
CONE-VOLUME MEASURE AND STABILITY

KÁROLY J. BÖRÖCZKY AND MARTIN HENK

Abstract. We prove stability results for two central inequalities involv-
ing the cone-volume measure of a centered convex body: the subspace
concentration conditions and the U-functional/volume inequality.

1. Introduction

Let Kn be the set of all convex bodies in Rn having non-empty interiors,
i.e., K ∈ Kn is a convex compact subset of the n-dimensional Euclidean
space Rn with int (K) 6= ∅. As usual, we denote by 〈·, ·〉 the inner product
on Rn × Rn with associated Euclidean norm ‖ · ‖, and Sn−1 ⊂ Rn denotes
the (n− 1)-dimensional unit sphere, i.e., Sn−1 = {x ∈ Rn : ‖x‖ = 1}.

For K ∈ Kn we write SK(·) and hK(·) to denote its surface area measure
and support function, respectively, and νK to denote the Gauß map assigning
the outer unit normal νK(x) to an x ∈ ∂∗K, where ∂∗K consists of all points
in the boundary ∂K of K having a unique outer normal vector. If the origin
o lies in K ∈ Kn, the cone-volume measure of K on Sn−1 is given by

(1.1) VK(ω) =

∫
ω

hK(u)

n
dSK(u) =

∫
ν−1
K (ω)

〈x, νK(x)〉
n

dHn−1(x),

where ω ⊆ Sn−1 is a Borel set and, in general, Hk(x) denotes the k-
dimensional Hausdorff measure. Instead of Hn(·), we also write V(·) for
the n-dimensional volume.

The name cone-volume measure stems from the fact that ifK is a polytope
with facets F1, . . . , Fm and corresponding outer unit normals u1, . . . , um,
then

(1.2) VK(ω) =

m∑
i=1

V([o, Fi])δui(ω).

Here δui is the Dirac delta measure on Sn−1 concentrated at ui, and for
x1, . . . , xm ∈ Rn and subsets S1, . . . , Sl ⊆ Rn we denote the convex hull of
the set {x1, . . . , xm, S1, . . . , Sl} by [x1, . . . , xm, S1, . . . , Sl]. With this nota-
tion [o, Fi] is the cone with apex o and basis Fi.
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In recent years, cone-volume measures have appeared and were studied in
various contexts, see, e.g., F. Barthe, O. Guedon, S. Mendelson and A. Naor
[3], K.J. Böröczky, E. Lutwak, D. Yang and G. Zhang [8, 9], R. Gardner, D.
Hug and W. Weil [20], M. Gromov and V.D. Milman [22], M. Ludwig [35],
M. Ludwig and M. Reitzner [36], E. Lutwak, D. Yang and G. Zhang [41], A.
Naor [44], A. Naor and D. Romik [45], G. Paouris and E. Werner [46], A.
Stancu [51], G. Zhu [54, 55], K.J. Böröczky and P. Hegedűs [5], L. Ma [43],
Y. Huang, E. Lutwak, D. Yang and G. Zhang [32].

In particular, cone-volume measures are the subject of the logarithmic
Minkowski problem. This is the particular interesting case p = 0 of the gen-
eral Lp-Minkowski problem which is at the core of the Lp-Brunn-Minkowski
theory, one of the cornerstones of modern convex geometry. The Lp-Min-
kowski problem asks for a characterization of the Lp surface area measure

S
(p)
K (ω) =

∫
ω
hK(u)1−pdSK(u),

of a convex body K containing o in its interior among the finite Borel mea-
sures on the sphere. Here ω ⊆ Sn−1 is a Borel set and p ≥ 0. We refer to
[31, 33, 37, 38, 40, 42, 48, 56] and the reference within for detailed infor-
mation about the problem. Here we just mention that for p = 1, the L1-
Minkowski problem is the classical Minkowski problem, which was solved for
polytopes and particular convex bodies by Minkowski, and in full generality
by Aleksandrov, and Fenchel and Jessen: µ is the surface area measure of a
convex body if and only if µ is positive on each open hemisphere and∫

Sn−1

udµ(u) = o.

Moreover, such a convex body is unique up to translations.
Roughly speaking, for p > 1 and p 6= n or p > 0 and even measures,

the only restriction on a measure being the Lp surface area measure of a
convex body is that it has to be positive on each open hemisphere. The
case p = 0, corresponding to the SL(n) invariant cone-volume measure

VK(ω) = (1/n)S
(0)
K (ω), is different. Here one needs, as in the classical case

p = 1, additional restrictions on the measure. Of particular and central im-
portance is here the subspace concentration condition which was introduced
K.J. Böröczky, E. Lutwak, D. Yang and G. Zhang and by which they gave a
complete solution of the logarithmic Minkowski problem for even measures
[9].

We say that a finite Borel measure µ on Sn−1 satisfies the subspace con-
centration condition if for any linear subspace L ⊆ Rn

(1.3) µ(L ∩ Sn−1) ≤ dimL

n
µ(Sn−1),
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and equality in (1.3) for some L implies the existence of a complementary

linear subspace L̃ such that

(1.4) µ(L̃ ∩ Sn−1) =
dim L̃

n
µ(Sn−1),

and hence suppµ ⊆ L∪ L̃, i.e., the support of the measure “lives” in L∪ L̃.
Via this condition, cone-volume measures of origin-symmetric convex bod-

ies have been completely characterized by K.J. Böröczky, E. Lutwak, D.
Yang and G. Zhang.

Theorem I ([9, Theorem 1.1]). A non-zero finite even Borel measure on
Sn−1 is the cone-volume measure of an origin-symmetric convex body if and
only if it satisfies the subspace concentration condition.

In the planar case, this result was proved earlier for discrete measures,
i.e., for polygons, by A. Stancu [49, 50]. For cone-volume measures of origin-
symmetric polytopes, the necessity of (1.3) was independently shown by M.
Henk, A. Schürmann and J.M.Wills [29] and B. He, G. Leng and K. Li [28].

We recall that the centroid of a k-dimensional convex compact setM ⊂ Rn
is defined as

cen(M) = Hk(M)−1

∫
M
x dHk(x),

and a convex body will be called centered if cen(K) = o.
Centered bodies seem to be the right and natural class of convex bodies in

order to extend Theorem I to general convex bodies, and in a recent paper
the authors proved the necessity of the subsapce concentration condition for
this class.

Theorem II ([7, Theorem 1.1]). Let K ∈ Kn be centered. Then its cone-
volume measure VK satisfies the subspace concentration condition.

For polytopes this result was proved by M. Henk and E. Linke [30].
If K is not centered, then the subspace concentration condition may not
hold any more. In fact, it was recently shown by G. Zhu [54] that for
u1, . . . , um ∈ Sn−1 in general position, m ≥ n + 1, and arbitrary positive
numbers γ1, . . . , γm there always exists a (not necessarily centered) polytope
P ∈ Kn with outer unit normals ui and VP ({ui}) = γi, 1 ≤ i ≤ m. In other
words, Zhu settled the logarithmic Minkowski problem for discrete measures
whose support is in general position. In [6] this result was unified with the
sufficiency part of the subspace concentration condition in the even discrete
case by introducing the notation of essential subspaces. For a given finite
Borel measure µ on Sn−1 a subspace L, 1 ≤ dimL ≤ n− 1, is called essen-
tial if L∩ suppµ is not concentrated on any closed hemisphere of L∩ suppµ.
K.J. Böröczky, P. Hegedűs and G. Zhu [6] proved that every finite discrete
measure on Sn−1 which satisfies the subspace concentration condition with
respect to essential subspaces is the cone-volume measure of a polytope. In
the case n = 2, this result was obtained before by A. Stancu [50]. In general,
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however, the centroid of such a polytope P is not the origin, and the char-
acterization of cone-volume measures of general polytopes or convex bodies
is still a challenging and important problem.

For a convex body K containing the origin in its interior, E. Lutwak, D.
Yang and G. Zhang [39] defined the SL(n) invariant quantity U(K) as an
integral over subsets (u1, . . . , un) ∈ Sn−1 × · · · × Sn−1, by

U(K) =

(∫
u1∧...∧un 6=0

dVK(u1) · · · dVK(un)

) 1
n

,

where u1 ∧ . . . ∧ un 6= 0 means that the vectors u1, . . . , un are linearly in-
dependent. The U -functional has been proved useful in obtaining strong
inequalities for the volume of projection bodies [39]. For information on
projection bodies we refer to [18, 27, 48], and for more information on the
importance of centro-affine functionals we refer to [25, 26, 34, 36] and the
references within.

We readily have U(K) ≤ V (K), and equality holds if and only if VK(L ∩
Sn−1) = 0 for any non-trivial subspace of Rn according to K.J. Böröczky,
E. Lutwak, D. Yang and G. Zhang [10]. As a consequence of Theorem II it
was shown in [7] that

Theorem III ([7, Corollary 1.3]). Let K ∈ Kn be centered. Then

U(K) ≥ (n!)1/n

n
V (K),

with equality if and only if K is a parallepiped.

The statement was conjectured in [10]. It was proved for polytopes in
[30], where the special cases if K is an origin-symmetric polytope, or if
n = 2, 3 were verified by B. He, G. Leng and K. Li [28], and G. Xiong [53],
respectively.

Here we present stronger stability versions of Theorem II and Theorem
III. Stability results are an important issue in many areas of mathemat-
ics since they provide a quantitative characterization of the extremal solu-
tion of inequalities. Prominent examples are, e.g., isoperimetric inequalities
([14, 16]), the Brunn-Minkowski inequality ( [15, 21]), the Orlicz-Petty pro-
jection inequality ([4]), Sobolev ([12, 17]) and Gagliardo-Nirenberg ([11])
inequalities.

In order to present our stability results we need two notions of distance
between the “shapes” of two convex bodies. Let K,M ∈ Kn, and let K ′ =
K−c(K), M ′ = M−c(M) be their translates whose centroids are the origin.
Then we define

δhom(K,M) = min{λ ≥ 0 : ∃t > 0, M ′ ⊂ tK ′ ⊂ eλM ′},(1.5)

δvol(K,M) = V
([

V(M)−1/nM ′
]

∆
[
V(K)−1/nK ′

])
,(1.6)

where A∆B denotes the symmetric difference of two sets, i.e., A∆B =
A \B ∪ B \A. Then both distances δhom and δvol are metrics on the space
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of centered convex bodies in Rn whose volumes are 1. We remark that the
equality case in the subspace concentration condition for the cone-volume
measure VK of a convex body K, i.e.,

VK(L ∩ Sn−1) =
dimL

n
V(K) and VK(L̃ ∩ Sn−1) =

dim L̃

n
V(K)

for complentary proper subspaces L, L̃ is equivalent to a representation of

K as K = M1 +M2 where M1 ⊂ L⊥, M2 ⊂ L̃⊥ are complementary convex
bodies, i.e., they are contained in complementary linear spaces. Here, as
usual, L⊥ denotes the orthogonal complement a linear subspace.

Theorem 1.1. There exist constants ε0, γh, γv > 0 depending only on the
dimension n, such that, if K ∈ Kn is centered and

VK(L ∩ Sn−1) >
d− ε
n

V(K)

for a proper linear subspace L with dimL = d and ε ∈ (0, ε0), then there
exist (n − d)-dimensional compact convex set C ⊂ L⊥, and complementary
d-dimensional compact convex set M such that

δhom(K,C +M) ≤ γhε1/(5n) and δvol(K,C +M) ≤ γvε1/5.

Observe that the range of ε, i.e., ε0, in Theorem 1.1 has to depend on
the dimension. For if, let K ∈ Kn be a centered simplex and let L be
generated by d outer normals of the simplex, d ∈ {1, . . . , n − 1}. Then we
have VK(L ∩ Sn−1) = d

n+1 V(K).
Actually, if L is 1-dimensional, then a more precise version of Theorem 1.1

holds.

Theorem 1.2. There exist constants ε̃0, γ̃h, γ̃v > 0 depending only on the
dimension n, such that, if K ∈ Kn is centered and

VK(L ∩ Sn−1) >
1− ε
n

V(K)

for a linear subspace L with dimL = 1 and ε ∈ (0, ε̃0), then there exist
an (n − 1)-dimensional compact convex set C ⊂ L⊥ with c(C) = o, and

x, y ∈ ∂K such that y = −esx where |s| < γ̃vε
1
6 , [x, y] + C ⊂ K, and

K ⊂ [x, y] + (1 + γ̃hε
1
6n )C and V(K) ≤ (1 + γ̃vε

1
6 )V([x, y] + C).

We use this theorem in order to deduce the following stability version of
Theorem III.

Theorem 1.3. There exist constants ε∗, γ∗, γ, γ̃ > 0 depending only on n
with the following property: for each ε ∈ (0, ε∗) and centered K ∈ Kn with

U(K) ≤ (1 + ε)
(n!)1/n

n
V(K)

there exists a parallepiped P such that

(1) (1− γε
1
6n )P ⊂ K ⊂ P ;
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(2) V(P\K) ≤ γ̃ε
1
6 V(K);

(3) If F is a facet of P then Hn−1(F ∩K) ≥ (1− γ∗ε
1
6 )Hn−1(F ).

The paper is organized as follows. In the next section we collect some
basic facts and notations from convexity and we also state some of the
main lemmas of the proof of Theorem II which we need for the proof of
the stability version. The proofs of Theorem 1.1, 1.2 are given in Section
6 and are prepared in sections 3-5. In Section 3 we state properties of the
symmetric volume difference, in Section 4 we study consequences of the
stability of the Brunn-Minkowski inequality and in Section 5 some more
properties of a certain log-concave functional which is of central interest in
our investigations are presented. Finally, in Section 7 we prove Theorem
1.3.

Acknowledgements. We are grateful to Rolf Schneider for various ideas
shaping this paper. We also acknowledge fruitful discussions with Daniel
Hug and David Preiss about the Gauß-Green theorem.

2. Preliminaries

Good general references for the theory of convex bodies are provided by
the books of Gardner[18], Gruber[23], Schneider[48] and Thompson[52].

The support function hK : Rn → R of convex body K ∈ Kn is defined,
for x ∈ Rn, by

hK(x) = max{〈x, y〉 : y ∈ K}.
A boundary point x ∈ ∂K is said to have a unit outer normal (vector)

u ∈ Sn−1 provided 〈x, u〉 = hK(u). A point x ∈ ∂K is called singular if it
has more than one unit outer normal, and ∂∗K is the set of all non-singular
boundary points. It is well known that the set of singular boundary points
of a convex body has 0 Hn−1 measure. For each Borel set ω ⊂ Sn−1, the
inverse spherical image of ω is the set of all points of ∂K which have an
outer unit normal belonging to ω. Since the inverse spherical image of ω
differs from ν−1

K (ω) ⊆ ∂∗K by a 0 Hn−1 measure set, we will often make no
distinction between the two sets.

For K ∈ Kn the Borel measure SK on Sn−1 given by

SK(ω) = Hn−1(ν−1
K (ω))

is called the (Aleksandrov-Fenchel-Jessen) surface area measure. Observe
that

V(K) = VK(Sn−1) =

∫
Sn−1

hK(u)

n
dSK(u).

As usual, for two subsets C,D ⊆ Rn and reals ν, µ ≥ 0 the Minkowski
combination is defined by

ν C + µD = {ν c+ µd : c ∈ C, d ∈ D}.
By the celebrated Brunn-Minkowski inequality we know that the n-th root
of the volume of the Minkowski combination is a concave function. More
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precisely, for two convex compact sets K0,K1 ⊂ Rn and for λ ∈ [0, 1] we
have

(2.1) V((1− λ)K0 + λK1)1/n ≥ (1− λ) V(K0)1/n + λV(K1)1/n

with equality for some 0 < λ < 1 if and only if K0 and K1 lie in parallel
hyperplanes or are homothetic, i.e., there exist t ∈ Rn and µ ≥ 0 such that
K1 = t+ µK0 (see also [19]).

Let f : C → R>0 be a positive function on an open convex subset C ⊂ Rn
with the property that there exists a k ∈ N such that f1/k is concave. Then
by the (weighted) arithmetic-geometric mean inequality

f((1− λ)x+ λ y) =
(
f1/k((1− λ)x+ λ y)

)k
≥
(

(1− λ)f1/k(x) + λf1/k(y)
)k

≥ f1−λ(x) · fλ(y).

This means that f belongs to the class of log-concave functions which by
the positivity of f is equivalent to

ln f((1− λ)x+ λ y) ≥ (1− λ) ln f(x) + λ ln f(y)

for λ ∈ [0, 1]. Hence, for all x, y ∈ C there exists a subgradient g(y) ∈ Rn
such that (cf., e.g., [47, Sect. 23])

(2.2) ln f(x)− ln f(y) ≤ 〈g(y), x− y〉.
If f is differentiable at y, the subgradient is the gradient of ln f at y, i.e.,
g(y) = ∇ ln f = 1

f(y)∇f(y).

For a subspace L ⊆ Rn, let L⊥ be its orthogonal complement subspace,
and for X ⊆ Rn we denote by X|L its orthogonal projection onto L, i.e.,
the image of X under the linear map forgetting the part of X belonging to
L⊥.

Here, for a convex body K ∈ Kn and a d-dimensional subspace L, 1 ≤
d ≤ n − 1, we are interested in the function measuring the volume of K
intersected with planes parallel to L⊥, i.e., in the function

(2.3) fK,L : L→ R≥0 with x 7→ Hk(K ∩ (x+ L⊥)),

where k = n−d is the dimension of L⊥. By the Brunn-Minkowski inequality
and the remark above, fK,L is a log-concave on function on K|L which is
positive at least in the relative interior of K|L (cf. [1]). fK,L is also called the

k-dimensional X-ray of K parallel to L⊥ (cf. [18]). By well-known properties
of (log-)concave functions we have (see, e.g., [47, 48])

Proposition 2.1.

i) fK,L is continuous on int (K)|L. Moreover, fK,L is Lipschitzian on
any compact subset of (intK)|L.

ii) fK,L is on int (K)|L almost everywhere differentiable, i.e., there ex-
ists a dense subset D ⊆ int (K)|L, where ∇fK,L exists.
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Now let K ∈ Kn be centered and L be a d-dimensional linear subspace.
In view of Fubini’s theorem we have

(2.4) o = o|L =

∫
K

(x|L) dHn(x) =

∫
K|L

fK,L(x̂) x̂ dHd(x̂),

which means that fK,L is a centered function. The core ingredients for the
proof of Theorem II are the next two lemmas.

Lemma 2.2 ([7, Lemma 3.3]). Let K ∈ Kn with o ∈ intK and let L be a
d-dimensional linear subspace, then

nVK(L ∩ Sn−1) = dV(K) +

∫
K|L
〈∇fK,L(x), x〉 dHd(x).

Lemma 2.3 ([7, Lemma 3.4]). Let K ∈ Kn be centered and let L be a
d-dimensional linear subspace, then∫

K|L
〈∇fK,L(x), x〉 dHd(x) ≤ 0,

with equality if and only if fK,L is constant on K|L.

3. Some properties of the symmetric volume distance

First we show that the distance δhom can be estimated in terms of δvol.
These types of estimates have been around, only we were not able to locate
them in the form we need.

Lemma 3.1. Let K ∈ Kn with c(K) = o.

(i) If Q ⊂ K is a convex body with V(K\Q) ≤ tV(K) for t ∈ (0, 1
e ),

then (1− (et)1/n)K ⊂ Q.
(ii) If Q is a convex body with V(K∆Q) ≤ tV(K) for t ∈ (0, 1

4ne), then

(1− (et)1/n)K ⊂ Q ⊂ (1 + 4(et)1/n)K.

Proof. The main tool is the following result due to B. Grünbaum [24]. If
M ∈ Kn, and H+ is a half space containing c(M), then

(3.1) V(M ∩H+) ≥ V(M)/e.

To prove (i), let λ = 0 if o 6∈ intQ, and let λ > 0 be maximal with the
property that λK ⊂ Q otherwise. In addition, let x = o if o 6∈ intQ, and let
x be a common boundary point of Q and λK otherwise. Therefore, there
exists a half space H+

1 such that x lies on its boundary, and H+
1 ∩ intQ = ∅.

Now there exists a y ∈ K such that x = λy, and hence x is the centroid of
x+ (1− λ)K = λy + (1− λ)K ⊂ K. It follows from (3.1) that

tV(K) ≥ V(H+
1 ∩K) ≥ V(H+

1 ∩ (x+ (1− λ)K)) ≥ V((1− λ)K)/e,

and thus t ≥ (1−λ)n

e .

To prove (ii), we observe that λK ⊂ Q for λ = 1− (et)1/n by (i). We may
assume that Q\K 6= ∅, and let µ > 1 be minimal with the property that
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Q ⊂ µK. For a common boundary point z of Q and µK, let w ∈ K such
that z = µw. In particular, w is the centroid of

w +
λ(µ− 1)

µ
K ⊂ 1

µ
z +

µ− 1

µ
Q ⊂ Q.

In addition there exists a half space H+
2 such that w lies on its boundary,

and H+
2 ∩ intK = ∅. We deduce again from (3.1) that

tV(K) ≥ V(H+
2 ∩Q) ≥ V

(
H+

2 ∩
(
w +

λ(µ− 1)

µ
K

))
≥ λn(µ− 1)n

µne
V(K).

Now t < 1
4ne yields that λ > 1

2 and 2(e t)1/n < 1
2 , which in turn implies that

µ ≤ (1− 2(et)1/n)−1 < 1 + 4(et)1/n. �

Corollary 3.2. Let K,Q ∈ Kn. Then

δhom(K,Q) ≤ 12 δvol(K,Q)1/n if δvol(K,Q) < 1
4ne ;

δvol(K,Q) ≤ 3n δhom(K,Q) if δhom(K,Q) < 1
2n .

Proof. We will use the fact that 1 + s < es < 1 + 2s and 1− s < e−s < 1− s
2

for s ∈ (0, 1).
Due to the translation and scaling invariance of the distances δvol(·, ·), δhom(·, ·)

we may assume that c(K) = c(Q) = o, and V(K) = V(Q) = 1. In partic-
ular, V(K∆Q) = δvol(K,Q), and hence the estimates for the exponential
function and Lemma 3.1 yield with s = δvol(K,Q) that

e−2e1/ns1/nK ⊂ (1− (se)
1
n )K ⊂ Q ∩K ⊂ Q.

Using the analogous formula e−2e1/ns1/nQ ⊂ K, we conclude the first esti-
mate.

For the second estimate, let t = δhom(K,Q). It follows that e−tK ⊂ Q ⊂
etK, thus V(K∆Q) ≤ ent − e−nt < 3nt. �

Our next goal is Lemma 3.4 stating that one does not need to insist on
the common centroid in the definition of δvol. We prepare the argument by
the following observation for which we denote by ‖x‖K−K = min{ρ ≥ 0 :
x ∈ ρ(K −K)} the norm induced by the difference body K −K.

Lemma 3.3. Let K ∈ Kn and x ∈ Rn. Then

V(K∆(x+K)) ≤ 2n‖x‖K−KV(K).

Proof. We may assume that x 6= o. Let y, z ∈ K such that x = ‖x‖K−K(y−
z), and hence

‖x‖K−K = ‖x‖/‖y − z‖.
Applying Steiner symmetrization with respect to the hyperplane x⊥ shows
that

V(K) ≥ ‖y − z‖
n

Hn−1(K|x⊥).
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We deduce by Fubini’s theorem that

V(K∆(x+K)) ≤ 2‖x‖Hn−1(K|x⊥) ≤ 2n‖x‖K−KV(K).

�

Lemma 3.4. Let K,Q ∈ Kn with V(K∆Q) ≤ tV(K) for t ∈ (0, 1
4ne). Then

‖c(Q)− c(K)‖K−K ≤ 4nt and δvol(K,Q) ≤ 9n2t.

Proof. We may assume that V(K) = 1, c(K) = o and that the Löwner
ellipsoid E, i.e., the minimal volume ellipsoid containing K−K, is a ball (see,

e.g., [23]). In particular, n−1/2E ⊂ K −K ⊂ E, and the Brunn-Minkowski

and Rogers-Shephard theorems yield that 2n ≤ V(K −K) ≤
(

2n
n

)
(cf. [48,

Theorem 10.4]). Since the volume of a centrally symmetric convex body
over the volume of its Löwner ellipsoid is at least 2n/(n!V(Bn)) according
to K. Ball [2], we have

2n ≤ V(E) ≤
(

2n

n

)
n!

2n
V(Bn) <

√
3 · 2nnn

en
V(Bn).

It follows that

(3.2) 2√
eπ
Bn ⊂ K −K ⊂ nBn and thus 1

n ‖x‖ ≤ ‖x‖K−K ≤ 2‖x‖.

Therefore, to prove Lemma 3.4, it is sufficient to verify the corresponding
estimate for ‖c(Q)‖.

If c(Q) = o, then we are done, otherwise let u = c(Q)/‖c(Q)‖. We have
Q ⊂ 2K ⊂ 2nBn by Lemma 3.1 and (3.2), and V(Q) ≥ 1 − t implies
V(Q)−1 < 2. By (3.2) we also have

‖c(Q)‖K−K ≤ 2‖c(Q)‖ = 2V(Q)−1〈u, c(Q)〉 = 2V(Q)−1

∥∥∥∥∫
Q
〈u, x〉 dx

∥∥∥∥ ,
and since c(K) = o we get

‖c(Q)‖K−K ≤ 2V(Q)−1

∥∥∥∥∫
Q
〈u, x〉 dx

∥∥∥∥
= 2V(Q)−1

∥∥∥∥∥
∫
Q\K
〈u, x〉 dx−

∫
K\Q
〈u, x〉 dx

∥∥∥∥∥
= 4

∫
K∆Q

|〈u, x〉| dx ≤ 4nt.

(3.3)

Let K ′ = K + c(Q), thus Lemma 3.3 and (3.3) imply that V(K∆K ′) ≤
8n2t. We observe that Q′ = c(Q) + V(Q)−1/n(Q − c(Q)) satisfies c(Q′) =
c(Q), V(Q′) = 1, and V(Q′∆Q) ≤ t by 1 − t ≤ V(Q) ≤ 1 + t (cf. Lemma
3.1). Therefore

δvol(K,Q) = V(K ′∆Q′) ≤ V(K ′∆K) + V(K∆Q) + V(Q∆Q′) < 9n2t.

�
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4. Some consequences of the stability of the Brunn-Minkowski
inequality

Concerning the Brunn-Minkowski theory, including the properties of mixed
volumes, the main reference is R. Schneider [48]. We use the Brunn-Minkowski
theory in L⊥ in the terminology of Theorem 1.1, whose dimension is k =
n− d. For k,m ≥ 1, let

Ikm = {(i1, . . . , im) : ij ∈ N, j = 1, . . . ,m and i1 + . . .+ im = k}.

For compact convex sets C1, . . . , Cm in Rk and (i1, . . . , im) ∈ Ikm, the non-
negative mixed volumes V(C1, i1; . . . ;Cm, im) were defined by H. Minkowski
in a way such that if α1, . . . , αm ≥ 0, then

Hk

 m∑
j=1

αjCj

 =
∑

(i1,...,im)∈Ikm

k!

i1, . . . , ik
(4.1)

V(C1, i1; . . . ;Cm, im)αi11 · . . . · α
im
m .

The mixed volume V(C1, i1; . . . ;Cm, im) actually depends only on the Cj
with ij > 0, does not depend on the order how the pairs Cj , ij are indexed,
and we frequently ignore the pairs Cj , ij with ij = 0. We have V(C1, k) =
Hk(C1), and V(C1, i1; . . . ;Cm, im) > 0 if each Cj is k-dimensional. It follows
by the Alexandrov-Fenchel inequality that

(4.2) V(C1, i1; . . . ;Cm, im)k ≥
m∏
j=1

Hk(Cj)ij .

An important special case of (4.2) is the classical Minkowski inequality,
which says

(4.3) V(C1, 1;C2, k − 1)k ≥ Hk(C1)Hk(C2)k−1.

Equality holds for k-dimensional C1 and C2 in the Minkowski inequality
(4.3) if and only if C1 and C2 are homothetic. We remark that the equality
conditions in the Alexandrov-Fenchel inequality (4.2) are not yet clarified in
general.

Now the Alexandrov-Fenchel inequality (4.2), and actually already the
Minkowski inequality (4.3) yields the classsical (general) Brunn-Minkowski
theorem stating that if C1, . . . , Cm are compact convex sets in Rk, and
α1, . . . , αm ≥ 0, then (cf. (2.1))

(4.4) Hk

 m∑
j=1

αjCj

1/k

≥
m∑
j=1

αiHk(Ci)1/k.

Equality holds for k-dimensional C1, . . . , Cm and positive α1, . . . , αm in the
Brunn-Minkowski inequality (4.4) if and only if C1 and Cj are homothetic
for j = 2, . . . ,m.
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We need the following stability version of the Minkowski inequality (4.3)
due to A. Figalli, F. Maggi and A. Pratelli [16]. If C1, C2 are k-dimensional
compact convex sets in Rk, and

(4.5) V(C1, 1;C2, k − 1)k ≤ (1 + ε)Hk(C1)Hk(C2)k−1

for small ε ≥ 0, then [16] proves that

(4.6) δvol(C1, C2) ≤ γ̃vε1/2

where the explicit γ̃v > 0 depends only on the dimension k.
We remark that here we only work out the estimate with respect to the

symmetric volume distance δvol, and then just use Corollary 3.2 for δhom.
Actually, V.I. Diskant [13] proved that (4.5) implies

(4.7) δhom(C1, C2) ≤ γ̃hε1/k

for an unknown γ̃h > 0 depending only on k. We note that (4.6) and
Corollary 3.2 readily yields a version of (4.7) with exponent 1

2k instead of 1
k .

Combining the stability versions (4.6) and (4.7) with Lemma 3.3 and
Lemma 3.4 leads to the following stability version of the Brunn-Minkowski
inequality.

Lemma 4.1. For any k ≥ 1, m ≥ 2 and ω ∈ (0, 1], there exist positive
ε0(k,m, ω) and γ(k,m, ω) depending only on k, m and ω such that if k-
dimensional compact convex sets C0, C1, . . . , Cm in Rk, and α1, . . . , αm > 0
satisfy that αi/αj ≥ ω and Hk(Ci) = V for i, j = 1, . . . ,m, and

α1C1 + . . .+ αmCm ⊂ C0 and Hk(C0) ≤ eε(α1 + . . .+ αm)kV

for some ε ∈ (0, ε0(k,m, ω)), then for i = 1, . . . ,m, we have

δvol(Ci, C0) ≤ γ(k,m, ω)ε1/2,∥∥∥∥∥c(C0)−
m∑
i=1

αic(Ci)

∥∥∥∥∥
C0−C0

≤ (α1 + . . .+ αm)γ(k,m, ω)ε1/2.

Proof. First we assume that C0 = α1C1+. . .+αmCm. For 1 ≤ i < j ≤ m, we
apply the Alexandrov-Fenchel inequality (4.2) to each term in (4.1) except

for kαiα
k−1
j V(Ci, 1;Cj , k − 1) and deduce that

eε(α1 + . . .+ αm)kV ≥ kαiα
k−1
j V(Ci, 1;Cj , k − 1) +[

(α1 + . . .+ αm)k − kαiαk−1
j

]
V.

In other words,

kαiα
k−1
j V(Ci, 1;Cj , k − 1) ≤ kαiαk−1

j V + (eε − 1)(α1 + . . .+ αm)kV.

Here (α1 + . . .+ αm)k ≤ (mω )kαiα
k−1
j , and hence

V(Ci, 1;Cj , k − 1) ≤
(

1 +
2

k

(m
ω

)k
ε

)
V.
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Thus (4.6) yield

(4.8) δvol(Ci, Cj) ≤ γ̄(k,m, ω)ε1/2

for γ̄(k,m, ω) depending only on k, m and ω. To compare to C0, we may
assume that V = 1, α1 + . . . + αm = 1 and c(Ci) = o for i = 1, . . . ,m. Let
M = C1 ∩ . . . ∩ Cm.

It follows from (4.8) that

Hk(Ci\M) ≤ m · γ̄(k,m, ω)ε1/2, i = 1, . . . ,m,

and hence Hk(M) ≥ 1 −m · γ̄(k,m, ω)ε1/2. Since M ⊂ Ci for i = 1, . . . ,m
yields M ⊂ C0 =

∑m
i=1 αiCi, and Hk(C0) ≤ eε, we deduce

Hk(C0∆Ci) ≤ 2γ̄(k,m, ω)ε1/2, i = 1, . . . ,m.

Therefore Lemma 3.3 and Lemma 3.4 imply the required estimates for
δvol(Ci, C0) and c(C0) in the case C0 = α1C1 + . . .+ αmCm.

Finally, in the general case, let C ′0 = α1C1 + . . . + αmCm, and hence
C ′0 ⊂ C0. We may assume again that V = 1, α1 + . . . + αm = 1 and
c(Ci) = o for i = 1, . . . ,m. The argument above and C ′0 ⊂ C0 yield that

δvol(Ci, C
′
0) ≤ γ∗(k,m, ω)ε1/2,∥∥c(C ′0)

∥∥
C0−C0

≤
∥∥c(C ′0)

∥∥
C′0−C′0

≤ γ∗(k,m, ω)ε1/2

for γ∗(k,m, ω) > 0 depending on k,m, ω. It follows from the Brunn-
Minkowski inequality that 1 ≤ Hk(C ′0) ≤ Hk(C0) ≤ eε. Since C ′0 ⊂ C0,
we conclude Lemma 4.1 by Lemma 3.4. �

To prove the next Proposition 4.3, we need the following observation.

Lemma 4.2. If M is a convex body in Rd such that −M ⊂ ηM for some
η ≥ 1, then there exists an d-simplex T ⊂ M whose centroid is the origin
such that M ⊂ ηd3/2T .

Proof. We may assume that the John ellipsoid E of maximal volume con-
tained in M ∩(−M) is Euclidean ball, and let T ⊂ E be an inscribed regular

simplex. Then η−1M ⊂M ∩ (−M) ⊂
√
dE ⊂ d3/2T . �

For Proposition 4.3 we use the notation of the previous sections, i.e.,
K ∈ Kn is a centered convex body, d, k ∈ {1, . . . , n− 1} with d+k = n, and
L is a d-dimensional linear subspace. For x ∈ K|L, we set

f(x) = fK,L(x) = Hk(K ∩ (x+ L⊥)).

Proposition 4.3. There exist t0, γ > 0 depending on n with the following
properties. Let t ∈ (0, t0), let M∗ ⊂ K|L be a d-dimensional convex compact
set, and let K∗ = K ∩ (M∗ + L⊥). If e−t ≤ f(x)/f(o) ≤ et holds for any
x ∈ M∗, then there exist a k-dimensional compact convex set C ⊂ L⊥, and
a complementary d-dimensional compact convex set M such that

δvol(K,C +M) ≤ γmax

{
V(K\K∗)

V(K)
, t1/2

}
.
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Proof. Since c(K) = o we have −K ⊂ nK (cf. [48, p. 155]). Hence −K|L ⊂
nK|L and we may choose, according to Lemma 4.2, v0, . . . , vd ∈ e−sK|L,
for some s > 0, such that v0 + . . .+ vd = o, and

(4.9) e−sK|L ⊂ n5/2[v0, . . . , vd].

For x ∈ e−sK|L, let K(x) = K ∩ (x+ L⊥), and let

(4.10) K̃(x) =
f(o)1/k

f(x)1/k
K(x), and hence Hk(K̃(x)) = f(o).

We define

A = aff{c(K(v0)), . . . , c(K(vd))},
M = {y ∈ A : (y + L⊥) ∩ e−sK 6= ∅},
C = K(o)− c(K(o)).

We compare K∗ with M + C. To this end we consider the affine bijection
ϕ : L→ A defined by the correspondance {ϕ(x)} = A∩ (x+L⊥) for x ∈ L.
In particular,

(4.11) ϕ(vi) = c(K(vi)), i = 0, . . . , d and ϕ(o) =
1

d+ 1

d∑
i=0

c(K(vi)).

Let x ∈ e−sK|L. We have −1
2n5/2x ∈ 1

2 [v0, . . . , vd] according to (4.9), thus

−1

2n5/2
x =

d∑
i=0

αivi where

d∑
i=0

αi = 1 and αi ≥
1

2(d+ 1)
, i = 0, . . . , d.

We define

β̃ =
βf(x)1/k

f(o)1/k
where β =

1

1 + 2n5/2
;

β̃i =
βif(vi)

1/k

f(o)1/k
where βi =

αi2n
5/2

1 + 2n5/2
, i = 0, . . . , d,

and hence β +
∑d

i=0 βi = 1 and βx +
∑d

i=0 βivi = o. The condition on the
function f yields that

e−t/k ≤ β̃ + β̃0 + . . .+ β̃d ≤ et/k,

and the ratio of any two of β̃, β̃0, . . . , β̃d is at least 1/(4n5/2). In particular,

et(β̃ + β̃0 + . . .+ β̃d)
kf(o) ≥ Hk(K(o)),

and the convexity of K implies (cf. (4.10))

β̃K̃(x) +

d∑
i=0

β̃iK̃(vi) = βK(x) +

d∑
i=0

βiK(vi) ⊂ K(o).
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We deduce from Lemma 4.1, the stability version of the Brunn-Minkowski
inequality, that there exists γ∗ > 0 depending on n such that for i = 0, . . . , d,
we have

δvol(K(vi),K(o)), δvol(K(x),K(o)) ≤ γ∗t1/2,(4.12) ∥∥∥∥∥c(K(o))− βc(K(x))−
d∑
i=1

βic(K(vi))

∥∥∥∥∥
K(o)−K(o)

≤ γ∗t1/2.(4.13)

First we asssume that x = o. In this case, (4.11) and (4.13) yield

(4.14) ‖c(K(o))− ϕ(o)‖K(o)−K(o) ≤ γ
∗t1/2.

Next let x ∈ e−sK|L be arbitrary. We have βϕ(x) +
∑d

i=0 βiϕ(vi) = ϕ(o)
because ϕ is affine. We recall that C = K(o)− c(K(o)). Let

w = c(K(o))− βc(K(x))−
d∑
i=1

βic(K(vi)).

Since βϕ(x) = ϕ(o)−
∑d

i=0 βiϕ(vi), we have∥∥c(K(x))− ϕ(x)
∥∥
C−C =

‖βc(K(x))− βϕ(x))‖C−C
β

≤ ‖βc(K(x)) + w − βϕ(x))‖C−C
β

+
‖ − w‖C−C

β

=
‖c(K(o))− ϕ(o)−

∑d
i=0 βi(c(K(vi))− ϕ(vi))‖C−C

β

+
‖c(K(o))− βc(K(x))−

∑d
i=1 βic(K(vi))‖C−C

β
.

As ϕ(vi) = c(K(vi)) according to (4.11), it follows by (4.13) and (4.14) that

(4.15) ‖c(K(x))− ϕ(x)‖C−C ≤
2γ∗

β
t1/2 < 6n5/2γ∗t1/2.

For x ∈ e−sK|L, by (4.15), (4.12) and (4.10),

Hk
(
(C+ϕ(x))∆K(x)

)
≤ Hk

(
(C + ϕ(x))∆(C + c(K(x)))

)
+Hk

(
(C + c(K(x)))∆(K̃(x)− c(K̃(x)) + c(K(x)))

)
+Hk

(
(K̃(x)− c(K̃(x)) + c(K(x)))∆K(x)

)
< 9n5/2γ∗t1/2Hk(C).

Hence, by Fubini’s theorem we get

V(K∗∆(M + C)) < 9n5/2γ∗t1/2V(M + C).

This and Lemma 3.4 yield the required estimate for δvol. �
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5. Some more properties of fK,L(x)

Here we establish some more properties of the log-concave function (cf. (2.3))

fK,L : L→ R≥0 with x 7→ Hk(K ∩ (x+ L⊥)),

and use the notation introduced in Section 2, i.e., K ∈ Kn is an n-dimensional
centered convex body, L is a d-dimensional subspace L, 1 ≤ d ≤ n− 1, and
we set k = n − d. Since we will keep K and L fixed, we just write f(x)
instead of fK,L(x). As in Section 2 let g(x) be the subgradient of f(x), and
we recall that g(x) = ∇f(x)/f(x) almost everywhere on int (K)|L.

For η ≥ 0, we set

Mη = {x ∈ K|L : ln f(x)− ln f(o) ≥ 〈g(o), x〉 − η},
Kη = K ∩ (Mη + L⊥).

Since ln f is concave, both Mη and Kη are compact and convex.

Lemma 5.1. Let η ≥ 0. Then∫
K|L
〈∇f(x), x〉dHd(x) ≤ −ηV(K\Kη).

Proof. Let x ∈ (intK)|L and η ≥ 0, and let us assume ln f(x) − ln f(o) ≤
〈g(o), x〉 − η. Then by (2.2) we have 〈g(x), x〉 ≤ 〈g(o), x〉 − η. Hence if ∇f
exists at x ∈ (intK)|L, then

〈∇f(x), x〉 ≤ 0 provided that x ∈Mη,

〈∇f(x), x〉 ≤ 〈g(o), f(x)x〉 − f(x)η provided that x 6∈Mη.

We conclude the lemma by (2.4) and the fact that V(K\Kη) =
∫

(K|L)\Mη
f(x) dx.

�

Lemma 5.2. Let η ∈ [0, 1]. If V(K\Kη) ≤ V(K)/(2ne), then

e−τ ≤ f(x)

f(o)
≤ eτ for τ = 7n3/2η1/2 and x ∈Mη.

Proof. By Lemma 3.1 we have 1
2 K ⊂ Kη, and f(x) ≥ f(o)e〈g(o),x〉−η for

x ∈ Kη. We claim that for ±y ∈ Kη

(5.1) |〈g(o), y〉| ≤ 3
√
kη.

The concavity of f1/k yields that

f(o)1/k ≥ f(y)1/k + f(−y)1/k

2
≥ f(o)1/ke−η/k

e〈g(o),y〉/k + e〈g(o),−y〉/k

2

≥ f(o)1/ke−η/k

(
1 +

(
〈g(o), y〉

2k

)2
)
.

Since et < 1 + 2t for t ∈ [0, 1], we conclude (5.1).
It follows from 1

2 K ⊂ Kη and −K ⊂ nK (since c(K) = o) that 1
2 (K|L) ⊂

Mη and −(K|L) ⊂ n(K|L). In particular, if x ∈Mη is arbitrary, then ±y ∈
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Mη for y = 1
2n x. We deduce from (5.1) that |〈g(o), x〉| = 2n|〈g(o), y〉| ≤

6n
√
kη. Therefore, the lemma follows from f(o)e〈g(o),x〉−η ≤ f(x) ≤ f(o)e〈g(o),x〉.

�

6. Proofs of Theorem 1.1 and Theorem 1.2

For the proofs of the two stability theorems 1.1 and 1.2, let K ∈ Kn be
centered, and let

VK(L ∩ Sn−1) >
d− ε
n

V(K)

for a proper linear subspace L with dimL = d and some ε ∈ (0, (2ne)−5).
As before, for x ∈ K|L let

f(x) = Hk(K ∩ (x+ L⊥)).

According to Lemma 2.2, the condition on VK(L ∩ Sn−1) is equivalent to

(6.1)

∫
K|L
〈∇f(x), x〉dHd(x) > −εV(K).

Proof of Theorem 1.1. We set η = ε4/5, and use the notation of Lemma 5.1.
It follows from (6.1) and Lemma 5.1 that

V(K\Kη) < ε1/5V(K) < V(K)/(2ne),

and from Lemma 5.2 that

e−t ≤ f(x)

f(o)
≤ et for t = 7n3/2ε2/5 and x ∈Mη.

We assume that ε is small enough in order to apply Proposition 4.3 with
M∗ = Mη and t = 7n3/2ε2/5. We deduce the existence of an (n − d)-

dimensional compact convex set C ⊂ L⊥, and complementary d-dimensional
compact convex set M such that

δvol(K,C +M) ≤ γvε1/5.

By Corollary 3.2 implies that

δhom(K,C +M) ≤ γhε1/(5n),

completing the proof of Theorem 1.1. �

Proof of Theorem 1.2. We may assume K|L = [−a, b] where 0 < a ≤ b.
Since c(K) = o implies −K ⊂ nK according to B. Grünbaum (cf.[24], [48,
p. 155]) we have b ≤ na.

We set η = ε2/3, and use again the notation of Lemma 5.1. We deduce
from (6.1) and Lemma 5.1 that

(6.2) V(K\Kη) < ε1/3V(K) < V(K)/(2ne),

and from Lemma 5.2 that

(6.3) e−t ≤ f(x)

f(o)
≤ et for t = 7n3/2ε1/3 and x ∈Mη.
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It follows from Lemma 3.1 and (6.2) that 1
2 [−a, b] ⊂ Mη, therefore the

concavity of ln f and (6.3) yield that

(6.4) f(x) ≤ e2tf(o) for x ∈ [−a, b].
Let Mη = [−aη, bη] for aη, bη > 0. Since K\Kη contains two cones, one with
base K(−aη) and height a− aη, and the other with base K(bη) and height
b− bη, we get by (6.3), (6.2) and (6.4) that

a− aη + b− bη
n

e−tf(o) ≤ a− aη + b− bη
n

(f(−aη) + f(bη))

≤ V(K\Kη) < ε
1
3 V(K) ≤ ε

1
3 e2tf(o)(a+ b).

In particular,

H1(Mη) = aη + bη > (1− 2nε
1
3 )(a+ b).

Here and below γ1, γ2, . . . denote positive constants depending on n. We
deduce by (6.3) that if ε is small enough, then

af(−a) + bf(b) = nVK(L ∩ Sn−1) > (1− ε)V(K) > (1− ε)H1(Mη)e
−tf(o)

> (1− γ1ε
1
3 )(a+ b)f(o).

Since b ≥ a and a
a+b ≥

1
n+1 by b ≤ na, (6.4) implies that if ε is small enough,

then
f(−a), f(b) ≥ (1− γ2ε

1
3 )f(o).

As ln f is concave, we have

f(x) ≥ (1− γ2ε
1
3 )f(o) for x ∈ [−a, b].

However, a
a+b C(b) + b

a+b C(−a) ⊂ C(o), where C(x) = K ∩ (x+L⊥). Thus,
Lemma 4.1 yields that

(6.5) δvol(C(o), C(−a)) ≤ γ3ε
1
6 and δvol(C(o), C(b)) ≤ γ3ε

1
6 .

Hence,

C̃ = (C(−a)− x̃) ∩ (C(b)− ỹ) for x̃ = c(C(−a)) and ỹ = c(C(b)).

From (6.4) and (6.5) we get

[x̃, ỹ] + C̃ ⊂ K and V(K) ≤ (1 + γ4ε
1
6 )V([x̃, ỹ] + C̃).

Using Lemma 3.4, we replace C̃ by a suitably smaller homothetic copy C

such that c(C) = o, and obtain that there exist x ∈ x̃ + C̃ and y ∈ ỹ + C̃

satisfying o ∈ [x, y], e−s‖x‖ ≤ ‖y‖ ≤ es‖x‖ for s = γ5ε
1
6 , and

[x, y] + C ⊂ K and V(K) ≤ (1 + γ6ε
1
6 )V([x, y] + C).

Finally, if z ∈ [−a, b], then −z/n ∈ [−a, b] and 1
n+1 C(z) + n

n+1 C(−z/n) ⊂
C(o). Therefore, Lemma 3.1, Lemma 4.1 and the estimates above imply

K ⊂ [x, y] + (1 + γ5ε
1
6n )C.

Which completes the proof of Theorem 1.2. �
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7. Stability of the U-functional U(K)

Let m ∈ {1, . . . , n}. In this section, a finite sequence u1, . . . , um always
denote points of Sn−1, and by lin {X} we denote the linear hull of a set X.
As in [30], we define σm(K) > 0 by

σm(K)m =

∫
u1∧...∧um 6=0

1 dVK(u1) · · · dVK(um).

In particular, σ1(K) = V(K), σn(K) = U(K), and for m < n, we have

σm+1(K)m+1 =∫
u1∧...∧um 6=0

(
V(K)−VK(Sn−1 ∩ lin{u1, . . . , um})

)
dVK(u1) · · · dVK(um).

(7.1)

As VK(Sn−1∩lin{u1, . . . , um}) ≤ m
n V(K) for linearly independent u1, . . . , um

according to Theorem II, we deduce that

(7.2) σm+1(K)m+1 ≥
(

1− m

n

)
V(K)σm(K)m.

Therefore the inequality of Theorem III follows from

U(K)n ≥ 1

n
V(K)σn−1(K)n−1 ≥ . . . ≥ (n− 1)!

nn−1
V(K)n−1σ1 =

n!

nn
V(K)n.

Now we assume that

U(K) ≤ (1 + ε)
(n!)1/n

n
V(K),

where ε > 0 is small enough to satify all estimates below. In particular,
ε < 1

4n3 ε̃0, where ε̃0 comes from Theorem 1.2. Applying (7.1) for m = 1,

(7.2) for m ≥ 2, and using (1 + ε)n n−1
n < n−1

n + 2nε gives

(7.3)

∫
Sn−1

(V(K)−VK(Sn−1∩ lin{u})) dVK(u) ≤
(
n− 1

n
+ 2nε

)
V(K)2.

For any X ⊂ Sn−1, there exists u ∈ X maximizing VK(Sn−1 ∩ lin{u})
because different 1-dimensional subspaces have disjoint intersections with
Sn−1. We consider linearly independent v1, . . . , vn ∈ Sn−1 such that v1 max-
imizes VK(Sn−1∩ lin{u}) for u ∈ Sn−1, and vi maximizes VK(Sn−1∩ lin{u})
for all u ∈ Sn−1\lin{v1, . . . , vi−1} if i = 2, . . . , n. Let L = lin{v1, . . . , vn−1},
and let VK(Sn−1 ∩ lin{vn}) = ( 1

n − t)V(K), and hence t ∈ [0, 1
n ] (cf. (1.3)).

Thus, we have

VK(Sn−1 ∩ lin{vi}) ≥ ( 1
n − t)V(K) for i = 1, . . . , n,(7.4)

VK(Sn−1 ∩ lin{u}) ≤ ( 1
n − t)V(K) for u ∈ Sn−1\L.(7.5)

We deduce from (7.3), (7.5) and VK(Sn−1 ∩ lin{u}) ≤ 1
n V(K) for u ∈

Sn−1 ∩ L that

(n−1
n +t)V(K)VK(Sn−1\L)+ n−1

n V(K)VK(Sn−1∩L) ≤
(
n−1
n + 2nε

)
V(K)2.
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Since VK(Sn−1\L) ≥ 1
n V(K) according to Theorem II, we conclude that

t ≤ 2n2ε. In particular, VK(Sn−1 ∩ lin{vi}) ≥ ( 1
n − 2n2ε)V(K) for i =

1, . . . , n by (7.4).
From Theorem 1.2 we find for i = 1, . . . , n, that there exist an (n − 1)-

dimensional compact convex set Ci ⊂ v⊥i with c(Ci) = o, and xi, yi ∈ ∂K
such that yi = −esix, where |si| < nγ̃vε

1
6 , and for i = 1, . . . , n, we have

[xi, yi] + Ci ⊂ K,(7.6)

V(K\([xi, yi] + Ci)) ≤ nγ̃vε
1
6 V(K),(7.7)

K ⊂ [xi, yi] + (1 + 2γ̃hε
1
6n )Ci.(7.8)

Observe that vi is an exterior normal at xi, i = 1, . . . , n. After a linear trans-
formation of K, we may also assume that v1, . . . , vn form and orthonormal
system, and 〈vi, xi − yi〉 = 2. In particular,

(7.9) e−τ < 〈vi, xi〉, 〈−vi, yi〉 < eτ , τ = nγ̃vε
1
6 .

In what follows, we write γ1, γ2, . . . for positive constants depending on n
only. It follows from combining (7.6), (7.7) and (7.9) that

(7.10) 1− γ1ε
1
6 < Hn−1(Ci)/Hn−1(Cj) < 1 + γ1ε

1
6 for i, j ∈ {1, . . . , n}.

For any i 6= j ∈ {1, . . . , n}, we write

wi(vj) = hCi(vj) + hCi(−vj),

ai(vj) = max
{
Hn−2(Ci ∩ (tvj + v⊥j )) : −hCi(−vj) ≤ t ≤ hCi(vj)

}
,

and recall that hCi(x) denotes the support function. Hence, wi(vj) is the
width of Ci in the direction of vj . Observe that Ci contains a bipyramid
whose basis has volume ai(vj) and of height wi(vj) which gives the lower
bound in (7.11). For the upper bound we integrate along Rvj to get

(7.11) 1
n−1 wi(vj)ai(vj) ≤ Hn−1(Ci) ≤ wi(vj)ai(vj) for i 6= j ∈ {1, . . . , n}.

Let p 6= q ∈ {1, . . . , n}, and let t1, t0 ∈ R be defined by the properties
that t1xp and t0xp lie in the supporting hyperplanes to Cq+xq with exterior
normals vp and −vp, respectively. In particular, we can choose t1 > t0 and
t∗ ∈ R such that

〈vp, t1xp〉 = hCq+xq(vp)

〈−vp, t0xp〉 = hCq+xq(−vp)
Hn−2(Cq ∩ (t∗xp + v⊥p )) = aq(vp).

It follows from (7.8) and (7.9) that

t1 − t0 > wq(vp)/2,(7.12)

Cq ∩ (t∗xp + v⊥p ) ⊂ t∗xp + (1 + 2γ̃hε
1
6n )Cp.
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Therefore, since Cq ⊂ v⊥q , we get ap(vq) ≥ (1 + 2γ̃hε
1
6n )−(n−2)aq(vp), and

hence interchanging the role of p and q leads to

1− γ2ε
1
6n < aq(vp)/aq(vp) < 1 + γ2ε

1
6n .

We deduce from (7.10) and (7.11) that

(7.13)
1

2n
<
wp(vq)

wq(vp)
< 2n.

Let m ∈ {0, 1}. According to (7.6) and tmxp ∈ [xp, yp], we have tmxp+Cp ⊂
K, and hence

〈tmxp, vq〉+ hCp(vq) ≤ hK(vq) = 〈xq, vq〉.

On the other hand, the definition of tm shows that Cq+xq intesects tmxp+v
⊥
p

in some z, and hence z is contained in tmxp+(1+2γ̃hε
1
6n )Cp by (7.8), which

in turn yields that

〈tmxp, vq〉+ (1 + 2γ̃hε
1
6n )hCp(vq) ≥ 〈z, vq〉 = 〈xq, vq〉.

We conclude that

(7.14) hCp(vq) ≤ 〈xq − tmxp, vq〉 ≤ (1 + 2γ̃hε
1
6n )hCp(vq) for m = 0, 1,

and hence

|〈(t1 − t0)xp, vq〉| ≤ 2γ̃hε
1
6nhCp(vq) < 2γ̃hε

1
6nwp(vq).

Applying (7.12), (7.13), and the analoguous argument to yq implies that

(7.15) |〈xp, vq〉|, |〈yp, vq〉| ≤ γ3ε
1
6n .

Let P be the parallepiped

P = {x ∈ Rn : 〈x, vi〉 ≤ 〈xi, vi〉, 〈x,−vi〉 ≤ 〈yi,−vi〉, i = 1, . . . , n},
and hence each facet of P contains one of xi +Ci, yi +Ci, i = 1, . . . , n. We
claim that

(7.16)
1

4n
P ⊂ K.

We suppose that (7.16) does not hold and seek a contradiction. Possibly
reversing the orientation of some of the vi, we may asssume that

(7.17) z =
1

4n

n∑
i=1

〈xi, vi〉 vi 6∈ K.

In particular, ‖z‖ ≤ 1
2
√
n

by (7.9), and there exists u ∈ Sn−1 such that

(7.18) 〈u, z〉 > 〈u, x〉 for x ∈ K.

There exists vp such that |〈u, vp〉| ≥ 1/
√
n, and hence (7.9) and (7.15) yield

that 〈u, xp〉 ≥ 1√
n
− γ4ε

1
6n if 〈u, vp〉 ≥ 1/

√
n, and 〈u, yp〉 ≥ 1√

n
− γ4ε

1
6n if

〈u, vp〉 ≤ −1/
√
n. However 〈u, z〉 ≤ ‖z‖ ≤ 1

2
√
n

, which contradicting (7.18).

Therefore we conclude (7.16).
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For i = 1, . . . , n, let

Ξ2i−1 = [o, xi + Ci] and Ξ2i = [o, yi + Ci].

Since the basis of the cones Ξ1, . . . ,Ξ2n lie in different facets of P , the
interiors of Ξ1, . . . ,Ξ2n are pairwise disjoint. By (7.7) and (7.9) we know

V(Ξj) ≥ ( 1
2n − γ5ε

1
6 )V(K), and so we get

V(Ξ) > (1− 2nγ5ε
1
6 )V(K) for Ξ =

⋃2n
j=1 Ξj ⊂ K.

We conclude from (7.16) that

V(P\K) ≤ V(P\Ξ) = (4n)nV
(

1
4n P\Ξ

)
≤ (4n)nV (K\Ξ) ≤ γ6ε

1
6 V(K),

and hence Lemma 3.1 (ii) implies that (1 − γ8ε
1
6n )P ⊂ K, completing the

proof of Theorem 1.3.
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[7] K.J. Böröczky, M. Henk, Cone-volume measure of general centered convex bodies,
Adv. Math. 286 (2016), 703–721.
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