THE L,-MINKOWSKI PROBLEM FOR -n<p<1
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ABSTRACT. Chou and Wang’s existence result for the L,-Minkowski problem on S"~! for p €
(—n, 1) and an absolutely continuous measure is discussed and extended to more general measures.
In particular, we provide an almost optimal sufficient condition for the case p € (0,1).

1. INTRODUCTION

The setting for this paper is the n-dimensional Euclidean space R"™. A convezr body K in R" is a
compact convex set that has non-empty interior. For any x € 0K, vk (z) (“the Gaufl map”) is the
family of all unit exterior normal vectors at z; in particular v (z) consists of a unique vector for
H"! almost all z € K (see, e.g., Schneider [78]), where H"~! stands for the (n — 1)-dimensional
Hausdorff measure.

The surface area measure Sk of K is a Borel measure on the unit sphere S"~! of R", defined,
for a Borel set w C S"~! by

Sk(w)=H""(vg' (W) =H"" ({z € 0K : vi(z) Nw # 0})
(see, e.g., Schneider [78]).

As one of the cornerstones of the classical Brunn-Minkowski theory, the Minkowski’s existence
theorem can be stated as follows (see, e.g., Schneider [78]): If the Borel measure p is not concen-
trated on a great subsphere of S*~!, then p is the surface area measure of a convex body if and
only if the following vector condition is verified

/Sn1 udp(u) = 0.

Moreover, the solution is unique up to translation. The regularity of the solution has been also
well investigated, see e.g., Lewy [54], Nirenberg [72], Cheng and Yau [20], Pogorelov [75], and
Caffarelli [14,15].

The surface area measure of a convex body has a clear geometric significance. In [59], Lutwak
showed that there is an L, analogue of the surface area measure (known as the L,-surface area
measure). For a convex compact set K in R™, let hx be its support function:

hi(u) = max{(zr,u) : v € K} foru e R%

where (-, -) stands for the Euclidean scalar product.
Let Kfj denote the family of convex bodies in R™ containing the origin o. Note that if K € Kf,
then hx > 0. If p € R and K € K, then the L,-surface area measure is defined by

dSk, = hi " dSk
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where for p > 1 the right hand side is assumed to be a finite measure. In particular, if p = 1, then
Skp =095k, andif p <1l and w C S™~1 Borel, then

Skplw) = /e " )(x, vic(2)) PR (2).

In recent years, the L,-surface area measure appeared in, e.g., [1,5,16,32,33,35,36,41,56-58,61~
63,66,68,70,71,73,74,81]. In [59], Lutwak posed the associated L,-Minkowski problem for p > 1
which extends the classical Minkowski problem. In addition, the L,-Minkowski problem for p < 1
was publicized by a series of talks by Erwin Lutwak in the 1990’s, and appeared in print in Chou
and Wang [22] for the first time.

L,-Minkowski problem: For p € R, what are the necessary and sufficient conditions on a

finite Borel measure p on S™! in order that u is the L,-surface area measure of a convex body
K e K§?

Besides discrete measures, an important special class is that of Borel measures p on S*~! which
have a density with respect to H" !

(1) dp = f dH"

for some non-negative measurable function f on S"~!. If (1) holds, then the L,-Minkowski problem
amounts to solving the Monge-Ampere type equation

(2) h'"P det(V?h + hI) = f

where h is the unknown non-negative (support) function on S"~! to be found, V?h denotes the
(covariant) Hessian matrix of h with respect to an orthonormal frame on S*~1, and I is the identity
matrix. Recent extensions of the L,-Minkowski problem are the L, dual Minkowski problem
proposed by Lutwak, Yang, Zhang [67], and the Orlicz Minkowski problem discussed by Haberl,
Lutwak, Yang, Zhang [34] (extending the case p > 1, even measures), Huang, He [44] (extending
the case p > 1) and Jian, Lu [52] (extending the case 0 < p < 1).

The case p = 1, namely the classical Minkowski problem, was solved by Minkowski [69] in the
case of polytopes, and in the general case by Alexandrov [2], and Fenchel and Jessen [25]. The
case p > 1 and p # n was solved by Chou and Wang [22], Guan and Lin [31] and Hug, Lutwak,
Yang, and Zhang [47]; Zhu [93] investigated the dependence of the solution on p for a given target
measure. We note that the solution is unique if p > 1 and p # n, and unique up to translation
if p = 1. In addition, if p > n, then the origin lies in the interior of the solution K, however, if
1 < p < n, then possibly the origin lies on the boundary of the solution K even if (1) holds for a
positive continuous f.

The goal of this paper to discuss the L,-Minkowski problem for p < 1. The case p = 0 is the
so called logarithmic Minkowski problem see, e.g., [9-12,56-58, 70,71, 73,79-81,89]. Additional
references regarding the L, Minkowski problem and Minkowski-type problems can be found in,
e.g., [19,22,30-34,43,45,46,51, 53, 55,59, 60, 65,69, 79,80,90,91]. Applications of the solutions to
the L, Minkowski problem can be found in, e.g., [3,4,21,23,26,37-39,48,49,64,84,85,88].

We note that if p < 1, then non-congruent n-dimensional convex bodies may give rise to the
same L,-surface area measure, see Chen, Li, and Zhu [18] for examples when 0 < p < 1, Chen, Li,
and Zhu [17] for examples when p = 0 and Chou and Wang [22] for examples when p < 0.

If 0 < p <1, then the L,-Minkowski problem is essentially solved by Chen, Li, and Zhu [18].

Theorem 1.1 (Chen, Li, and Zhu). If p € (0,1), and u is a finite Borel measure on S*~* not
concentrated on a great subsphere, then p is the Ly-surface area measure of a convex body K € K.
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We believe that the following property characterizes L,-surface area measures for p € (0,1).

Conjecture 1.2. Let p € (0,1), and let u be a non-trivial Borel measure on S*™'. Then p is the
L,-surface area measure of a convex body K € Kg if and only if supp i is not a pair of antipodal
points.

Conjecture 1.2 is proved in the planar case n = 2 independently by Boréczky and Trinh [13] and
Chen, Li,and Zhu [18]. Here we prove a slight extension of the result proved in [18]. We note that
Lemma 11.1 implies that supp Sk, is not a pair of antipodal points for any convex body K € K}
and p < 1. For X C R", its positive hull is

k
pos X = {Z ANz N >0, € Xand k> 1 integer},
i=1
which is closed if X € S* ! is compact. We prove the following result.

Theorem 1.3. Let p € (0,1), let u be a non-trivial finite Borel measure on S*~*, and let L =
lin supp pe. If either supp i spans R™, ordim L < n—1 and possupp p # L, then p is the L,-surface
area measure of a conver body K € K. In addition, if j is invariant under a closed subgroup G
of O(n) acting as the identity on L+, then K can be chosen to be invariant under G.

The assumption in Theorem 1.3 can be equivalently stated in term of the subset conv ({0} U supp )
in R™ (here convA denotes the convex hull of the set A). We require that either conv ({0} U supp p)
has non-empty interior or, if this is not the case, that conv ({o} U supp u) does not contain o in its
relative interior.

The case p = 0 concerns the cone volume measure. We say that a Borel measure p on S"*
satisfies the subspace concentration condition if for any non-trivial linear subspace L we have

dim L N
n(S*),

and equality holds if and only if there exists a complementary linear subspace L’ such that supp pu C
L U L'. Boroczky, Lutwak, Yang, and Zhang [10] proved that even cone volume measures are
characterized by the subspace concentration condition. The sufficiency part has been extended to
all Borel measures on S"~! by Chen, Li, and Zhu [17]. The part of Theorem 1.4 concerning the
action of a closed subgroup G of O(n) is not actually in [17] but could be verified easily using the
methods of our paper.

WL <

Theorem 1.4 (Chen, Li, Zhu). If u is a Borel measure on S*™1 satisfying the subspace concen-
tration condition, then p is the Lo-surface area measure of a conver body K € K. In addition, if
@ 1s invariant under a closed subgroup G of O(n), then K can be chosen to be invariant under G.

If p < 0, then not even a conjecture is known concerning which properties may characterize
Lo-surface area measures. Note that Bordczky and Hegediis [7] characterized the restriction of an
Lo-surface area measure to a pair of antipodal points.

The main new result of paper is the following statement regarding the case p € (—n,0).

Theorem 1.5. If p € (—n,0), and u is a non-trivial Borel measure on S"~' satisfying (1) for a
non-negative function f in L#F(Sn_l), then p s the L,-surface area measure of a convexr body
K € K. In addition, if v is invariant under a closed subgroup G of O(n), then K can be chosen
to be invariant under G.

It is not clear whether the analogue of Theorem 1.5 can be expected in the critical case p = —n.
If 9K is C% and o € int K, then L_,, surface area measure is

hK (u)n—H

(3) Ak =505

d/]_[n—l’
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where £(u) is the Gaussian curvature of JK at the point x € 0K with u € vi(x). Note that
ko(u) = k(u)/hx(u)"™! is the so called centro-affine curvature (see Ludwig [57] or Stancu [81]),
Au

which is equi-affine invariant in the following sense. For any A € SL(n), if A(u) = Taug 18 the

corresponding projective transformation of S*~!, and & is the centro-affine curvature function of
A7'K, then

Fo(A(u)) = ko(u), YueS"
In particular, Chou and Wang [22] proved the following formula for the L_,, surface area measure.

Proposition 1.6 (Chou and Wang). Let K € K be such that o € int K and K 1is C3, so that
dSk,—n = fAH™ for a Ct function f according to (3). If V(&) = §AY0; is a projective vector
field on S"7! for A € GL(n), then

/ R VfdH™ = 0.
S'n—l

For the sake of completeness, we provide a proof of Proposition 1.6 in Section 12.

We will prove Theorems 1.3 and 1.5 via an approximation argument based on Theorem 1.7,
proved by Chou and Wang [22]. Of the latter, we will also provide a simplified and clarified
argument. Again, the part of Theorem 1.7 concerning the action of a closed subgroup G of O(n)
is not actually in [17] but could be verified easily using the methods of our paper.

Theorem 1.7 (Chou and Wang). If p € (—n, 1), and p is a Borel measure on S"~' satisfying (1)
where f is bounded and inf,cgn—1 f(u) > 0, then p is the L,-surface area measure of a convex body
K € Ky. In addition, if p is invariant under the closed subgroup G of O(n), then K can be chosen
to be invariant under G, and o € int K provided p € (—n,2 — n|.

Remark Theorems 1.3, 1.4 and 1.5 show that Theorem 1.7 holds for any p € (—n, 1) and non-
negative bounded f with [y, , fdH"' > 0.

As already mentioned, if p = 0, then Boroczky and Heged1is [7] provides some necessary condition
on an L, surface area measure, more precisely, on the restriction of an Ly-surface area measure
to pairs of antipodal points. Unfortunately, no necessary condition concerning L,-surface area
measures is known to us for the case p < 0.

We conclude by mentioning the related paper by G. Bianchi, K. J. Béroczky and A. Colesanti [6]
which deals with the strict convexity and the C* smoothness of the solution to the L, Minkowski
problem when p < 1 and p satisfies (1) for some function f which is bounded from above and from
below by positive constants.

2. PREPARATION

Let k,, be the volume of the n-dimensional unit Euclidean ball B", and let o(K) be the centroid
of a convex body K.

Lemma 2.1. For a convex body K in R",
(i): Zt(z —o(K))+0o(K) € K for any x € K;

n

(ii): (Blaschke-Santalo inequality)

1 n—1 < n
o S R = T
(iii): If o > 0 is mazimal and R > 0 is minimal such that o(K) + oB" C K and K C
o(K)+ RB", then
V(K) < (n+ 1)k 10R"
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Proof. In the case of the Blaschke-Santal6é inequality, we note that if the origin is the centroid of
K, then the left hand side of (ii) is the volume of the polar body K*, and the origin is the Santald
point of K*. Therefore (i) and (ii) are well-known facts, see Lemma 2.3.3 and (10.28) in [78].

For (iii), we assume that o(K) = o. Let zy € ¢pB" N 0K, and let H be the common tangent
hyperplane to K and ¢B™ at xy. Since —z/n € K for any x € K as o(K) = o, we deduce that
K lies between the parallel hyperplanes H and —nH whose distance is (n + 1)g. Note that zg
is orthogonal to H. Now the projection of K into x3 is contained in RB", we conclude (iii). Q.E.D.

For v € "' and o € (0, 5], let Q(v, &) be the family of all u € "' with Z(u,v) < a, where
Z(u,v) is the (smaller) angle formed by w and v, i.e. their geodesic distance on the unit sphere.
The following lemma is needed to show that with modified “energy function” ¢. (see next section),
the optimal “center” is in the interior.

Lemma 2.2. Let ¢ € (0, %], R>1andg>n—1;let K € K witho € 0K and diam K < R, and
let v be an exterior unit normal at o.
(i): For a = arcsin 5%, if £ € int K with ||§]| < &/2 and u € Q(v, a), then hg(u) — (§,u) <e.
(ii): If 0 € (0,sina) and & € int K satisfies ||€|| < RO, then

(n—2)Kp_o sin «

/mv,a)(hK(u) ~ (Gu)) AR () 2 g los =

Proof. We may assume that K = {z € RB" : (z,v) < 0}, and hence hg(u) = R|ulvt]| =
Rsin Z(u,v) if u € Q(v, 7). In particular, a = arcsin 5 works in (i).

For (ii), if § € (0,sina), u € Q(v, ) with |Juvt] > J, and ||€]] < RJ, then hx(u) — (&, u) <
2R|[ulvt]]. We deduce that if ||£]] < R6 for £ € int K, then

1
hic(u) — (€, u)) " TdH"  (u) > / — dH" (x
/Q(v,a)< selu) = {&u)) (u) [(sin - Br)\ (6B ot 2904 || ]| (@)

(n—2)Kkn_o /Sina o (n—2)Kp_o sin v
= —r = Tt > 1
21R1  J, =T age BT

which in turn yield the lemma. Q.E.D.

Let K be a convex body in R™. A point p in its boundary is said to be smooth if there exists a
unique hyperplane supporting K at p, and p is said to be singular if it is not smooth. We write
J'K and Zk to denote the set of smooth and singular points of JK, respectively. It is well known
that H" '(2x) = 0. We call K quasi-smooth if H"'(S"""\vg(0’'K)) = 0; namely, the set of
u € S™! that are exterior normals only at singular points has H"!-measure zero.

The following Lemma 2.3 will be used to prove first that the extremal convex body K¢ is quasi-
smooth in Section 5, and secondly that it satisfies an Euler-Lagrange type equation in Section 6.
Let K and C' be convex bodies containing the origin in their interior such that rC C K for some
r > 0. For t € (—r,r), we consider the Wulff shape

Ki={z eR": (z,u) < hg(u) + thc(u) forue S" 1}
and we denote by h; the support function of K.

Lemma 2.3. Using the notation above, let u € S* 1.
(i): If K C RB™ for R >0 and t € (—r,7), then |hy(u) — hi(u)] < Zl¢.
(ii): If u is the exterior normal at some smooth point z € 0K, then
lim ha(u) = T (u) = he(u).

t—0 t
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Proof. 1f t > 0 then h; = hg + the, therefore we may assume that ¢ < 0.
For (i), we observe that

t t t
<1+—>K+|t\0c (1+—>K+U~K:K.
r r r
In other words, I?t =(1+ f)K C K, which in turn yields that if u € S*!, then

e () — hy(u) < he(u) — hig () = |Ti‘ .

We turn to (ii). For u € S"™', we have h(u) — hi(u) > |t| he(u), and hence it is sufficient to
prove that if € > 0 then

R
hac(u) < = - Jt.

(4) hic(u) = h(u) < (he(u) +€)Jt]

provided that ¢t < 0 has small absolute value. Let D be the diameter of C', and let § = D§+52' If
u is an exterior normal to C' at a point ¢ € 0C, then w = ¢ + cu satisfies

(5) (u,w) = he(u)+e¢

(6) (u,r —w) < —=dllx —w| forall ze€C.

Since z € JK is a smooth point with exterior unit normal u, there exists o > 0 such that if
|z — z|| <o and (u,z — 2z) < —0|lz — z||, then z € K. We deduce from (6) that if (D + ¢)|t| < o,
then y + |t|C C K for y = z — |t|w, and hence y € K;. Therefore

hic(u) = hy(u) < (u, 2 —y) = (he(u) + )],
proving (4). Q.E.D.

Remark. Results similar to those proved in the previous lemma are contained in [50, Section 3].

Using the notation of Lemma 2.3, if K is quasi-smooth, then

lim hy(u) — hg(u)

t—0 t

= hc (u)
holds for H"~! almost all u € S*~!. In particular, Lemma 3.5 below applies.

3. THE ENERGY FUNCTION AND OPTIMAL CENTER

Let p € (—n,1). For ¢t > 0, we set
tP if pe (0,1),
o(t) =1 logt ifp=0,
—t? if p € (—n,0).
The reasons behind this choice of ¢ are that if ¢ € (0, 00), then
p—1 i —
. = (B e Cn\e)

is positive and decreasing, ¢ is strictly increasing and ¢” is negative and continuous, and hence ¢
is strictly concave. In addition,

®) lim (1) = { Xoe

Let ¢ = max{|p|,n — 1}. In order to force the “optimal center” of a convex body K into its
interior, we change ¢(t) into a function of order —t~? if ¢ is small (see Proposition 3.2). For
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t € (0,1), the equation ¥(s) —t=(=Y 4 (n — 1)t™"(s — t) of the tangent to the graph of

t = —t=(Y satisfies 1(3¢t) > ¢~(""Y > 1. Thus for any € € (0, 1), there exists an increasing
strictly concave function @, : (0,00) — R, with continuous and negative second derivative, such
that

0 oult) = { P2 B

]~ ifo<t<e,
and in addition
(10) w(t) > —t71 if t € (0,1).

Let us observe that if p € (—n, —(n — 1)], we may choose . = ¢.
Let f be a measurable function on S*! such that there exist 7, > 7, > 0 satisfying

(11) 7 < f(u) <1 forueS" 1

and let 1 be the Borel measure defined by dy = f dH" 1. We remark that, even when not explicitly
stated, in all the results contained in Sections 3, 4, 5, 6 and 7 it is always assumed that (11) holds.
For ¢ € (0, %), a convex body K and £ € int K, we define

0.9 = [ alhle) = (0.)) diu).

The proofs of Proposition 3.2 and Lemma 3.4 depend on the concavity of ¢. and the following
Lemma 3.1. Here and throughout the paper, the convergence of sequence of convex bodies is
always meant in the sense of the Hausdorff metric.

Lemma 3.1. Let {K,,} be a sequence of convex bodies tending to a convexr body K in R", and let
&n € int K, be such that lim,, o & = 20 € OK. Then

lim ®.(K,,,&n) = —o0.

m—o0
Proof. Let r,, > 0 be maximal such that &, + r,,B" C K,,, and let y,, € (§, + i B") NOK,,.
The condition 2y € K implies that 7, = ||y — &n|| tends to zero. Let v, € S"~! be an exterior
normal at y,, to K,,. For R = 1 4 diam K, we have diamK,, < R for large m; let o = arcsin °p

be the constant of Lemma 2.2. It follows from Lemma 2.2 (i) that if u € Q(vy,, @) (the geodesic
ball on S"7!, centered at v,, with opening «), then hg, (u) — (u,&,) < € for all m, and hence

pe(hic, (u) = (U, &) = = (i, (u) = (U, &m)) ™.
Therefore Lemma 2.2 (ii) and (11) yield that

(12) lim oo (i, (1) — {1, €)) da() = —o00.

m—ro0 Q(vm,a)

On the other hand, ¢.(hg,, (u) — (u, &) < p.(R) holds for all m and u € S"™'. We deduce from
(11) that

(13) Lo ol 0 = (60 dinla) < ()
Sr=1\Q(v,a)
for all m. Combining (12) and (13) we conclude the proof. Q.E.D.

Now we single out the optimal £ € int K.
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Proposition 3.2. Fore € (0,5) and a convex body K in R", there exists a unique {(K) € int K
such that

O (K, E(K)) = max O (K, E).

€int K

Proof. Let &,& € int K, & # &, and let A € (0,1). If u € S* 1\ (& — &)L, then (u, &) # (u, &),
and hence the strict concavity of ¢, yields that

pe(huc(u) = (u, A&y + (1 = X)&2)) > Ape(hc(u) — (u, 61)) + (1 = A)pe (b (1) = (u, &2))-
We deduce from (11) that
O (K, N+ (1= M) > A0 (K, &) + (1 — N)D(K, &),
thus ®. (K, &) is a strictly concave function of £ € int K.

Let &, € int K such that
lim ¢€(K7 ém) = sup q)e(K’ 5)

m—00 ecint K

We may assume that lim,, ... &, = 20 € K, and Lemma 3.1 yields zy € int K. Since (K, §) is a
strictly concave function of £ € int K, we conclude Proposition 3.2. Q.E.D.

Since £ — O, (K, &) is maximal at £(K) € int K, we deduce

Corollary 3.3. Fore € (0, %) and a convex body K in R", we have

/ST”l u . <hK(U) — <u,§(K)>> du(u) = o.

An essential property of £(K) is its continuity with respect to K.

Lemma 3.4. Fore € (0,3), both £(K) and ®.(K,&(K)) are continuous functions of the convex
body K in R™.

Proof. Let {K,,} be a sequence convex bodies tending to a convex body K in R™. We may assume
that lim,, 0o £(K) = 20 € K. There exists 7 > 0 such that £(K) + 2r B" C K, and hence we
may also assume that {(K) + r B" C K, for all m. Thus

Do (Ko, E(Km)) 2 e (K, §(K)) = @(E(K) + 7 B", §(K)),

and in turn Lemma 3.1 yields that zy € int K. It follows that ¢.(hg,, (u) — (u,&(K,y,))) tends
uniformly to p.(hx(u) — (u, 29)). In particular,

DK, 20) = T @Ko, €(Fon)) 2 T sup B.( Ky, () = (K E(K)),

m—00

Since £(K) is the unique maximum point of £ — ®.(K, &) on int K according to Proposition 3.2,
we have zg = {(K). In turn, we conclude Lemma 3.4. Q.E.D.

The next lemma shows that if we perturb a convex body K in a differentiable way, then &(K)
changes also in a differentiable way.

Lemma 3.5. For e € (0, %), let ¢ > 0 and tg > 0, and let K; be a family of convex bodies with
support function hy fort € [0,ty). Assume that

(1) |hi(u) — ho(u)| < ct for each uw € S" ' and t € [0,1t,),

(2) lim;_,o+ M exists for H" '-almost all u € S"1.

§(K+)—€(Ko)
t

Then lim;_,o+ exists.
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Proof. We may assume that {(Ky) = o. Since {(K) € int K is the unique maximizer of & —
O, (K, &), we deduce that

lim £(K;) = o.

t—0t
Let g(t,u) = hy(u) — ho(u) for u € S" ! and ¢ € [0,1y). In particular, there exists constant v > 0
such that if w € S""! and t € [0, ), then

L(he(u) — (u, §(Ky))) = @Llho(w)) + @Z(ho(u)) (g(t,u) — (u, (KL))) + et u)

where, setting v, = 2v¢? and ~y, = 27, we have
le(t, u)] < v(g(t,u) = (u, §(K0)))* < ylet + [|EE)I)? < it +y2llE(K .
In particular, e(t,u) = e;(t,u) + ea(t,u) where
(14) ler(t,u)| < it and fea(t, u)| < 7oll€(K)|*.
It follows from applying Corollary 3.3 to K; and Kj that

[ (o) (ot = G600 +elt,)) di) = o
which can be written as

/Snl u (‘Plsl(ho(u)) g(t,u)+eq(t, u)) du(u) = /

Sn—1

u (u, §(£4)) e (ho(u)) du(U)—/ w ey(t, u) dp(u).

Sn—1
Since ¢”(s) < 0 for all s > 0, the symmetric matrix

A= [ weu gl dutw
is negative definite because for any v € S"~!, we have
dv= [ o b)) flu)aH ) <0,
In addition, A satisfies that S
[t ) o) du) = A€(KD.
It follows from (14) that if ¢ is small, then
(15) A o) glt ) du(a) +1(0) = §(3) — ale),

where || (2)]| < ait? and [[1a(t)| < aol|€(K;)||* for constants oy, g > 0. Since £(K;) tends to
o, if ¢ is small, then [|(Ky) — ¢o(t)|| > 1 [I€(K)]|, thus |E(K)|| < Bt for a constant § > 0 by

g(t,u) < ct. In particular, [[¢s(t)] < @822, Since there exists lim; o+ 224990 — 8, 4(0, u) for

1 almost all v € S*71, and w < cforallu € S ! and t > 0, we conclude that

d
o (D

— A [ o) 919(0,) dita).
t=0 Sn—t
Q.E.D.
Corollary 3.6. Under the conditions of Lemma 3.5, and denoting Ky by K, we have

G| = [ D] () ~ G €0 )

dt




10 G. BIANCHI, K.J. BOROCZKY, A. COLESANTI, D. YANG

Proof. We write h(t,u) = hg,(u) and £(t) = £(K;); Corollary 3.3 and Lemma 3.5 yield

Ca(KobK)| = 5[ bl — €0 dutu)

dt Sn—1 t=0

t=0

= [ 0h(0.u) @l (i) — (. E(K))) dps(u) —

Sn—1

[ €0 et — (0. 6K)) ditw

- /S 00, ) L (hae() — G, ECK))) dp).
Q.E.D.

4. THE EXISTENCE OF THE MINIMUM CONVEX BODY K¢

Let p € (—n, 1), and let K1 C K be the set of convex bodies with volume one and containing
the origin.

We observe that /" > —, kn /"B € K1 and the diameter of K, Ynpn s 2k, /™. Tt follows
from ¢. < ¢ and the monotonicity of ¢, that if € € (0, 6), then

(16) Ol B ) < [ (o = ()

—-_p

2Pk MKy, - To if p € (0,1),
< log (2/@7) nk, -T2 ifp=0,
P Nky * T1 if p € (—n,0).
For K € Ky, let R(K) = max{||lx — o(K)|| : x € K}. We define the measure of the empty set
to be zero. We note that if & € (0,%) and v € S*7!, then
(17) H' ' ({ueS"": (u,v) > cosa}) > (sina)" 'Ky

Lemma 4.1. Let p € [0,1). There exists Ry > 1, depending on n, p, 71 and 7o, such that if
K € K1, R(K) > Rg and € € (0, ¢), then

.(K,E(K)) > .(k, /" B" (" B")).

Proof. Let K € K. We may assume o(K) = o and R = R(K) > 2n. Let v € S"! satisfy Rv € K.
It follows from Lemma 2.1 (i) that (—R/n)v € K, as well.
We write ¢y, c; to denote positive constants depending on n, p, 71, 2. We consider

=y = {U c Sn_l : hK(U) < 1},
and Z; = S"'\Z,. We observe that if u € Q(v, ), then hg(u) > (u, Rv) > R/2, and in turn

Qv, %) C E1. Since u(Q(v, 3)) > 7 (“[)" Yen_1 by (17) and @.(t) = ¢(t) > 0 for ¢t > 1, we have

n—1
V3
(18) / Pe 0 hy dp > / e o hgdp >m (7 kn-10(R/2) = c1p(R/2).
= Qv, %)
However, if u € Zy, then |(u,v)| <n/R as 1> hg(u) > |((R/n)v,u)|. It follows that

(19) H" (=) < (n— 1)Ky - % <(n—1)kp_1.
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We deduce from (10), the Holder inequality, the Blaschke-Santalé inequality Lemma 2.1 (ii) and
(19) that

/ w.ohgdu > —7'2/ h}(n_l) dH"
Zo =

=0
n—1

> -7 ( / h;("cmn-l) L H ()

1

(20) > —mp(nkp) T (0= Dkno)

3=

= —(C9.

Writing ¢(n, p, 71, 72) to denote the constant on the right hand side of (16), comparing (16), (18)
and (20) yields

C1QO(R/2) — Co S C(n»p7 71, 7—2)a
and, in turn, the existence of Ry as limp_,o ¢(R/2) = 00 by (8). Q.E.D.

The argument in the case p € (—n,0) is similar to the previous one above, but it needs to be
refined as now limy; ., ¢(t) = 0.

Lemma 4.2. Let p € (—n,0). There exists Ry > 1, depending on n, p, 71 and 7o, such that if
K € K1, R(K) > R, and € € (0,}), then

(K, §(K)) > @c(, " B", € (1" B")).
Proof. Let K € K;. We may assume o(K) = o and R = R(K) > 4n® Let v € S"! satisfy
Rv € K. It follows from Lemma 2.1 (i) that (—R/n)v € K, as well.
In this case, we divide S"~! into three parts:
= = {ueS": hg(u) < 1},
. = {ueS"': 1< hg(u) < VR},
2, = {ueS"': hg(u) > VR}.
If u € =y U=, then
VR > hye(u) = max{{u, Rv), (u, (=R/n)v)} = (R/n)|{u,v)].
Thus |(u,v)| < n/v/R, which in turn yields that

dn(n — 1)Kkp_1
VR
We write cg, ¢1, ¢o to denote positive constants depending on n, p, 7y, 7. If u € =g, then v (hg(u)) >

—hg(u)~7 according to (10), and hence we deduce from the Holder inequality, the Blaschke-Santald
inequality Lemma 2.1 (ii) and (21) that

/gogthdu > —7‘2/ hl_(qd'Hn_l
=N =

=0

S ( / hy d”H”l) N (E)
Zo

4 — _ T n—gq
( n(n — 1)k, 1) -
VR

(21) H Y (ZUE,) <

3k

(22) > —ry(nkl)
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Next if u € =, then ¢.(hx(u)) = —hx(u)"?!, and hence we deduce from the Holder inequality,
the Blaschke-Santald inequality Lemma 2.1 (ii) and (21) that

/ o0 hgduy > —7'2/ h;(m dH™
=1 =5
ol

> - (/_ hit dH™ 1) WY (Z)

n—|p|

el (4An(n — D)k,—1\ » _n—lpl

(23) > —7y(nk2)m ( =—cR .
" VR

Finally, if u € Z, then . (hg(u)) > ¢.(v/R), and hence

(24) / ©e 0 hyc dp > Tonky - p-(VR) = co0-(VR).

=5

Writing ¢(n, p, 71, 72) < 0 to denote the constant on the right hand side of (16) in the case p €
(—n,0), comparing (16), (22), (23) and (24) yields

—coR™ % — ;R + o (VR) < c(n,p, 1, 72) <0,
and in turn the existence of Ry as limg_,o o(vVR) = 0 by (8). Q.E.D.

\pl

We deduce from the Blaschke selection theorem and the continuity of . (K, £(K)) (see Lemma 3.4)
the existence of the extremal body K*.

Corollary 4.3. For every € € (0,%), if Ry > 0 is the number depending on n, p, 71 and 7o of
Lemma 4.1 and Lemma 4.2, there exists K¢ € Ky with R(K®) < Ry, such that

@(K*,€(K7)) = min ®(K,£(K)).

5. K¢ IS QUASI-SMOOTH

Lemma 5.1 below is essential in order to apply Lemma 3.5. For any convex body K and w C S"!,
we define
vi(w) = {z € 0K : vg(z) Nw # 0}.
For u € S"!, we write F(K,u) to denote the face of K with exterior unit normal u; in other
words,

F(K,u) ={x € 0K : (x,u) = hg(u)}.
Lemma 5.1. Let K be a convex body with rB™ C int K forr > 0, let w C S be closed, and let
Ky={z e K: (z,v) <hg(v)—t foreveryv e w}
fort € (0,r). If hy is the support function of Ky, then lim, o+ M exists for all u € S*71.

he(u)—hi(u)
t J—

Remark Readily, lim;_,o+ —1lif u € w.

Proof. We set X = v;'(w); this is a compact set. We consider two cases: either u is an exterior
unit normal at some y ¢ X, or F(K,u) C X.

In the first case hy(u) = hg(u) for sufficiently small ¢, and hence lim;_,q M = 0.
Next let F(K,u) C X for u € S"!, and let 2 € relint F(K,u). We define 2 to be the support
cone at z; namely,

Y=caly—2):ye K and a>0}={yeR": (y,v) <0 for v € vg(z)}.
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For small t > 0, let
Cir={zed: (z,v) < —t for vEewNVk(z)};

note that C} is a closed convex set satisfying K; — z C C}, and C; = tC;. We define

N =sup{(x,u): z € C;} <0,
and claim that for any 7 > 0 there exists tg > 0 depending on z, K and 7 such that if ¢ € (0, %),
then
(25) (N —7)t < hy(u) — hi(u) < Nt
To prove (25), we may assume that z = o, and hence hg(v) = 0 for all v € vi(z). For the upper
bound in (25), we observe that K; C C}, and hence

hi(u) — hi(u) = hy(u) < sup{{x,u) : z € Ci} = Nt
For the lower bound, let y, € int C; be such that
(Yryu) >N —T.
Since w N vk (o) is compact, there exists 6 > 0 such that
(yr,v) < =1 =4 for v € wNvg(o).

Moreover, y, € int ¥ yields the existence of t; > 0 such that ty, € K if t € (0,].

We also need one more constant reflecting the boundary structure of K near o. Recall that
h(w) > 0 for all w € S"7!, and hg(w) = 0 if and only if w € vk (o). Since w is compact, there
exists v > 0 such that

if we wand ||w—2v| >d/|ly.| for all v € wNvk(o), then hg(w) > .

We finally define to € (0,¢] by the condition ||y || 4+ to < 7.
Let t € (0,tp), and hence ty, € K. If w € w satisfies ||w — v|| > §/||y-|| for all v € w N vk(o),
then
{tyr, w) <tolly-|| <~ —to < hi(w) —t.
However, if w € w and there exists v € w N vk (o) satisfying ||lw — v|| < 0/||y-||, then

(ty;, w) = (tyr, w —v) + (ty,,v) <td+t(—1—0) = —t < hg(w) —t.
We deduce that ty, € K;, thus
hi(u) — hg(u) > (ty,,u) > (X —71)t,

concluding the proof of (25).
In turn, (25) yields that lim;_,o+ M =N. Q.E.D.

A crucial fact for us is Alexandrov’s Lemma 5.2 (see Lemma 7.5.3 in [78]). To state this, let
g:(=r,r) xSt = R, r >0, verify
e g(0,u) = hg(u) for a convex body K;

o for every u € S" ! the limit lim, w = 019(0,u) exists and the convergence
is uniform with respect to v € S"!; moreover 9,¢(0,u) is continuous with respect to
u € S

o K;={z eR": (x,u) < g(t,u) for any u € S""'} is a convex body for t € (—r,r).

Lemma 5.2 (Alexandrov). Using the notion introduced above, we have

fim L) = V) [y 0 ) Sk (u).

t—0 t §n—1

Next we present a way to improve on ®.(K,&(K)) while staying in the family ;.
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Proposition 5.3. If for K € K, there exists a closed set w C S"~ ' with H"™*(w) > 0, such that
Sk(w) =0, then there exists a convex body K € Ky such that ®.(K,{(K)) < ®.(K,&(K)).
Proof. For small t > 0, we consider

Ki={zx e K: (z,u) < hg(u) —t foruew},
and B

K, =V(K,)Y"K, € K.

We define a(t) = V(K,;)~™"/", so that in particular a(0) = 1. We claim that
(26) a'(0) = 0.
Since « is monotone decreasing, it is equivalent to prove that if € (0, 1), then
(27) mmﬁvM”;VM7>_

t—0t

Since Sk (w) = 0 and w is closed, we can choose a continuous function  : S"~! — [0, 1] such that
Y(u) =11if u € w, and

Y dSk <.
Sn—1
For small ¢ > 0, we consider v; = hx — ti) and

Ky, ={re K: (z,u) <mn(u) foruew},
and hence Ky, C K;. Using Lemma 5.2, we deduce that

V(K) - V(K) _ d :_/ b dSk > 1
t=0+ sn=t - |

. d
fiminf ——= 2 3V (Kue)

We conclude (27), and in turn (26).
We set h(t,u) = hg,(u). As

Koyy={xe K:z+tB"C K} C K,
Lemma 2.3 (i), with C' = B™, yields that there is ¢ > 0 such that if ¢ > 0 is small, then
—ct < hg,,(u) = hg(u) < h(t,u) — h(0,u) <0

for any v € S*!. In addition, we deduce from Lemma 5.1 that lim, o+ w = 01h(0,u) <
0 exists for any u € S" ! where 9,h(0,u) < —1 for u € w by definition. Next let h(t,u) =
a(t)h(t,u) = hg (u) for u € S"! and small ¢ > 0. Therefore there exists ¢ > 0 such that if ¢ > 0

is small, then |A(t,u) — h(0,u)| < & for any v € ™', and a(0) = 1 and (26) implies that

lim h(t,u) — h(0,u)

t—0+ t

= 91h(0,u) = &1h(0,u) <0

exists for any v € S"!, where Ah(0,u) < —1 for u € w. We may assume that {(K) = o and
K C RB" for R > 0 where K = K. As ¢/ is positive and monotone decreasing, H"!(w) > 0 and
Corollary 3.6 imply

(R, €(R) = R, ) ) < [vem dutw <o.

Therefore (K, £(K;)) < ®.(K,£(K)) for small ¢ > 0, which proves Lemma 5.3. Q.E.D.

Corollary 5.4. K¢ is quasi-smooth.
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Proof. Let 'K and Zk be as in the definition of quasi-smooth body, immediately after the proof
of Lemma 2.2. If K € K; is not quasi-smooth, then H"}(S" '\vg(9'K)) > 0. Now there exists a
closed set w C S" N\vg(9'K) such that H"!(w) > 0. If an exterior normal at z € 9K lies in w,
then x € Zg, and hence Sk (w) < H" '(Zk) = 0. Thus Proposition 5.3 yields the existence of a

convex body K € K; such that ®(K,&(K)) < ®(K,£(K)). We conclude that K° is quasi-smooth
by its extremality property. Q.E.D.

6. THE VARIATIONAL FORMULA (TO GET )\.)
We define
1

(28) o= [ e () e () ).

Proposition 6.1. ¢ (hg-(u) — (£(K®),u)) du(u) = \. dSk- as measures on S" .

Proof. To simplify the argument, we write K = K¢, and assume that £(K) = o. First we claim
that if C' is any convex body with o € intC', then

(29) | hercdsic= [ hefu) (i) dutu).
Assuming rC' C K for r > 0, if t € (—r,r), then we consider
Ki={r e K: (z,u) < hg(u) +thc(u) forueS" '}
and B
K, =V(K)Y"K, € K,.
We define a(t) = V(K,;)~"/", so that in particular a(0) = 1. Lemma 5.2 yields that

d
—V(K = hodS
G| /S o dSx,
and hence
1
(30) J(0) = 2 / he dSi.
n Sn—l

We write h(t,u) = hg,(u). Since K is quasi-smooth, Lemma 2.3 (i) and (ii) imply that there
exists ¢ > 0 such that if ¢ € (—r,r), then |h(t,u) — h(0,u)] < c|t| for any u € S*! and
lim;_,o w = ho(u) exists for H" -a.e. u € "' Next let h(t,u) = a(t)h(t,u) = hi, (u)
for u € S" ! and ¢t € (—r,r). From the properties of h(t,u) above and (30) it follows the existence

of &> 0 such that if t € (—r,r), then |A(t, u) — h(0,u)| < é&t| for any v € S*', and

. h(t,u) — h(0,u)

t—0 t

= O1h(0,u) = o/ (0)hg (1) + he(u)

for any u € S"1. As ®(K,,£(K,)) has a minimum at ¢ = 0 by the extremal property of K= =
Ky = K, Corollary 3.6 imply

0 = i‘l)(f(uf(f(t))

dt = [ 0h(0,u) - L (i (w)) dpa(u)

t=0 S§n—1

_ /S (@ (O)hiclw) + o)) (huc(u)) diu(u)

= /Snl ho(uw). (hy(u)) du(u) — /Sn1 hcA: dSk,

and in turn we deduce (29).
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Since differences of support functions are dense among continuous functions on S*! (see e.g.

[78]), we have
| ondsi= [ glupetlhuctu)) duta)
sn— s
for any continuous function g on S"~!. Therefore \. dSx = ¢. o hic du. Q.E.D.

7. THE PROOF OF THEOREM 1.7

We start recalling that, by Corollary 4.3, K¢ C o(K*®) + RyB"™ where o(K*) is the centroid and
Ro > 1 depends on n, p, 7y and 7. The following lemma is a simple consequence of Lemma 2.1
(iii) and V(K*®) = 1.

Lemma 7.1. For ry = (+1)R+1’ we have o(K¢) + roB™ C K°.
n 0 Kn—

Next we show that ). is bounded and bounded away from zero.

Lemma 7.2. There exist 75 > 71 > 0 depending on n, p, 71 and 1o such that 71 < A\, < Ty if

e <min{’%, ¢}

Proof. We assume £(K°) = o. To simplify the notation, we set K = K¢ and o
w € S"1 and ¢ > 0 be such that 0 = pw. Since row € K, if u € S and (u,
hx(u) > r9/2. Moreover, since ¢. is monotone decreasing, we have ¢.(hg(u))
¢'(2Ry) for all u € S"!, and hence (17) yields

| b)) dut) = [ (10/2)-9' @R dul) = (r0/2) - RRo)ri- (V3/2)

uesn—1
(wwy>4
which in turn yields the required lower bound on A..

To have a suitable upper bound on )., the key observation is that using o0 < Ry, we deduce that
if u e S"! with (u,w) > —58 and e < 2 then

T
hac(u) > (u, 0w+ rou) > 1o — = > 102,
0

therefore

(31) L)) < eLro/2) = ¢ (10/2)
Another observation is that K C 2RyB" implies

(32) hi(u) < 2Ry for any u € S"~1.

It follows directly from (31) and (32) that

) s () dia) < (2Ro)¢!(ro/2) 7oy,
(u,w)> ;};g

However, if (u,w) < 7 for u € S*7', then ¢.(hge(u)) can be arbitrary large as {(K¢) can be
0
arbitrary close to 0K* if ¢ > 0 is small, and hence we transfer the problem to the case (u,w) > %
using Corollary 3.3. First we claim that

2Ry

(34) L (hic(u) dpp(u) < o ¢ (ro/2)mansin.

uesn—1
(u,w) < 30
On the one hand, first applying Corollary 3.3, and after that u(S"™!) < mnk,, and (31) imply
(o —w) ) ) = [

—|
(“7“”2%

(u, w)ypl (hc(u)) dp(u) < ¢'(ro/2)ankin.

uesn—1

o
(u,w)< 750
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On the other hand, as (u, w) < she 18 equivalent with (u, —w) > 35> we have
To
v {u, —w)pl (b (u)) dp(u) = S v Pelhic () du(u),
u€es 2R, u€es
ey =

and in turn deduce (34).
Now (32) and (34) yield

/ (2R0)2 /
wenm (WG (hic(u)) dp(u) < === - ¢/ (r0/2)T2nkin,
_ 0
(ww)< 572

which estimate combined with (33) leads to A\. < —(QRO):O+2RO

Lemma 7.2. Q.E.D.

¢ (r0/2)Tonky,. In turn, we conclude

Proof of Theorem 1.7 We assume that £(K®) = o for all ¢ € (0,min{g,%2}). It follows from
Lemma 6.1 that

(35) oL (hice(w)) dp(u) = A dSi-

as measures on S" 1.

Using the constants rq, Ry of Lemma 7.1, if € is small then K¢ C 2RyB" and K¢ contains a ball
of radius ry. According to the Blaschke selection Theorem and Lemma 7.2, there exists a sequence
{em} tending to zero, €, > 0, such that K" tends to a convex body Ky, and lim,, .o Ac,, = Ag > 0.
In particular, the surface area measure of K" tends weakly to Sk,, and we may assume that

(36) Ao, S(K™) < (Ao + 1)S(K)
for all m. Here, for a convex body K, S(K') denotes its surface area: S(K) = Sk (S"1).
We claim that the closed set X = {u € S""!: hg,(u) = 0} satisfies

(37) p(X) = 0.
We may assume that X = ). It follows from (7) that: setting ¢ = [p| if p € (—n,1)\{0} and ¢ =1
if p =0, we have

O'(t) =ctP™! ift €(0,1).
Let 7 € (0,1). We can choose large m such that 3¢, < 7 and |hgem (u) — by, (u)| < 7 for u € S*71;
thus, if 0 < ¢t < 7, then

L. () > o, (1) = (1) = el

In particular, ¢, (hgem(u)) > ¢! holds for u € X. It follows from (35) and (36) that

(X)) < Mo+ DS(E) _ Qo+ DSE) 1,

holds for any 7 € (0,1), and in turn we conclude (37) as 1 —p > 0.
Next, for § € (0, 1), we define the closed set

=5 = {U esStt. hKO(U) > (5},

so that S"" 1\ X = Use(0,1)Zs- For large m, we have ¢, o hgem = ¢’ 0 hgem on Z5, and the latter
sequence tends uniformly to ¢’ o hg, on Zs. Therefore, if g : S*~! — R is a continuous function,
then (35) and the convergence of K, to K, imply

/: 9(u)@' (hicy (w)) dpu(u) = Ao / g(uw) Sk, (u).

=4
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We define )
o { (o/lp)™ it p € (=n, 1)\{0},
AP ifp=0,
and hence (7) yields

(38) / gy ()P dp(u) = A" / 9(u) Sy (1),

For any continuous ¢ : S"!' — R, ¢(u)/hg,(u)P~" is a continuous function on Z; that can be
extended to a continuous function on S"~!. Using this function in place of g in (38), we deduce
that

/ ) difu) = X7 [ ()b ! dSi ).
_5 =6
As this holds for all € (0,1), it follows that

(39) [ v = [ (o) S ).
Sn—1\X sn—1\ X
Combining (37) and (39) implies that
= [ g (0! dSuse ),

for any continuous function ¢ : S"' — R, and hence du = hy(u)' "7 dSy(u) for M = AKj.
Q.E.D.

We still need to address the case when p is invariant under certain closed subgroup G of O(n).
Here the main additional difficulty is that we always have to deform the involved bodies in a
G-invariant way.

Proposition 7.3. If —n < p < 1 and the Borel measure p satisfies dp = fdH"™ ' where f is
bounded, inf,csn—1 f(u) > 0 and f is invariant under the closed subgroup G of O(n), then there
ewists M € Ky invariant under G such that 1 = Sy p.

To indicate the proof of Proposition 7.3, we only sketch the necessary changes in the argument
leading to Theorem 1.7.

In this case, we consider the family K¢ of convex bodies K € K; satisfying AK = K for any
A € G. It follows from the uniqueness of £(K) (see Proposition 3.2) that if K € K§ and A € G,
then A{(K) = E(K).

The argument for Corollary 4.3 carries over to yield the following analogue statement. For the
Ry > 0 depending on n, p, 7, and 7, of Lemma 4.1 and Lemma 4.2, there exists K¢ € K with
R(K¢) < Ry for any ¢ € (0, ) such that

©(K7€(K7) = min, ®.(K,£(K)),

Let us discuss how to prove a G invariant version of Corollary 5.4; namely, that K°® is quasi-
smooth. In this case, a more subtle modification is needed.

Lemma 7.4. K¢ € K{ is quasi-smooth.

Proof. We suppose that K = K¢ € K¢ is not quasi-smooth, and seek a contradiction. We have
H LS N\vg (0'K)) > 0, therefore there exists a closed set @ C S" " N\vg (0'K) with H*1(@) > 0.
We define

w = UpecAw,
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which is compact as both G and @ are compact. Readily, H" (&) > 0 and w is G invariant. Since
K is G invariant, we deduce that even w C S" '\vg(9'K), and hence Sk (w) = 0. Thus we can
apply Lemma 5.3. We observe that the set K; defined in Lemma 5.3 is now G invariant, and hence
there exists a convex body K € K¢ such that ®.(K,£(K)) < ®.(K,£(K)). This contradiction
with the extremality of K = K¢ proves Lemma 7.4. Q.E.D.

Let us turn to the G-invariant version of Proposition 6.1.
Proposition 7.5. ¢L(hg-(u) — (£(K®),u)) du(u) = \. dSk- as measures on S"~*.

Proof. The key statement in the proof of Proposition 6.1 is (29), claiming that, if we assume
K = K¢ and {(K) = o, for any convex body C' with o € intC' we have

(40) /S hededSy = /S () () d).

To prove (40), we write 9 to denote the G-invariant Haar probability measure on S*~'. We define
the G-invariant convex body Cj by

he, = / hac ddg(A).
G
Running the proof of (29) using Cj in place of C, and observing that

K,={r e K: (z,u) < hg(u) +the,(u) forue S}

is G-invariant, we deduce that

(41) [ hedsi = [ e () duo).

Sn—1

Therefore the G-invariance of K and p, the Fubini theorem and (41) imply that

/ hededSk = / / hache Sk ddc(A)
Snfl G Snfl
= [ hahdsi= [ hewelliuw) dutw
Sn— 1 Sn— 1

_ / /Snlh,w )L (R (w)) dpa(w) didg (A)
_ / o () (hic (w)) dpa(u),

yielding (40). The rest of the proof of Proposition 6.1 carries over without any change. Q.E.D.

Having these tailored statements, the rest of the proof of Theorem 1.7 yields Proposition 7.3.
The only part we do not prove here is that o € int K when p < —n + 2, which fact is verified
using a simple argument by Chou and Wang [22], and is also proved as Lemma 4.1 in [6]. Q.E.D.

8. SOME MORE SIMPLE FACTS NEEDED TO PROVE THEOREMS 1.3 AND 1.5

In order to prove Theorems 1.3 and 1.5, we continue our study using the same notation. How-
ever we now drop the assumption (11) on f, unless explicitly stated. The following is a simple
consequence of the proof of Theorem 1.7.
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Lemma 8.1. Let p € (—n, 1) and pu be a measure on S*~1 with a bounded density function f with
respect to H™ ', such that inf f > 0; then there exists a convex body M with o € M, Sy, = p and

/Snl 7 <V(M)%hM*G(M)(“)> dp < <p(2/@;1/")ﬂ(gn—1).

In addition, if u is invariant under a closed subgroup G of O(n), then M can be chosen to be
mwvariant under G.

Proof. We recall that for any small € > 0, K¢ € K, satisfies

/ Qe © hge_¢(re) djp = min max / @e 0 hg_¢dp
Sn—1 S§n—1

Keky éeint K

where £(K®) € int K°. In addition, if x is invariant under the closed subgroup G of O(n), then K¢
can be chosen to be invariant under G, and hence o(K¢) is invariant under G, as well. We deduce
that (16) yields

(42) / e © hge _g(reydp < / ©e 0 hice_g(icey dpt < 80(2,%71/") (Sn—l)
Sn—1 §n—1

for any small € > 0. In the proof of Theorems 1.7 in Section 7, we have proved that there exist

a sequence &, with hmmﬁoo em = 0 and convex body M with o € M and Sy, 1p = M such that
K* tends to some K € Ky where K = V(M) M. As o(K*) tends to o(K), we have that

K — o(K*) tends to K — o(K). Therefore we conclude Lemma 8.1 from o(K) € int K and
(42). Q.E.D.

The following lemma bounds the inradius in terms of the L,-surface area.

Lemma 8.2. Let p < 1, and let K be a convexr body in R™ which contains o and a ball of radius
r, then

Sk p(S"1) > k™ P.

Proof. Let xy € R™ be such that zo +7B" C K. If 19 # o let 29 = 0v for § > 0 and v € S* 1,
otherwise let v be any unit vector and let § = 0. We define a subset of 0K as follows:
E={r€dK: :z=y+sv foryer(int B*)Nvt and s > 0}.

Let x € 2, with x = y + sv for some y € 7 (int B") Nvt and s > 6, and let vk (z) be an outer unit
normal of K at z. Since xg + rvg(x) € K and 2o +y € K we have

(43) (v (z), o + 1K (2) — ) <0,
(44) (vi(x), 20 +y —x) <0,
Formula (44) implies (v (x),v) > 0, and, as a consequence,
(45) (vk(z),x0) > 0.

Formula (43) implies (v (x),x) > (v (), z0) + r, and, in view of (45),

(v (x), x) > 7.
It follows from H" " Y(Z) > k,_17" ! that

SK,p(S"_l) > (VK(x),x>1_p d?—[”_l(x) > i P, L

o

which proves Lemma 8.2. Q.E.D.
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9. PROOF OF THEOREM 1.5

We have a non-trivial measure p on S ! satisfying that du = f dH" ! for a non-negative L#p

function f. For any integer m > 2, we define f,, on S"~! as follows

m if f(u) =m,
fm(uw) =< flu) if % < f(u) < m,
o if f(u) < o

and define the measure p,, on S*! by du,, = f,, dH" ! Since f is also in L, by Hélder’s inequality,
it follows from Lebesgue’s Dominated Convergence theorem that u,, tends weakly to p. We choose
mg such that

s
2

According to Lemma 8.1, there exists a convex body K, with o € K, Sk, , = ftm and

(46) < pm (S < 2u(S™Y) for m > my.

Inl -1 p
(47) V(K" / Wi it = / — (VKW Tl otrin)) it
Sn—1 Sn—1

2K;l/n p .
% Spu(S™h.

In addition, if x is invariant under the closed subgroup G of O(n), then each p,, is invariant under
G, and hence K, can be chosen to be invariant under G.

Lemma 9.1. {K,,} is bounded.
Proof. We set

(48) < (2 (8" < —

om = max{o: o(K,)+oB" C K,,}
R, = min{|lz —o(K,)||: v € K, }

1 R;J
ty, = . —, tm" ¢,
min { 9 }

choose v,,, € S""! such that o(K,,) + Rnv, € 0K,,, and define
Em={ueS" " [{(u,v,)| <tn}
Lemma 8.2 and (46) imply
%S(&AWﬂyﬂg(m®H5&3
Kn—1 Kn—1
Thus, by Lemma 2.1 (iii), we have

Qﬂ(Sn_l

1
(49) V(Kp) < (n+1)kn10mR* < (n+ 1)kn_1 ( )) "R < R

Rn—1
for a ¢y > 0 depending on u, n, p.

We suppose that {K,,} is unbounded, thus there exists a subsequence {R,,} of {R,,} tending
to infinity, and seek a contradiction. We may assume that {v,,} tends to v € S""!. In addition,
the definition of t,, yields

m/—o00
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We claim that
(51) lim Frw AR =0,

m/—o0

which is equivalent to show that the left hand side in (51) is at most 7 for any small 7 > 0. For
€ (0,1), we set
2(s) = {ue S (u,v) < s}
Since f is in L_»_ with respect to H"™ !, there exists 6 € (0, 5) such that

(52) FrmdH T < 7
=(24)
Now if m’ is large, then t,, < & by (50), and hence =, C Z(26) as v,y tends to v. Therefore (52)
implies (51).
Next we claim

Ip|

(53) lim V(Km/)n/: hﬁ’( o,y A =0.

m/—o0
m

We deduce from the Holder inequality and the form of the Blaschke-Santal6 inequality given in
Lemma 2.1 (ii)

/_ hi{ i—o(K,, )d:“ = /H hK‘pl, —o( m,)denil

’

ol n—|p|
< ( / W ok dH”‘l) ( / f d%"*)
—Ipl
2[p| “Ip "
< Kp" n% V(Km/)T‘ ( fn*\P\ d?—[n1>
In turn, (51) yields (53).
We also prove
(54) lim V(Ku)® / B e =
m’—o0 sn 1\.— m m

We observe that if w € S""'\Z,,/, then |[{(u, v, )| > t,. Since o(K,) R;"' » € K according to
Lemma 2.1 (i), we deduce that

R, Rty
hi —o(k, ) (u) > max {<u, - vm,> (U, Ry Um/>} >
m' m n

n

It follows, by (49) and the definition of t,,, that

|p| \Pl(n 1) |p| —lp|

V(Km/)n/S - W ey @ < nlPleg Ry (Rut) Pip(8™1) = nlPleg u(S" )R 2

m

proving (54).
We deduce from (53) and (54) that

lim V(K )"’/ B ey di =0,
Sn 1 m

m/—o0 m

contradicting (47), and proving Lemma 9.1. Q.E.D.
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Proof of Theorem 1.5. 1t follows from Lemma 9.1 that there is a subsequence { K, } of { K,,,} that
tends to a compact convex set Ky. Since Sk ,, tends weakly to Sk, ,, we deduce that p = Sk, .
Since Sk, is the null measure when p < 1 and K has empty interior, we deduce that int Ky # 0.

We note that if p is invariant under the closed subgroup G of O(n), then K is invariant under G.
Q.E.D.

10. PROOF OF THEOREM 1.3 WHEN ANY OPEN HEMISPHERE HAS POSITIVE MEASURE

Let p € (0,1), and let u be a non-trivial measure on S*~! such that that any open hemisphere of
S"~! has positive measure. In addition, we assume that y is invariant under the closed subgroup G
of O(n) (possibly G is a trivial subgroup). For a finite set Z, we write #Z to denote its cardinality.

First we construct a sequence {i,,} of G invariant Borel measures weakly approximating p. For
any u € S" !, we write I', = {Au : A € G} to denote its orbit. The space of orbits is X = S"71/ ~
where u ~ v if and only if v = Au for some A € G; let ¢ : S*! — X be the quotient map. Since
GG is compact, X is a metric space with the metric

d(Y(u),¥(v)) = min{L(y,2): y €, and z €T}

2, let x1,...,2p € X be an 1/m-net; namely, for any z € X, there exists x; with
1/m. For any x;, + = 1,..., k, we consider its Dirichlet-Voronoi cell

D,={re X:dz,z) <d(z,z;) for j=1,... k},
and hence d(z,z;) < 1/m for x € D;. We set Uy =0 and, fori =1,...,k — 1, we define

U= Jo ™" (Dy): j=1,....i}.
We subdivide S*! into the pairwise disjoint Borel sets

Dm = {w_l(Di)\Ui_l 1= ]_, ceey k}

where each II € D, satisfies that II is G invariant, H" ' (IT) > 0 and for any u € II, there exists
A € G with Z(Au, z(IT)) < 1/m for a fixed z(II) € II with ¢(z(I1)) € {z1,..., 2}

It is time to define the density function for u,, by

_pI) 1
Fnl) =505+ .7

in other words, dp,, = f, dH" . It follows that each u,, is invariant under G, each f,, is bounded
with inf,egn—1 fin(u) > 0.

Let us show that the sequence {y,,} tends weakly to p. For any continuous g : S*! — R, we
define the G invariant function gy : S*~! — R by

golu) = /G g(Au) dIG(A)

where Y is the invariant Haar probability measure on G. Since p is G invariant, the Fubini

theorem yields
/ gdﬂz/ godp and / gd:um:/ 9o dpim
S§n—1 S§n—1 S§n—1 S§n—1

for m > 2. The construction of D, implies that limm, eo [su1 go dtim = [su1 go dp, and hence
{pm} tends weakly to p.
We may assume that my is large enough to ensure that

(55) P (S™1) < 2u(S™1) for m > my.

if u eIl and II € D,y,,
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According to Lemma 8.1, there exists a convex body K,, with o € K,,, Sk,, , = tm and

(56)  V(Kn)* / P atai B = / (V) ™ i otn) i
< (2R, )P (") < 2026, P (ST,
In addition, each K,, can be chosen to be invariant under G.
Lemma 10.1. {K,,} is bounded.
Proof. For m > mg, we set

om = max{o: o(K,)+oB" C K,}
R, = min{||lz —o(K,)||: z € K,,},

and choose v,, € S""! such that o(K,,)+ Rynvy € 0K,,. It follows from Lemma 2.1 (iii), Lemma 8.2
and (55) that

2u(S"1)

Kp—1

1

(57) V(Kp) <4 Dep10mR5T < (04 1)K,y ( ) ’ R < coR™!
for a ¢y > 0 depending on u, n, p.

We suppose that {K,,} is unbounded, thus there exists a subsequence {R,,} of {R,,} tending
to infinity, and seek a contradiction. We may assume that {v,,} tends to v € S*71.

Forw € "' and a € (0, 5], we recall that Q(w, «) is the family of all u € S*~! with Z(u, w) < o.
Since the p measure of the open hemisphere centered at v is positive, there exists § > 0 and
v € (0, %) such that u(Q(v, 5 — 37)) > 26. As p, tends to u weakly, there exists m; > mg such

that if m’ > my, then i, (Qv, 5 —2v)) > 6 and Z(vyy,v) <. Therefore if m’ > my, then

(0.5 7)) =

If uw € Q(vm, 5 — ) then (u,vy,) > sinvy. Therefore hg , ok, ,)(u) > Rpysiny and

/ hzf)(m/—a(Km,) Aftyy > (R siny)P4.
Q(Um/ 7%_7)
Inequality (57) yields

—p(n=1)

lim V(Km/)_np/ Wi ok ) Qim = lim co%pR ;" (R siny)Pé = oc.
Snfl m m

™m
m/—o00 m/—o0

This contradicts (56), and proves Lemma 10.1. Q.E.D.

Proof of Theorem 1.3 under the assumption that u(X) > 0, for each open hemisphere > of S"71.
It follows from Lemma 10.1 that there is a subsequence {K,,} of {K,,} that tends to a compact
convex set K. Since Sk, ,, tends weakly to Sk, ,, we deduce that = Sk, and int Ky # (. We
note that if p is invariant under the closed subgroup G of O(n), then K is invariant under G.
Q.E.D.

11. PROOF OF THEOREM 1.3 WHEN THE MEASURE IS CONCENTRATED ON A CLOSED
HEMISPHERE

Let p € (0,1). First we show that the assumption required in Conjecture 1.2 is necessary.

Lemma 11.1. If p <1 and K € Ky, then supp Sk, is not a pair of antipodal points.
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Proof. We suppose that supp Sk, = {w, —w} for some w € S"!, and seek a contradiction. Since
the surface area measure of any open hemi-sphere is positive, we have o € 0K. Let o be the
exterior normal cone at o; namely,

c={yeR": (z,y) <O0Vex e K} ={y € R" : hg(y) = 0}.

It follows that w, —w &€ o by p < 1, therefore the orthogonal projection ¢’ of ¢ into w does not
contain the origin in its interior. We deduce from the Hanh-Banach theorem the existence of a
(n — 2)-dimensional linear subspace Ly C w' supporting ¢’. Therefore the (n — 1)-dimensional
linear subspace L = Ly + Rw is a supporting hyperplane to o at o. We write L™ to denote the
open halfspace determined by L not containing o. We have Sg (LT N'S""!) > 0 on the one hand,
and hg(u) > 0if u € LT NS"! on the other hand. We deduce that

Skp(LTNS™ 1) = / hi P dSk > 0.
Ltnsn—1
In particular, supp Sk, N (LT N S*1) # 0, contradicting supp Sk, = {w, —w}. Q.E.D.

We remark that supp Sk, can consist of a single point, as the example of a pyramid with apex
at o shows.

Now we prove a sufficient condition ensuring that a measure p on S"! is an L,-surface area
measure. For any closed convex set X C R", we write relint X to denote the interior of X with
respect to aff X.

Completion of the proof of Theorem 1.3. The idea is that we associate a measure py on S*~! to
1 such that the py measure of any open hemisphere is positive, construct a convex body K, whose
L,-surface area measure is 19, and then take a suitable section of K.

Let C = possupp p and L = linsupp p, and let vy € relint C N S"~L. For

o={yeL(yv) <0forvel},

the condition L # C yields that o N L # {o}.

We claim that (—o) Nrelint C' # (). If it didn’t hold, then the Hahn-Banach theorem applied to
C and o yields a w € S"' N L such that (w,z) < 0 for z € C, and (w,y) > 0 for y € —0. In
particular, w € o, and as y = —w € o, we have

—1 = (w,y) > 0.
This contradiction proves that there exists a vy € (—c) Nrelint C' N S™~1. In particular, we have
(58) {(u,vg) > 0 for all u € supp p.

We write L = L N vy, and set d = n — dim L where 1 < d < n. We observe that supp
is contained in the half space of L bounded by L and containing vy by (58) We consider a d-
dimensional regular simplex S in Lt with vertices Vo, ..., € SN LL, and the A € O(n)
that acts as the identity map on L, and satisfies Av; = Vit for 1=20,...,d—1. We consider the

cyclic group Gy of the isometries of Sy of order d + 1 generated by A, and the subgroup G of O(n)

generated by G and Gy. We define the Borel measure i invariant under GG in a way such that if
w C S"™! is Borel, then

prolw) = 3 p(A'w).

In particular, supp po = UfzoAisupp 7
We prove that for any w € S !, there exists

(59) w € supp po such that (w,u) > 0.
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Since vy + . .. +vg = 0, either there exists i € {0, ..., d} such that (w,v;) > 0, or w € L, and hence
(w,v;) = 0. For L; = lin{w;, Z} = A'L, we write w = w;+w; where w; € L; and w; € L}, and hence
either (w;,v;) > 0, or w; = w € L, which in turn also yield that w; # 0. Since v; € relint A'C,
there exists u € A’supp p with (w;,u) > 0, and hence (w;,u) > 0. In turn, we conclude (59),
therefore the o measure of any open hemisphere of S*~! is positive.

Now the argument in Section 10 provides a convex body K, € Kf whose L,-surface area is

and is invariant under G. For i = 0, . .. ,d, the Dirichlet-Voronoi cell of v; is defined by
D(v;) ={x € R": (z,v;) > (x,v;) for j=0,...,d},

which is a polyhedral cone with v; € int D(v;). Readily, AD(v;) = D(v;41) fori=0,...,d —1 and
R™ = U;'l:o A7 D(vy), where the sets in the union have disjoint interiors.
We define

K = K(] N D(Uo)
and prove that S,(K,w) = u(w) for each Borel set w C S*~!. Let
N = U vi(x) = U Vi, ().
z€intD(vp) x€intD(vo)

First we observe that
(60) Sp(K,w) = S,(K,wNN).

Indeed, if u ¢ N then either u € vg(o) and, as a consequence, hx(u) = 0, or u € vg(z) for

some z in the intersection of dD(vy) and of the closure of (O0K) NintD(vp), an intersection whose

(n — 1)-dimensional Hausdorff measure is zero. These facts imply S,(K,w \ N) =0 and (60).
Then we prove that if u € supp o \ L and u € v, (z) for some = € 0K, \ D(v;) then

(61) u ¢ Alsupp .

We prove (61) for j = 0 arguing by contradiction; the other cases can be proved similarly. Assume
that w € supp p. Since x ¢ D(vy) we have that x € D(v;) \ D(vp), for some ¢ € {1,...,d}, that
is (z,v9) < {(x,v;). The symmetries of K, imply that x = A’y for some y € Ky. The inclusion
supp ¢ C C and (58) imply u = awvg + p for some o > 0 and p € L. Tt follows that

(yu) = aly,vo) + (y,p) = a(A'y, Alvg) + (A'y, A'p) = oz, v;) + (z,p)
> oz, v) + (z,p) = (z,u).

This contradicts the fact that u is an exterior unit normal at = to 0Ky and conclude the proof of
(61). The previous claim easily implies

(62) N Nsupp po C supp i and V;(;(N Nsupp o \ L) € D(vp).
Formulas (62) imply
(63) S, (K,wNN\L)=58,(Kop,wNN\L)=pwnN\L).

On the other hand, if u € L then Ayl (u) = vl (u), for each 4, and

I/KO Uy ﬁAz UAZ< u) N D( U(]) UA’( )
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where the sets in the last union have disjoint relative interiors. Moreover hyg,(u) = hx(u). Thus

S,(K,wNNNL) :/ (z, v (2)) PdH ()
vz (wNNNL)
1
= (@, v, () " PAH" (@)
(64) d+1 VI_{; (wNNNL) ’
1 -
:d+1u0(wﬁNﬂL)
:u(w NNN [:)

Formulas (60), (63) and (64) imply that S,(K,w) = pu(w), or in other words, that yu is the L,-
surface area measure of K. Q.E.D.

Example 11.2. [f L C R" is a linear d-subspace with 2 < d < n — 1, then there exists a conver
body K such that L = possupp p for the Ly,-surface area measure of K. To construct such a K,
we take a d-ball B C L such that o € 0B, and the exterior unit normal v to B at o. We also
consider an (n — d + 1)-dimensional convex cone o C lin{L* v} with v € relinto and (v, w) > 0
for w € o\{o}. We define K with the formula

K={zxeB+L": (z,y) <0 fory € o}.

12. THE CRITICAL CASE p = —n
Let K € K with o € int K and 0K is C?, and hence
dSk,_p = fdH"*

for a C! function f(u) = hg(u)"!/k(u) on S"! (see (3)), where x(u) is the Gaussian curvature at
z € OK with vk (z) = u. For basic notions in this section, we refer to Schneider [78] and Yang [87].
Let h = hk, and let h = hg~ be the support function of the polar body K*, defined as follows:

Kr={xeR": (z,y) <1Vy e K}.

In particular, hg.(u)'u € K for u € S* ', and both h and h are C? on R™\{0}. We write
f to denote the curvature function on R”, that is the (—n — 1) homogeneous function satisfying
f(u) = k(u)~" for ue S™ 1,

We also recall some definitions and results from [87]. Given a function ¢ : R"\{o} — R, let
Vo : R"\{0} — R" denote its gradient and V?¢ : R"\{0} — S?R" its Hessian, where S*R" stands
for symmetric 2 tensors. Let

1
(65) H = 5h2 :R™ — (0, 00).

Under the assumptions above, the gradient map, VH = hVh : R"\{o} — R"\{o}, is a C*
diffeomorphism, and, by Lemma 5.5 in [87], the following relations hold for any £ € R™\{o} and
x=VH:

(66) h(€) = h(VH(S))

(67) h(€)Vh(E) ==

(68) £ = h(§)VR(VH(E))
(69) det V2 H (&) = ™ (&) f(€)
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The homogeneous contour integral of a function ¢ : R"\{0} — R, with homogeneity degree —n,
is defined as

(70) 7{¢(:L’) dx = - o(u) dH™ (u).

The volume of K is given by

() V) =5 [ R = 1 Ry e = hEs©) ds

n n n

We also use the following integration by parts and change of variables lemmas.

Lemma 12.1. (Corollary 6.6, [87]) Given a C function ¢ : R"\{0} — R, homogeneous of degree
—n + 1, we have, for every j € {1,...,n},

j{aj(b(x) dx = 0.

Lemma 12.2. (Corollary 6.8, [87]) Given a C' function ¢ : R™\{o} — R homogeneous of degree
—n and a C' diffeomorphism ® : R"\{o} — R™\{o} homogeneous of degree 1, we have

75 o) d = 74 H(D(E)) det VD(E) de.

The following is the core result leading to Proposition 1.6 where ¢;; stands for the usual Kronecker
symbols 4.

Lemma 12.3. Given 1 <1,57 <n andp # 0,
(72) [ b0,y du = (o p)V ()5,
Sn—l

where f, = h'"Pf.

Proof. By (70) and Lemma 12.1,

/Sn—l uiajﬁ(u)(ﬁ(u))_n_l du = %l’iajﬁ(l’)(ﬁ(m))—n—l da

:_lf%@@u»%w

n

(73) = = 0y b)) d

n

:l%%@@YWx

n

= V(K)d;.
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On the other hand, using the change of variable z = VH(§), it follows by Lemma 12.2, (67), (68),
(69), Lemma 12.1, and (71) that

%xiajh(q;)(ﬁ(;p))_n_l dv = j{(h(f)aih(ﬁ))fjh_"_2(§) det V2H (€) d¢

:ifamagﬂﬂdf

= ferramenrf i
fa )& (W7 f) de

(74)
:——f“<® (& 117 F) de
:__f%h &)+ &hP(€)0:f, (&) de
= -tV f@ €)1, (€) de
n
_ _Evm(sﬁ = / ()i, () du
The lemma now follows by (73) and (74). -

Setting p = —n in Lemma 12.3, we get Proposition 1.6.
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