+1 P%

(
yt 6∈ K(n)

)
〈y, u(y)〉λ(yt) dt� r(y)−

d−1
d+1 .

Therefore, by (4.6) and since λ is bounded and continuous in a neighborhood of ∂K we may apply
Lebesgue’s dominated convergence theorem, and thus we conclude

lim
n→∞

n
2
d+1 E%

∫
K\K(n)

λ(x) dx =
∫
∂K

λ(y)J%(y)Hd−1(dy), (4.9)

where

J%(y) := lim
n→∞

∫n −1
d+1

0

n
2
d+1 〈y, u(y)〉P%

(
yt 6∈ K(n)

)
dt,

forHd−1-almost all y ∈ ∂K.

LEMMA 4.4. If y ∈ ∂K is a normal boundary point of K with κ(y) = 0, then J%(y) = 0.

Proof. In view of the estimate (4.4), it is sufficient to prove that for any given ε > 0,∫n −1
d+1

0

n
2
d+1 P%

(
yt 6∈ K(n), o ∈ K(n)

)
dt� ε, (4.10)

if n is sufficiently large. We choose the coordinate axes in u(y)⊥ parallel to the principal curvature
directions of K at y, and denote by Θ′1, . . . ,Θ

′
2d−1 the corresponding coordinate corners. For i =

1, . . . , 2d−1 and t ∈ (0, n
−1
d+1 ), let

Θi,t := C(y, t) ∩
(
yt +

[
Θ′i,R+y

])
,

and hence, if n is large enough, then ∫
Θi,t

%(x) dx� V (Θi,t),

since % is continuous and positive near ∂K. If yt 6∈ Kn and o ∈ K(n), then there exists a halfspace H−

which contains K(n) and for which yt ∈ ∂H−. Moreover, for some i ∈ {1, . . . , 2d−1} the interior of
H− is disjoint from Θi,t. Hence, as in the proof of Lemma 4.1,

P%
(
yt 6∈ K(n), o ∈ K(n)

)
�

2d−1∑
i=1

(1− γ6V (Θi,t))
n
. (4.11)

Since ∂K is twice differentiable in the generalized sense at y, we have r(y) > 0. By assumption,
κ(y) = 0, therefore one principal curvature at y is zero, and hence less than εd+1r(y)d−2. In particular,
there exists δ′ ∈ (0, δ), which by (4.1) depends only on y and ε, such that if i ∈ {1, . . . , 2d−1} and
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t ∈ (0, δ′), then

Hd−1 ((yt + Θ′i) ∩K)�
√
tε−(d+1)r(y)−(d−2) ·

√
tr(y)

d−2
.

We deduce V (Θi,t)� ε−
d+1

2 t
d+1

2 . Therefore (4.10) follows from (4.5) and (4.11).

Next we consider the case of a normal boundary point y ∈ ∂K with κ(y) > 0. First, we prove that
J%(y) depends only on the random points near y (see Lemma 4.5). In a second step, we compare the
simplified expression obtained for J%(y) with the corresponding expression which is obtained if K is a
ball.

We start by reparametrizing yt in terms of the probability measure of the corresponding cap. For
t ∈ (0, n

−1
d+1 ), where n ≥ n0 is sufficiently large so that % is positive and continuous on C(y, t), for all

y ∈ ∂K, we put
ỹs := yt

where for given s > 0 (sufficiently small) the corresponding t = t(s) is determined by the relation

s =
∫
C(y,t)

%(x) dx. (4.12)

It is easy to see that the right-hand side of (4.12) is a continuous and strictly increasing function s = s(t)
of t, if t > 0 is sufficiently small. This implies that for a given s > 0 (sufficiently small) there is a unique
t(s) such that (4.12) is satisfied.

Moreover, observe that
ds

dt
= 〈u(y), y〉

∫
H(y,t)∩K

%(x)Hd−1(dx) (4.13)

for t ∈ (0, n
−1
d+1 ). We further define

C̃(y, s) := C(y, t) and H̃(y, s) := {x ∈ Rd : 〈u(y), x〉 = 〈u(y), ỹs〉},

where t = t(s).
LetQ denote the second fundamental form of ∂K at y (cf. (2.1)), considered as a function on u(y)⊥.

We define
E := {z ∈ u(y)⊥ : Q(z) ≤ 1}.

and put u := u(y). Choosing a suitable orthonormal basis v1, . . . , vd−1 of u(y)⊥, we have

Q(z) =
d−1∑
i=1

ki(y)z2
i ,

where ki(y), i = 1, . . . , d− 1, are the generalized principal curvatures of K at y and where z =
z1v1 + . . .+ zd−1vd−1. Since y is a normal boundary point of K, there is a nondecreasing function
µ : (0,∞)→ R with limr→0+ µ(t) = 1 such that

µ(r)−1

√
2r

(K(u, r) + ru− y) ⊂ E ⊂ µ(r)√
2r

(K(u, r) + ru− y), (4.14)

where K(u, r) := K ∩H(u, h(K,u)− r). In the following, µi : (0,∞)→ R, i = 1, 2, . . ., always
denote nondecreasing functions with limr→0+ µ(t) = 1. Applying (4.14) and Fubini’s theorem, we
get

V (K ∩H+(u, h(K,u)− r)) = µ1(r)
(2r)

d+1
2

d+ 1
αd−1κ(y)−

1
2 ,

which yields that

s(t) = µ2(t)
(2t〈y, u〉) d+1

2

d+ 1
αd−1κ(y)−

1
2 %(y), (4.15)
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since % is continuous at y. Moreover, defining

η := (d+ 1)
1
d+1α

− 1
d+1

d−1 %(y)
−1
d+1κ(y)

1
2(d+1) ,

we obtain

lim
s→0+

s
−1
d+1 [(H̃(y, s) ∩K)− ỹs] = η · E (4.16)

in the sense of the Hausdorff metric on compact convex sets (see Schneider [34] or Gruber [16]). Here
we also use that

lim
s→0+

s−
1
d+1 (ỹs − 〈ỹs, u〉u) = o. (4.17)

Now it follows from (4.13) and (4.16) that (4.9) turns into

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫g(n,y)

0

n
2
d+1 P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds,

where

lim
n→∞

n
1
2 g(n, y) = (d+ 1)−1αd−1%(y)(2〈u(y), y〉)

d+1
2 κ(y)−

1
2 .

The rest of the proof is devoted to identifying the asymptotic behavior of the integral. First, we adjust
the domain of integration and the integrand in a suitable way. In a second step, the resulting expression
is compared to the case where K is the unit ball. We recall that x1, . . . , xn are random points in K,
and we put Ξn := {x1, . . . , xn}, and hence K(n) = [Ξn]. Let #X denote the cardinality of a finite set
X ⊂ Rd.

LEMMA 4.5. For ε ∈ (0, 1), there exist α, β > 1 and an integer k > 1, depending only on ε and d,
with the following property. If y ∈ ∂K is a normal boundary point of K with κ(y) > 0 and if n > n0,
where n0 depends on ε, y,K, %, then∫g(n,y)

0

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds =

∫ α
n

ε(d+1)/2
n

ϕ(K, y, %, ε, s)s−
d−1
d+1 ds+O

(
ε

n
2
d+1

)
,

where

ϕ(K, y, %, ε, s) = P%
((
ỹs 6∈ [C̃(y, βs) ∩ Ξn]

)
and

(
#(C̃(y, βs) ∩ Ξn) ≤ k

))
.

Proof. Let Q be the second fundamental form of ∂K at the normal boundary point y, and
let v1, . . . , vd−1 be an orthonormal basis of u(y)⊥ with respect to Q, as described above. Let
Θ′1, . . . ,Θ

′
2d−1 be the corresponding coordinate corners, and, for i = 1, . . . , 2d−1 and for s ∈

(0, n−1/2), put

Θ̃i,s := C̃(y, s) ∩
(
ỹs +

[
Θ′i,R+y

])
.

Let As, s > 0, be the affine map of Rd with As(y) = y for which the associated linear map Ãs is deter-
mined by Ãs(v) = s

1
d+1 v, for v ∈ u⊥, and Ãs(u) = s

2
d+1u. Then det(Ãs) = s and As−1(C̃(y, s))

converges in the Hausdorff metric as s→ 0+ to the cap C̃(y) of the osculating paraboloid of K at y
having volume %(y)−1. Here we use that % is continuous at y, %(y) > 0 and relation (4.12). Let λ > 0
be such that ỹ := y − λu ∈ ∂C̃(y). Then As−1(Θ̃i,s) converges in the Hausdorff metric as s→ 0+ to
C̃(y) ∩ (ỹ + [Θ′i,R+u]), since (4.17) is satisfied. Using again that % is continuous and positive at y, we
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deduce that

lim
s→0+

s−1

∫
Θ̃i,s

%(x) dx = lim
s→0+

s−1V (Θ̃i,s)%(y)

= lim
s→0+

V (As−1(Θ̃i,s))%(y)

= V (C̃(y) ∩ (ỹ + [Θ′i,R+u]))%(y)

= 2−(d−1)V (C̃(y))%(y)

= 2−(d−1) lim
s→0+

V (As−1(C̃(y, s))%(y)

= 2−(d−1) lim
s→0+

s−1V (C̃(y, s))%(y)

= 2−(d−1) lim
s→0+

s−1

∫
C̃(y,s)

%(x) dx

= 2−(d−1),

that is

lim
s→0+

s−1

∫
Θ̃i,s

%(x) dx = 2−(d−1). (4.18)

Let α > 1 be chosen such that

2d−1+2d/(d+1)

∫∞
2−dα

e−xx
2
d+1−1 dx ≤ ε.

Then we first choose β ≥ (16(d− 1))d+1 such that

2d−1e−d
−12−(d+3)β

1
d+1 ε

d+1
2 ≤ ε

α
2
d+1

,

and then we fix an integer k > 1 such that

(αβ)k

k!
≤ ε

α
2
d+1

.

Lemma 4.5 follows from the following three statements, which we will prove assuming that n is
sufficiently large.

(i) ∫g(n,y)

0

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds =

∫ α
n

ε(d+1)/2
n

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds+O

(
ε

n
2
d+1

)
.

(ii) If ε
(d+1)/2

n < s < α
n , then

P%
(

#
(
C̃(y, βs) ∩ Ξn

)
≥ k

)
= O

(
ε

α
2
d+1

)
.

(iii) If ε
d+1

2

n < s < α
n , then

P%
(
ỹs 6∈ K(n)

)
= P%

(
ỹs 6∈

[
C̃(y, βs) ∩ Ξn

])
+O

(
ε

α
2
d+1

)
.

To prove (i), we first observe that∫ ε(d+1)/2
n

0

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds ≤

∫ ε(d+1)/2
n

0

s−
d−1
d+1 ds� ε

n
2
d+1

.
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If α
n < s < g(n, y), o ∈ K(n), ỹs 6∈ K(n) and if n is sufficiently large, then there is some i ∈

{1, . . . , 2d−1} such that Θ̃i,s ∩K(n) = ∅, and hence (4.4) and (4.18) yield

P%
(
ỹs 6∈ K(n)

)
� 2d−1(1− 2−ds)n ≤ 2d−1e−2−dns. (4.19)

Therefore, by the definition of α, we get∫g(n,y)

α
n

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds� 2d−1

∫∞
α
n

e−2−dnss
2
d+1−1 ds

= 2d−122d/(d+1)n−
2
d+1

∫∞
2−dα

e−xx
2
d+1−1 dx

≤ ε n−
2
d+1 ,

which verifies (i).
Next (ii) simply follows from (4.12) as if s < α

n , then

P%
(

#
(
C̃(y, βs) ∩ Ξn

)
≥ k

)
=
(
n

k

)
(βs)k ≤

(
n

k

)(
αβ

n

)k
<

(αβ)k

k!
≤ ε

α
2
d+1

.

Now we prove (iii). To this end, for s in the given range, our plan is to construct sets
Ω̃1,s, . . . , Ω̃2d−1,s ⊂ K such that∫

Ω̃i,s

%(x) dx ≥ d−12−(d+3)β
1
d+1 s, for i = 1, . . . , 2d−1, (4.20)

and if ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
, then Ξn ∩ Ω̃i,s = ∅ for some i ∈ {1, . . . , 2d−1}.

For i = 1, . . . , 2d−1, let wi ∈ Θ′i be the vector whose coordinates (up to sign) in the basis
v1, . . . , vd−1 are

wi :=
(√

βs
) 1
d+1 η

2
√
d− 1

(
± 1√

k1(y)
, . . . ,± 1√

kd−1(y)

)
.

Further, for i = 1, . . . , 2d−1 we define

Ω̃i,s = [ỹ√β s + wi,K ∩ (ỹs + Θ′i)].

Then, if s > 0 is small enough, ỹ√β s + wi ∈ K, and hence Ω̃i,s ⊂ K. Here we use that

wi ∈ (
√
βs)

1
d+1

1
2
ηE

and therefore by (4.16)

ỹ√βs + wi ∈ H̃(y,
√
βs) ∩K ⊂ K.

Using that ỹs = (1− t)y, where s and t are related by (4.15), and if s, t > 0 are sufficiently small, we
obtain

〈u(y), ỹs − ỹ√β s〉 >
β

1
d+1 − 1

2
〈u(y), y − ỹs〉 >

β
1
d+1

4
〈u(y), y − ỹs〉, (4.21)

since β ≥ 2d+1. Moreover, we have

〈u(y), y − ỹs〉 · Hd−1 (K ∩ (ỹs + Θ′i)) ≥ V (Θ̃i,s). (4.22)
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Combining (4.21), (4.22), (4.18) and the continuity of % at y with %(y) > 0, we deduce (4.20), that is∫
Ω̃i,s

%(x) dx ≥ 1√
2

1
d
%(y)〈u(y), ỹs − ỹ√β s〉Hd−1 (K ∩ (ỹs + Θ′i))

≥ β
1
d+1

4
1√
2d
V (Θ̃i,s)

≥ β
1
d+1

4
1
2d

∫
Θ̃i,s

%(x) dx

≥ β
1
d+1 s

8d 2d
.

It is still left to prove that if ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
, then Ξn ∩ Ω̃i,s = ∅ for some

i ∈ {1, . . . , 2d−1}. So we assume that ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
. Then there exist a ∈[

C̃(y, βs) ∩ Ξn
]

and b ∈ K(n) \ C̃(y, βs) such that ỹs ∈ [a, b], and hence there exists a hyperplane

H containing ỹs bounding the halfspaces H+ and H− such that C̃(y, βs) ∩ Ξn ⊂ int(H+) and
b ∈ int(H−).

Next we show that there exists q ∈ [ỹs, b] such that

q ∈ H− ∩
(
ỹ√β s +

η

2
√
d− 1

(
√
βs)

1
d+1E

)
. (4.23)

In fact, define q := [ỹs, b] ∩ H̃(y,
√
βs) and q′ := [ỹs, b] ∩ H̃(y, βs). Since a ∈ H+ and ỹs ∈ H , it

follows that q ∈ H−. From (4.16) we get

H̃(y, βs) ∩K ⊂ ỹβs + 2β
1
d+1 s

1
d+1 ηE. (4.24)

Applying (4.15), we deduce

〈u(y), ỹs − ỹβ s〉 <
β

2
d+1

β
2
d+1 − 1

· β
2
d+1 − 1

β
2
d+1 − β

1
d+1
〈u(y), ỹ√β s − ỹβs〉

<
β

1
d+1

β
1
d+1 − 1

〈u(y), ỹ√β s − ỹβs〉. (4.25)

Furthermore, elementary geometry yields

‖q − ỹ√βs‖
‖q′ − ỹβs‖

=
〈u, ỹs − ỹ√βs〉
〈u, ỹs − ỹβs〉

.

Then (4.24) and (4.25) imply that

q ∈ ỹ√βs +
〈u, ỹs − ỹ√βs〉
〈u, ỹs − ỹβs〉

· 2(βs)
1
d+1 ηE

⊂ ỹ√βs +
(

1−
〈u, ỹ√βs − ỹβs〉
〈u, ỹs − ỹβs〉

)
· 2β

1
d+1 s

1
d+1 ηE

⊂ ỹ√βs + 2s
1
d+1 ηE

⊂ ỹ√βs +
1

2
√
d− 1

(
√
βs)

1
d+1 ηE,

where β ≥ (16(d− 1))d+1 is used for the last inclusion. Now there exists some i ∈ {1, . . . , 2d−1} such
that ỹs + Θ′i ⊂ H−, and hence q + Θ′i ⊂ H−. By (4.23) this finally yields

ỹ√βs + wi ⊂ q + Θ′i ⊂ H−.

Therefore we obtain Ω̃i,s ∩ Ξn = ∅.
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Finally, (iii) follows as if ε
d+1

2

n < s < α
n , then

0 ≤ P%
(
ỹs 6∈

[
C̃(y, βs) ∩ Ξn

])
− P%

(
ỹs 6∈ K(n)

)
≤

2d−1∑
i=1

(1−
∫
Ω̃i,s

%(x) dx)n

≤
2d−1∑
i=1

e
−n

∫
Ω̃i,s

%(x) dx

≤ 2d−1e−d
−12−(d+3)β

1
d+1 ε

d+1
2

≤ ε α−
2
d+1 ,

by the choice of β.

REMARK. As a consequence of the proof of Lemma 4.5, it follows that

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫n−1/2

0

n
2
d+1 P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds. (4.26)

In fact, since g(n, y)� n−1/2, it is sufficient to show that

lim
n→∞

n
2
d+1

∫ c2n−1/2

c1n−1/2
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = 0

for any two constants 0 < c1 ≤ c2 <∞. Since the estimate (4.19) can be applied, we get

n
2
d+1

∫ c2n−1/2

c1n−1/2
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds� n

2
d+1

∫ c2n−1/2

c1n−1/2
e−2−dnss

2
d+1−1 ds

�
∫2−dc2n

1/2

2−dc1n1/2
e−rr

2
d+1−1 dr,

from which the conclusion follows.

Subsequently, we write 1 to denote the constant one function on Rd. For the unit ball Bd, we recall
that Bd(n) denotes the convex hull of n random points distributed uniformly and independently in Bd.
We fix a point w ∈ ∂Bd, and for s ∈ (0, 1

2 ), define w̃s := t · w, where t ∈ (0, 1) is chosen such that

s = α−1
d · V ({x ∈ Bd : 〈x,w〉 ≥ 〈w̃s, w〉}).

A classical result due to J.A. Wieacker [46] is that

lim
n→∞

n
2
d+1 E1,BdV (Bd \Bd(n)) = cd ωd α

2
d+1
d ,

where the constant cd is given in (2.2). It follows from (4.9), (4.26) and the preceding remark that

lim
n→∞

∫n−1/2

0

n
2
d+1 P1,Bd

(
w̃s 6∈ Bd(n)

)
s−

d−1
d+1 ds = cd (d+ 1)

d−1
d+1α

2
d+1
d−1. (4.27)

We are now going to show that the same limit is obtained if Bd is replaced by the convex body K and
if a normal boundary point y of K with positive Gauss curvature is considered instead of w ∈ ∂Bd.

LEMMA 4.6. If y ∈ ∂K is a normal boundary point of K satisfying κ(y) > 0, then

lim
n→∞

∫n−1/2

0

n
2
d+1 P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = cd(d+ 1)

d−1
d+1α

2
d+1
d−1.
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Proof. Let ε ∈ (0, 1) be arbitrarily chosen. According to Lemma 4.5 and its notation and by the
preceding remark, if n is sufficiently large, we have∫n−1/2

0

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = O

(
ε

n
2
d+1

)
+

k∑
i=0

(
n

i

) ∫ α
n

ε(d+1)/2
n

(βs)i(1− βs)n−i

×P%,C̃(y,βs)

(
ỹs 6∈ C̃(y, βs)(i)

)
s−

d−1
d+1 ds. (4.28)

We fix a unit vector p, and consider the reference paraboloid Ψ which is the graph of z 7→ ‖z‖2 on
p⊥. For τ > 0, define

C(τ) :=
{
z + tp : z ∈ p⊥ and ‖z‖2 ≤ t ≤ τ

2
d+1

}
,

that is a cap of Ψ of height τ
2
d+1 . It is easy to check that V (C(τ)) = τV (C(1)). We define

s̃(β, s) :=
V (C̃(y, βs))
V (C(β))

.

Then (4.12) implies that

s̃(β, s) =
βs

µ(β, s)%(y)βV (C(1))
=

s

µ(β, s)%(y)V (C(1))
,

where µ(β, s)→ 1 as s→ 0+. Let As, s > 0, denote the affinity of Rd with As(y) = y for which the
associated linear map Ãs satisfies Ãs(v) = s

1
d+1 v for v ∈ u⊥ and Ãs(u) = s

2
d+1u. Then the image

under As−1 of a cap von K at y converges in the Hausdorff metric as s→ 0+ to a cap of the osculating
paraboloid of K at y. For a more explicit statement, let A be a volume preserving affinity of Rd such
that A(y) = o and A(y − u) = p, which maps the osculating paraboloid of K at y to Ψ. Then Φs,β :=
A ◦As̃(β,s)−1 is an affinity satisfying

Φs,β(y) = o, det(Φs,β) = s̃(β, s)−1 =
V (C(β))

V (C̃(y, βs))
,

and, consequently, Φs,β(C̃(y, βs))→ C(β) in the Hausdorff metric as s→ 0+. Moreover, we have

lim
s→0+

Φs,β(ỹs) = lim
s→0+

Φs,1(ỹs) = p,

since µ(β, s)→ 1 and µ(1, s)→ 1 as s→ 0+, ỹs ∈ ∂C̃(y, s) and Φs,1(ỹs) ∈ ∂C(1), and by (4.17).
Since % is continuous at y, the properties of Φs,β imply that, for i = 0, . . . , k,

lim
s→0+

P%,C̃(y,βs)

(
ỹs 6∈ C̃(y, βs)(i)

)
= P1,C(β)

(
p 6∈ C(β)(i)

)
. (4.29)

We conclude from (4.28) and (4.29) that∫n−1/2

0

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = O

(
ε

n
2
d+1

)
+

k∑
i=0

(
n

i

) ∫ α
n

ε(d+1)/2
n

(βs)i(1− βs)n−i

×P1,C(β)

(
p 6∈ C(β)(i)

)
s−

d−1
d+1 ds.

The same formula is obtained for∫n−1/2

0

P1,Bd

(
w̃s 6∈ Bd(n)

)
s−

d−1
d+1 ds,

since C(β) is independent of K. Since ε ∈ (0, 1) was arbitrary, we conclude

lim
n→∞

∫n−1/2

0

n
2
d+1 P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = lim

n→∞

∫n−1/2

0

n
2
d+1 P1,Bd

(
w̃s 6∈ Bd(n)

)
s−

d−1
d+1 ds.

Now (4.27) yields Lemma 4.6.
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Proof of Theorem 3.1. Let y ∈ ∂K be a normal boundary point of K. Combining Lemma 4.4,
Lemma 4.6 and (4.26), we obtain

J%(y) = cd %(y)
−2
d+1κ(y)

1
d+1 .

Therefore Theorem 3.1 is implied by (4.9).

5. Polarity and the proof of Theorem 2.1

In this section, we deduce Theorem 2.1 and Theorem 2.2 from Theorem 3.1 and Corollary 3.2,
respectively. In order to obtain more general results, for not necessarily homogeneous or isotropic
hyperplane distributions, we start with a description of the basic setting.

Let K ⊂ Rd be a convex body with o ∈ int(K), as usual let K∗ := {z ∈ Rd : 〈x, z〉 ≤ 1 for all x ∈
K} denote the polar body of K, and put K1 := K +Bd. Let HK denote the set of all hyperplanes H
in Rd for which H ∩ int(K) = ∅ and H ∩K1 6= ∅. The motion invariant locally finite measure µ on
the space A(d, d− 1) of hyperplanes, which satisfies µ(HK) = 2, is explicitly given by

µ = 2
∫
Sd−1

∫∞
0

1{H(u, t) ∈ ·} dt σ(du),

where σ is the rotation invariant probability measure on the unit sphere Sd−1. The model of a
random polytope (random polyhedral set) described in the introduction is based on random hyperplanes
with distribution µK := 2−1(µxHK). More generally, we now consider random hyperplanes with
distribution

µq :=
∫
Sd−1

∫∞
0

1{H(u, t) ∈ ·}q(t, u) dt σ(du), (5.1)

where q : [0,∞)× Sd−1 → [0,∞) is a measurable function which is
(q1) concentrated on DK := {(t, u) ∈ [0,∞)× Sd−1 : h(K,u) ≤ t ≤ h(K1, u)},
(q2) positive and continuous in a neighborhood of {(t, u) ∈ [0,∞)× Sd−1 : t = h(K,u)} relative

to DK ,
(q3) and satisfies µq(HK) = 1.

The intersection of n halfspaces H−i containing the origin o and bounded by n independent random
hyperplanes Hi with distribution µq is denoted by K(n) :=

⋂n
i=1H

−
i . Probabilities and expectations

with respect to µq are denoted by Pµq and Eµq , respectively. The special example q ≡ 1DK (q is the
characteristic function of DK) covers the situation discussed in the introduction.

In the following, beside the support function, we will also need the radial function ρ(L, ·) of a convex
body L with o ∈ int(L). Let F be a nonnegative measurable functional on convex polyhedral sets in
Rd. Using (5.1) and Fubini’s theorem, we get

Eµq (F (K(n))) =
∫
A(d,d−1)n

F

(
n⋂
i=1

H−i

)
µ⊗nq (d(H1, . . . ,Hn))

=
∫
(Sd−1)n

∫h(K1,u1)

h(K,u1)

. . .

∫h(K1,un)

h(K,un)

F

(
n⋂
i=1

H−i (ui, ti)

)
n∏
i=1

q(ti, ui)

× dtn . . . dt1 σ⊗n(d(u1, . . . , un)).

For t1, . . . , tn > 0, we have
n⋂
i=1

H−i (ui, ti) =
[
t1
−1u1, . . . , tn

−1un
]∗
.
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Using the substitution si = 1/ti, ρ(L∗, ui) = h(L, ui)−1 for L ∈ Kn with o ∈ int(L), and polar
coordinates, we obtain

Eµq (F (K(n))) =
1
ωnd

∫
(K∗\K∗

1 )n
F ([x1, . . . , xn]∗)

n∏
i=1

(
q̃(xi)‖xi‖−(d+1)

)
d(x1, . . . , xn)

with K∗1 := (K1)∗ and

q̃(x) := q

(
1
‖x‖

,
x

‖x‖

)
, x ∈ K∗ \ {o}.

The case n = 1 and F ≡ 1 yields

1
ωd

∫
K∗\K∗

1

q̃(x)‖x‖−(d+1) dx = 1,

hence

%(x) :=

{
ωd
−1q̃(x)‖x‖−(d+1), x ∈ K∗ \K∗1 ,

0, x ∈ K∗1 ,

is a probability density with respect to HdxK∗ which is positive and continuous in a neighborhood of
∂K∗ relative to K∗. Thus we conclude that

Eµq (F (K(n))) =
∫
(K∗)n

F ([x1, . . . , xn]∗)
n∏
i=1

%(xi) d(x1, . . . , xn)

= E%,K∗

(
F ((K∗(n))

∗)
)
,

where K∗(n) := (K∗)(n).

PROPOSITION 5.1. Let K ⊂ Rd be a convex body with o ∈ int(K), and let q and % be defined as
above. Then the random polyhedral sets K(n) and (K∗(n))

∗ are equal in distribution.

For a first application, let

F (P ) := 1{P ⊂ K1} (W (P )−W (K)) ,

for a polyhedral set P ⊂ Rd, with the convention 0 · ∞ := 0. For x1, . . . , xn ∈ K∗ \K∗1 , we have
K ⊂ [x1, . . . , xn]∗ and, arguing as before,

F ([x1, . . . , xn]∗) = 1{[x1, . . . , xn]∗ ⊂ K1} (W ([x1, . . . , xn]∗)−W (K))

= 2 · 1{[x1, . . . , xn]∗ ⊂ K1}
∫
K∗\[x1,...,xn]

λ(x) dx,

where

λ(x) :=

{
ωd
−1‖x‖−(d+1), x ∈ K∗ \K∗1 ,

0, x ∈ K∗1 .

Note that if [x1, . . . , xn]∗ ⊂ K1, then the set [x1, . . . , xn]∗ is bounded, hence o ∈ int([x1, . . . , xn]),
and therefore K∗1 ⊂ [x1, . . . , xn]∗∗ = [x1, . . . , xn].

As in [9], it can be shown that Pµq (K(n) 6⊂ K1)� αn, for some α ∈ (0, 1) depending on K and q.
By Proposition 5.1, we also get

P%,K∗

(
(K∗(n))

∗ 6⊂ K1

)
= Pµq

(
K(n) 6⊂ K1

)
� αn.
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Hence

Eµq
(
W (K(n) ∩K1)−W (K)

)
= Eµq

(
1{K(n) ⊂ K1}

(
W (K(n))−W (K)

))
+O(αn)

= 2 · E%,K∗

(
1{(K∗(n))

∗ ⊂ K1}
∫
K∗\K∗

(n)

λ(x) dx

)
+O(αn)

= 2 · E%,K∗

(∫
K∗\K∗

(n)

λ(x) dx

)
+O(αn),

where we used that λ is integrable. Therefore, Theorem 3.1 implies

lim
n→∞

n
2
d+1 Eµq (W (K(n) ∩K1)−W (K))

= 2 · lim
n→∞

n
2
d+1 E%,K∗

∫
K∗\K∗

(n)

λ(x) dx

= 2 cd
∫
∂K∗

%(x)−
2
d+1λ(x)κ∗(x)

1
d+1 Hd−1(dx)

= 2 cd ωd−
d−1
d+1

∫
∂K∗

q̃(x)−
2
d+1 ‖x‖−d+1κ∗(x)

1
d+1 Hd−1(dx),

where κ∗ denotes the generalized Gauss curvature of K∗. In the following, for x ∈ ∂K, let σK(x)
denote an exterior unit normal vector of K at x. It is unique forHd−1-almost all x ∈ ∂K.

THEOREM 5.2. Let K ⊂ Rd be a convex body with o ∈ int(K), and let q : [0,∞)× Sd−1 →
[0,∞) be a measurable function satisfying (q1)–(q3). Then

lim
n→∞

n
2
d+1 Eµq (W (K(n) ∩K1)−W (K))

= 2 cd ωd−
d−1
d+1

∫
∂K

q(h(K,σK(x)), σK(x))−
2
d+1κ(x)

d
d+1 Hd−1(dx). (5.2)

The proof is completed in Section 6 by providing Lemma 6.2.

EXAMPLE. Observe that if q : {(h(K,u), u) ∈ (0,∞)× Sd−1 : u ∈ Sd−1} → [0,∞) is positive
and continuous, then q can be extended to [0,∞)× Sd−1 such that (q1)–(q3) are satisfied. For any such
extension, the right-hand side of (5.2) remains unchanged. As an example, we may choose q1 such that
q1(t, u) = t(d

2−1)/2 for t = h(K,u) and u ∈ Sd−1. Then the integral in (5.2) turns into∫
∂K

κ(x)
d
d+1

〈x, σK(x)〉d−1
Hd−1(dx) = Ωd2(K),

where

Ωp(K) :=
∫
∂K

κ(x)
p
d+p

〈x, σK(x)〉
(p−1)d
d+p

Hd−1(dx)

is the p-affine surface area of K (see [26], [17], [18], [22], [44], [45], [23], [24]). It has been shown
that Ωd2(K) = Ω1(K∗); see [18]. Moreover, for a convex body L ⊂ Rd, the equiaffine isoperimetric
inequality states that

Ω1(L) ≤ dα
2
d+1
d V (L)

d−1
d+1



Page 20 of 25 KÁROLY J. BÖRÖCZKY, FERENC FODOR AND DANIEL HUG

with equality if and only if L is an ellipsoid (cf. [27], [25], [26], [17], [5]). Thus we get

lim
n→∞

n
2
d+1 Eµq1 (W (K(n) ∩K1)−W (K)) ≤ 2dcdω

− d−1
d+1

d α
2
d+1
d V (K∗)

d−1
d+1

with equality if and only if K∗ is an ellipsoid, that is, if and only if K is an ellipsoid. This can be
interpreted as saying that among all convex bodies for which the volume of the polar body is fixed,
ellipsoids are worst approximated asymptotically by circumscribed random polytopes (with respect to
the density q1) in the sense of the mean width.

For another application, we define

F (P ) := fd−1(P ),

for a convex polyhedral set P ⊂ Rd. It is well known that f0(P ) = fd−1(P ∗) for a convex polytope
P ⊂ Rd with o ∈ int(P ). Thus, from Proposition 5.1 we get

Eµq
(
fd−1(K(n))

)
= E%,K∗

(
fd−1((K∗(n))

∗)
)

= E%,K∗

(
1{(K∗(n))

∗ ⊂ K1}fd−1((K∗(n))
∗)
)

+ E%,K∗

(
1{(K∗(n))

∗ 6⊂ K1}fd−1((K∗(n))
∗)
)

= E%,K∗

(
1{(K∗(n))

∗ ⊂ K1}f0(K∗(n))
)

+O(n · αn)

= E%,K∗

(
f0(K∗(n))

)
+O(n · αn),

where α ∈ (0, 1) is a suitable constant.
The following Theorem 5.3 generalizes Theorem 2.1 in the same way as Theorem 5.2 extends

Theorem 2.2.

THEOREM 5.3. Let K ⊂ Rd be a convex body with o ∈ int(K), and let q : [0,∞)× Sd−1 →
[0,∞) be a measurable function satisfying (q1)–(q3). Then

lim
n→∞

n−
d−1
d+1 Eµq (fd−1(K(n))) = cd ωd

− d−1
d+1

∫
∂K

q(h(K,σK(x)), σK(x))
d−1
d+1 κ(x)

d
d+1 Hd−1(dx).

The proof follows by applying Corollary 3.2 and Lemma 6.2.

6. Polarity and an integral transformation

In this section, we establish the required integral transformation involving the generalized Gauss
curvatures of a convex body and its polar body. The main difficulty of the proof is due to the fact that
we do not make any smoothness assumptions on the convex bodies that are considered.

Let L ⊂ Rd be a convex body. If the support function hL of L is differentiable at u 6= o, then the
gradient ∇hL(u) of hL at u is equal to the unique boundary point of L having u as an exterior normal
vector. In particular, the gradient of hL is a function which is homogeneous of degree zero. Note that hL
is differentiable at Hd−1-almost all unit vectors. We write Dd−1hL(u) for the product of the principal
radii of curvature of L in direction u ∈ Sd−1, whenever the support function hL is twice differentiable
in the generalized sense at u ∈ Sd−1. Note that this is the case for Hd−1-almost all u ∈ Sd−1. The
Gauss map σL is defined Hd−1-almost everywhere on ∂L. If σL is differentiable in the generalized
sense at x ∈ ∂L, which is the case for Hd−1-almost all x ∈ ∂L, then the product of the eigenvalues of
the differential is the Gauss curvature κL(x). The connection to curvatures defined on the generalized
normal bundle N (L) of L will be used in the following proof (cf. [19]).
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LEMMA 6.1. Let L ⊂ Rd be a convex body containing the origin in its interior. If g : ∂L→ [0,∞]
is measurable, then∫

∂L

g(x)κL(x)
1
d+1 Hd−1(dx) =

∫
Sd−1

g(∇hL(u))Dd−1hL(u)
d
d+1 Hd−1(du).

Proof. In the following proof, we use results and methods from [19], to which we refer for
additional references and detailed definitions. Let N (L) denote the generalized normal bundle of L,
and let ki(x, u) ∈ [0,∞], i = 1, . . . , d− 1, be the generalized curvatures of L, which are defined for
Hd−1-almost all (x, u) ∈ N (L). Expressions such as

ki(x, u)
1
d+1√

1 + ki(x, u)2
or

ki(x, u)√
1 + ki(x, u)2

with ki(x, u) =∞ are understood as limits as ki(x, u)→∞, and yield 0 or 1, respectively in the two
given examples. As is common in measure theory, the product 0 · ∞ is defined as 0.

Our starting point is the expression

I :=
∫
N (L)

g(x)
d−1∏
i=1

ki(x, u)
1
d+1√

1 + ki(x, u)2
Hd−1(d(x, u)), (6.1)

which will be evaluated in two different ways. A comparison of the resulting expressions yields the
assertion of the lemma.

First, we rewrite I in the form

I =
∫
N (L)

g(x)

(
d−1∏
i=1

ki(x, u)

)− d
d+1

Jd−1π2(x, u)Hd−1(d(x, u)), (6.2)

where

Jd−1π2(x, u) =
d−1∏
i=1

ki(x, u)√
1 + ki(x, u)2

,

for Hd−1-almost all (x, u) ∈ N (L), is the (approximate) Jacobian of the map π2 : N (L)→ Sd−1,
(x, u) 7→ u. To check (6.2), we distinguish the following cases. If ki(x, u) = 0 for some i, then the
integrands on the right-hand sides of (6.1) and of (6.2) are zero, since 0 · ∞ = 0 and Jd−1π2(x, u) = 0.
If ki(x, u) 6= 0 for all i and kj(x, u) =∞ for some j, then again both integrands are zero. In all other
cases the assertion is clear.

For Hd−1-almost all u ∈ Sd−1, ∇hL(u) ∈ ∂L is the unique boundary point of L which has u as an
exterior unit normal vector. Then the coarea formula yields

I =
∫
Sd−1

g(∇hL(u))

(
d−1∏
i=1

ki(∇hL(u), u)

)− d
d+1

Hd−1(du).

Using Lemma 3.4 in [19], we get

I =
∫
Sd−1

g(∇hL(u))Dd−1hL(u)
d
d+1 Hd−1(du). (6.3)

Now we consider also the projection π1 : N (L)→ ∂L, (x, u) 7→ x, which has the (approximate)
Jacobian

Jd−1π1(x, u) =
d−1∏
i=1

1√
1 + ki(x, u)2

,
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forHd−1-almost all (x, u) ∈ N (L). A similar argument as before yields

I =
∫
N (L)

g(x)

(
d−1∏
i=1

ki(x, u)

) 1
d+1

Jd−1π1(x, u)Hd−1(d(x, u))

=
∫
∂L

g(x)

(
d−1∏
i=1

ki(x, σL(x))

) 1
d+1

Hd−1(dx).

By Lemma 3.1 in [19], we finally also get

I =
∫
∂L

g(x)κL(x)
1
d+1 Hd−1(dx). (6.4)

A comparison of equations (6.3) and (6.4) gives the required equality.

REMARK. An alternative argument can be based on arguments similar to those used in [17] for the
proof of the equality of two representations of the affine surface area of a convex body.

LEMMA 6.2. Let K ⊂ Rd be a convex body with o ∈ int(K). If f : [0,∞)× Sd−1 → [0,∞) is a
measurable function and f̃(x) := f

(
‖x‖−1, ‖x‖−1x

)
, x ∈ ∂K∗, then∫

∂K∗
f̃(x)‖x‖−d+1κ∗(x)

1
d+1 Hd−1(dx) =

∫
∂K

f(h(K,σK(x)), σK(x))κ(x)
d
d+1 Hd−1(dx).

Proof. We apply Lemma 6.1 with L = K∗ and g(x) = f̃(x)‖x‖−d+1, x ∈ ∂K∗, and thus we get∫
∂K∗

f̃(x)‖x‖−d+1κ∗(x)
1
d+1 Hd−1(dx)

=
∫
Sd−1

f̃(∇hK∗(u))‖∇hK∗(u)‖−d+1Dd−1hK∗(u)
d
d+1 Hd−1(du).

Next we apply Theorem 2.2 in [18] (or the second part of Corollary 5.1 in [20]). Thus, using the fact
that, forHd−1-almost all u ∈ Sd−1, hK∗ is differentiable in the generalized sense at u and ρ(K,u)u is
a normal boundary point of K, we have

Dd−1hK∗(u)
d
d+1 = κ(x)

d
d+1 〈u, σK(x)〉−d,

where x = ρ(K,u)u ∈ ∂K and u = ‖x‖−1x ∈ Sd−1. Thus we obtain∫
∂K∗

f̃(x)‖x‖−d+1κ∗(x)
1
d+1 Hd−1(dx)

=
∫
Sd−1

f̃(∇hK∗(u))
‖∇hK∗(u)‖−d+1

〈u, σK(ρ(K,u)u)〉d
κ(ρ(K,u)u)

d
d+1 Hd−1(dx).

The bijective and bilipschitz transformation T : Sd−1 → ∂K, u 7→ ρ(K,u)u, has the Jacobian

JT (u) =
‖∇hK∗(u)‖
hK∗(u)d
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forHd−1-almost all u ∈ Sd−1 (see the proof of Lemma 2.4 in [18]). Thus∫
∂K∗

f̃(x)‖x‖−d+1κ∗(x)
1
d+1 Hd−1(dx)

=
∫
∂K

f̃

(
∇hK∗

(
x

‖x‖

)) ‖∇hK∗

(
x
‖x‖

)
‖−d

〈 x
‖x‖ , σK(x)〉d

hK∗

(
x

‖x‖

)d
κ(x)

d
d+1 Hd−1(dx)

=
∫
∂K

f̃ (∇hK∗ (x))
‖∇hK∗ (x) ‖−d

〈x, σK(x)〉d
hK∗ (x)d κ(x)

d
d+1 Hd−1(dx)

=
∫
∂K

f(‖∇hK∗(x)‖−1,∇hK∗(x)/‖∇hK∗(x)‖)κ(x)
d
d+1 Hd−1(dx),

=
∫
∂K

f(hK(σK(x)), σK(x))κ(x)
d
d+1 Hd−1(dx),

since hK∗(x) = 1 for x ∈ ∂K and x∗ := ∇hK∗(x) satisfies ‖x∗‖−1 = 〈x, σK(x)〉 and x∗/‖x∗‖ =
σK(x), forHd−1-almost all x ∈ ∂K.
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9. K. BÖRÖCZKY JR., R. SCHNEIDER, ‘The mean width of circumscribed random polytopes’, submitted, available from

http://www.renyi.hu/∼carlos/carlospub.html
10. K.H. BORGWARDT, ‘The Simplex Method, A Pobabilistic Analysis’ (Springer, Berlin, 1987).
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