CONE-VOLUME MEASURE AND STABILITY

KAROLY J. BOROCZKY AND MARTIN HENK

ABSTRACT. We prove stability results for two central inequalities involv-
ing the cone-volume measure of a centered convex body: the subspace
concentration conditions and the U-functional/volume inequality.

1. INTRODUCTION

Let K™ be the set of all convex bodies in R™ having non-empty interiors,
ie., K € K™ is a convex compact subset of the n-dimensional Euclidean
space R™ with int (K) # (. As usual, we denote by (-,-) the inner product
on R" x R™ with associated Euclidean norm || - ||, and S®~! C R™ denotes
the (n — 1)-dimensional unit sphere, i.e., S" ! = {x € R" : ||z|| = 1}.

For K € K™ we write Sk(-) and hx(-) to denote its surface area measure
and support function, respectively, and vg to denote the Gaufl map assigning
the outer unit normal vi (z) to an x € 0, K, where 0, K consists of all points
in the boundary 0K of K having a unique outer normal vector. If the origin
o lies in K € K™, the cone-volume measure of K on S"~! is given by

1y Vi) = [ s - | . )de_mas),

n

where w C S"7! is a Borel set and, in general, Hy(z) denotes the k-
dimensional Hausdorff measure. Instead of #,(-), we also write V(-) for
the n-dimensional volume.

The name cone-volume measure stems from the fact that if K is a polytope

with facets F1,..., F,, and corresponding outer unit normals uq,..., Upny,
then

m
(1.2) Vi) = 3 V([o, F])ou, ().

i=1

Here §,, is the Dirac delta measure on S~ concentrated at u;, and for
T1,...,Tm € R™ and subsets S1,...,5; € R™ we denote the convex hull of
the set {z1,...,2m,S1,..., 5} by [x1,...,2m,51,...,5]. With this nota-
tion [o, F}] is the cone with apex o and basis Fj.
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In recent years, cone-volume measures have appeared and were studied in
various contexts, see, e.g., F. Barthe, O. Guedon, S. Mendelson and A. Naor
[3], K.J. Boroczky, E. Lutwak, D. Yang and G. Zhang [8, 9], R. Gardner, D.
Hug and W. Weil [20], M. Gromov and V.D. Milman [22], M. Ludwig [35],
M. Ludwig and M. Reitzner [36], E. Lutwak, D. Yang and G. Zhang [41], A.
Naor [44], A. Naor and D. Romik [45], G. Paouris and E. Werner [46], A.
Stancu [51], G. Zhu [54, 55], K.J. Boroczky and P. Hegediis [5], L. Ma [43],
Y. Huang, E. Lutwak, D. Yang and G. Zhang [32].

In particular, cone-volume measures are the subject of the logarithmic
Minkowski problem. This is the particular interesting case p = 0 of the gen-
eral L,-Minkowski problem which is at the core of the L,-Brunn-Minkowski
theory, one of the cornerstones of modern convex geometry. The L,-Min-
kowski problem asks for a characterization of the L, surface area measure

S @) = | hcla) 7Sk,

of a convex body K containing o in its interior among the finite Borel mea-
sures on the sphere. Here w C S™! is a Borel set and p > 0. We refer to
[31, 33, 37, 38, 40, 42, 48, 56] and the reference within for detailed infor-
mation about the problem. Here we just mention that for p = 1, the Lq-
Minkowski problem is the classical Minkowski problem, which was solved for
polytopes and particular convex bodies by Minkowski, and in full generality
by Aleksandrov, and Fenchel and Jessen: u is the surface area measure of a
convex body if and only if p is positive on each open hemisphere and

/Sn—l udp(u) = o.

Moreover, such a convex body is unique up to translations.

Roughly speaking, for p > 1 and p # n or p > 0 and even measures,
the only restriction on a measure being the L, surface area measure of a
convex body is that it has to be positive on each open hemisphere. The
case p = 0, corresponding to the SL(n) invariant cone-volume measure
Vi (w) = (1/ n)S}?) (w), is different. Here one needs, as in the classical case
p = 1, additional restrictions on the measure. Of particular and central im-
portance is here the subspace concentration condition which was introduced
K.J. Boroczky, E. Lutwak, D. Yang and G. Zhang and by which they gave a
complete solution of the logarithmic Minkowski problem for even measures
[9].

We say that a finite Borel measure 1 on S™~! satisfies the subspace con-
centration condition if for any linear subspace L C R"

_ dim L -
(1.3) pL ST < == pu(s"h),
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and equality in (1.3) for some L implies the existence of a complementary
linear subspace L such that
~ dim L

(1.4) p(LNS" 1) = —=p(s" 1),
and hence supppu C LU E, i.e., the support of the measure “lives” in L U L.

Via this condition, cone-volume measures of origin-symmetric convex bod-
ies have been completely characterized by K.J. Boroczky, E. Lutwak, D.
Yang and G. Zhang.

Theorem I ([9, Theorem 1.1]). A non-zero finite even Borel measure on
S™=1 s the cone-volume measure of an origin-symmetric convex body if and
only if it satisfies the subspace concentration condition.

In the planar case, this result was proved earlier for discrete measures,
i.e., for polygons, by A. Stancu [49, 50]. For cone-volume measures of origin-
symmetric polytopes, the necessity of (1.3) was independently shown by M.
Henk, A. Schiirmann and J.M.Wills [29] and B. He, G. Leng and K. Li [28].

We recall that the centroid of a k-dimensional convex compact set M C R”
is defined as

cen(M) = Hy, (M)~ /M x dHg(x),

and a convex body will be called centered if cen(K) = o.

Centered bodies seem to be the right and natural class of convex bodies in
order to extend Theorem | to general convex bodies, and in a recent paper
the authors proved the necessity of the subsapce concentration condition for
this class.

Theorem II ([7, Theorem 1.1]). Let K € K™ be centered. Then its cone-
volume measure Vi satisfies the subspace concentration condition.

For polytopes this result was proved by M. Henk and E. Linke [30].
If K is not centered, then the subspace concentration condition may not
hold any more. In fact, it was recently shown by G. Zhu [54] that for
UL, ..., Uy € S"!in general position, m > n + 1, and arbitrary positive
numbers 71, . .., ¥, there always exists a (not necessarily centered) polytope
P € K" with outer unit normals u; and Vp({u;}) = vi, 1 <7 < m. In other
words, Zhu settled the logarithmic Minkowski problem for discrete measures
whose support is in general position. In [6] this result was unified with the
sufficiency part of the subspace concentration condition in the even discrete
case by introducing the notation of essential subspaces. For a given finite
Borel measure p on S" ! a subspace L, 1 < dim L < n — 1, is called essen-
tial if L Nsuppp is not concentrated on any closed hemisphere of L Nsuppu.
K.J. Boroczky, P. Hegediis and G. Zhu [6] proved that every finite discrete
measure on S”~! which satisfies the subspace concentration condition with
respect to essential subspaces is the cone-volume measure of a polytope. In
the case n = 2, this result was obtained before by A. Stancu [50]. In general,
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however, the centroid of such a polytope P is not the origin, and the char-
acterization of cone-volume measures of general polytopes or convex bodies
is still a challenging and important problem.

For a convex body K containing the origin in its interior, E. Lutwak, D.
Yang and G. Zhang [39] defined the SL(n) invariant quantity U(K) as an

integral over subsets (ug,...,u,) € S ! x .- x S"71 by
U(K) = (/ dVi(ug)- '-dVK(un)> )
UL A...AUR FZO
where u; A ... Au, # 0 means that the vectors uq,...,u, are linearly in-

dependent. The U-functional has been proved useful in obtaining strong
inequalities for the volume of projection bodies [39]. For information on
projection bodies we refer to [18, 27, 48], and for more information on the
importance of centro-affine functionals we refer to [25, 26, 34, 36] and the
references within.

We readily have U(K) < V(K), and equality holds if and only if Vi (L N
S"=1) = 0 for any non-trivial subspace of R" according to K.J. Bordczky,
E. Lutwak, D. Yang and G. Zhang [10]. As a consequence of Theorem II it
was shown in [7] that

Theorem III ([7, Corollary 1.3]). Let K € K" be centered. Then

UKy >

V(K),
with equality if and only if K is a parallepiped.

The statement was conjectured in [10]. It was proved for polytopes in
[30], where the special cases if K is an origin-symmetric polytope, or if
n = 2,3 were verified by B. He, G. Leng and K. Li [28], and G. Xiong [53],
respectively.

Here we present stronger stability versions of Theorem [l and Theorem
IT1. Stability results are an important issue in many areas of mathemat-
ics since they provide a quantitative characterization of the extremal solu-
tion of inequalities. Prominent examples are, e.g., isoperimetric inequalities
([14, 16]), the Brunn-Minkowski inequality ( [15, 21]), the Orlicz-Petty pro-
jection inequality ([4]), Sobolev ([12, 17]) and Gagliardo-Nirenberg ([11])
inequalities.

In order to present our stability results we need two notions of distance
between the “shapes” of two convex bodies. Let K, M € K™, and let K/ =
K —c¢(K), M" = M —c(M) be their translates whose centroids are the origin.
Then we define

(1.5)  Ohom(K, M) =min{A >0:3t>0, M' CtK' Ce*M'},
19wtk = ([0 20] [ KT

where AADB denotes the symmetric difference of two sets, i.e., AAB =
A\ B U B\ A. Then both distances dnom and dyo) are metrics on the space
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of centered convex bodies in R™ whose volumes are 1. We remark that the
equality case in the subspace concentration condition for the cone-volume
measure Vi of a convex body K, i.e.,

im L ~ im L
d”;l V(EK) and V(LN S™ 1) = d”;

Vi(LNsS" 1) = V(K)

for complentary proper subspaces L, L is equivalent to a representation of
K as K = M + M, where M; C L+, My C L+ are complementary convex
bodies, i.e., they are contained in complementary linear spaces. Here, as
usual, L+ denotes the orthogonal complement a linear subspace.

Theorem 1.1. There exist constants €g,vn, v > 0 depending only on the
dimension n, such that, if K € K" is centered and

d—e¢

Vi(LNns™ 1) > V(K)

for a proper linear subspace L with dim L = d and € € (0,eq), then there
exist (n — d)-dimensional compact convex set C C L, and complementary
d-dimensional compact convex set M such that

Shom (K, C + M) < 7,0 and 8,(K,C + M) < v,e'/.

Observe that the range of ¢, i.e., g9, in Theorem 1.1 has to depend on
the dimension. For if, let K € K™ be a centered simplex and let L be
generated by d outer normals of the simplex, d € {1,...,n — 1}. Then we
have Vi (LN S"1) =~ V(K).

Actually, if L is 1-dimensional, then a more precise version of Theorem 1.1
holds.

Theorem 1.2. There exist constants g, Vn,Yv > 0 depending only on the
dimension n, such that, if K € K" is centered and

1—¢

Vi(LNns™ 1) > V(K)

for a linear subspace L with dimL = 1 and ¢ € (0,&y), then there exist
an (n — 1)-dimensional compact convex set C C L+ with ¢(C) = o, and

x,y € OK such that y = —e®x where |s| < ’}71,6%, [z,y] + C C K, and
K C [2,y] + (14 94e07)C and V(K) < (1+7,¢8)V([z,y] + ).
We use this theorem in order to deduce the following stability version of
Theorem I11.
Theorem 1.3. There exist constants €., V«,7,7 > 0 depending only on n
with the following property: for each e € (0,e,) and centered K € K" with

(nh)t/n

U(K) < (14¢e)——— V(K)

there exists a parallepiped P such that
(1) (1 —Few)P C K C P;
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(2) V(P\K) < Fes V(K);
(3) If F is a facet of P then Hp—1(FNK) > (1— 'y*sé)anl(F).

The paper is organized as follows. In the next section we collect some
basic facts and notations from convexity and we also state some of the
main lemmas of the proof of Theorem Il which we need for the proof of
the stability version. The proofs of Theorem 1.1, 1.2 are given in Section
6 and are prepared in sections 3-5. In Section 3 we state properties of the
symmetric volume difference, in Section 4 we study consequences of the
stability of the Brunn-Minkowski inequality and in Section 5 some more
properties of a certain log-concave functional which is of central interest in
our investigations are presented. Finally, in Section 7 we prove Theorem
1.3.

Acknowledgements. We are grateful to Rolf Schneider for various ideas
shaping this paper. We also acknowledge fruitful discussions with Daniel
Hug and David Preiss about the Gau-Green theorem.

2. PRELIMINARIES

Good general references for the theory of convex bodies are provided by
the books of Gardner[18], Gruber[23], Schneider[48] and Thompson[52].

The support function hx : R™ — R of convex body K € K" is defined,
for z € R", by

hi(z) = max{(x,y) : y € K}.

A boundary point z € JK is said to have a unit outer normal (vector)
u € S provided (z,u) = hx(u). A point € K is called singular if it
has more than one unit outer normal, and 0, K is the set of all non-singular
boundary points. It is well known that the set of singular boundary points
of a convex body has 0 H,_1 measure. For each Borel set w C S"7!, the
inverse spherical image of w is the set of all points of 0K which have an
outer unit normal belonging to w. Since the inverse spherical image of w
differs from vy (w) C 8,.K by a 0 H,,—1 measure set, we will often make no
distinction between the two sets.

For K € K" the Borel measure Sk on S™"~! given by

Sk (w) = Hy—1(vg ()

is called the (Aleksandrov-Fenchel-Jessen) surface area measure. Observe

that
V(K):VK(S"—l):/ MdsK(u).

Sn—l n
As usual, for two subsets C, D C R" and reals v, u > 0 the Minkowski
combination is defined by

vC+uD={vc+pud:ceC,de D}.

By the celebrated Brunn-Minkowski inequality we know that the n-th root
of the volume of the Minkowski combination is a concave function. More
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precisely, for two convex compact sets Ky, K1 C R™ and for A € [0, 1] we
have

(2.1) V(1 =N Ko+ AEK)Y™ > (1= A) V(Ko)Y™ + A V(K )Y/

with equality for some 0 < A < 1 if and only if Ky and K lie in parallel
hyperplanes or are homothetic, i.e., there exist ¢t € R™ and p > 0 such that
Ky =t+ nuKy (see also [19]).

Let f: C — Ry be a positive function on an open convex subset C' C R"
with the property that there exists a k € N such that f/* is concave. Then
by the (weighted) arithmetic-geometric mean inequality

P24 2m) = (P4 - N+ ag)

> (1= 075 ) + Af )
> [ @) - ).

This means that f belongs to the class of log-concave functions which by
the positivity of f is equivalent to

Inf((1=A)z+Ay) = (1= A)Inf(z)+ Al f(y)

for A € [0,1]. Hence, for all z,y € C there exists a subgradient g(y) € R"
such that (cf., e.g., [47, Sect. 23])

(2.2) In f(z) —In f(y) < (9(y), = — ).
If f is differentiable at y, the subgradient is the gradient of In f at y, i.e.,
9(y) =Vinf = ;5Vi(y).

For a subspace L C R™, let L' be its orthogonal complement subspace,
and for X C R™ we denote by X|L its orthogonal projection onto L, i.e.,
thf image of X under the linear map forgetting the part of X belonging to
L.

Here, for a convex body K € K™ and a d-dimensional subspace L, 1 <
d < n —1, we are interested in the function measuring the volume of K
intersected with planes parallel to L', i.e., in the function

(2.3) frr: L — Rsq with 2 — H(K N (x4 L1)),

where k = n—d is the dimension of L*. By the Brunn-Minkowski inequality
and the remark above, fg 1 is a log-concave on function on K|L which is
positive at least in the relative interior of K|L (cf. [1]). fk,z is also called the
k-dimensional X-ray of K parallel to L+ (cf. [18]). By well-known properties
of (log-)concave functions we have (see, e.g., [47, 48])

Proposition 2.1.

i) fk.1 is continuous on int (K)|L. Moreover, fr 1, is Lipschitzian on
any compact subset of (int K)|L.

ii) fr,r is onint (K)|L almost everywhere differentiable, i.e., there ex-
ists a dense subset D C int (K)|L, where V fk 1, exists.
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Now let K € K™ be centered and L be a d-dimensional linear subspace.
In view of Fubini’s theorem we have

(2.4) 0= o|L = /K () AHe) = [ Jia(2) 7 Halo),

which means that fx r is a centered function. The core ingredients for the
proof of Theorem II are the next two lemmas.

Lemma 2.2 ([7, Lemma 3.3]). Let K € K" with o € int K and let L be a
d-dimensional linear subspace, then

nVg(LNS") =dV(K) + /K|L<VfK,L(x), z) dHq(z).

Lemma 2.3 ([7, Lemma 3.4]). Let K € K" be centered and let L be a
d-dimensional linear subspace, then

/ (V fi1(2), 2) dHa(x) <0,
K|L

with equality if and only if fk 1 is constant on K|L.

3. SOME PROPERTIES OF THE SYMMETRIC VOLUME DISTANCE

First we show that the distance dpom can be estimated in terms of dyq).
These types of estimates have been around, only we were not able to locate
them in the form we need.

Lemma 3.1. Let K € K" with ¢(K) = o.
(i) If @ C K is a convex body with V(K\Q) < tV(K) for t € (0,1),
then (1 — (et)'/" K c Q.
(il) If Q is a convex body with V(KAQ) < tV(K) fort € (0, i), then
(1—(et) /MK c Q C (1+4(et)/"K.
Proof. The main tool is the following result due to B. Grinbaum [24]. If
M € K", and H" is a half space containing c¢(M), then

(3.1) V(M N HY) > V(M)]/e.

To prove (i), let A = 0 if o & int @, and let A > 0 be maximal with the
property that AK C @ otherwise. In addition, let x = 0 if 0 & int ), and let
x be a common boundary point of () and MK otherwise. Therefore, there
exists a half space H 1+ such that z lies on its boundary, and H 1+ Nint Q = 0.
Now there exists a y € K such that x = Ay, and hence z is the centroid of
z+(1-NK=Xy+(1—-XNK C K. It follows from (3.1) that

tV(K) > V(H{ NK)>V(H; Nn(z+ (1 -NK)) > V(1 - NK)/e,
and thus t > w

To prove (ii), we observe that AK C Q for A = 1 — (et)'/" by (i). We may
assume that Q\K # 0, and let g > 1 be minimal with the property that
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@ C pK. For a common boundary point z of @) and puK, let w € K such
that z = pw. In particular, w is the centroid of
AMp—1 1 -1
M+MKC —2+LQCQ.
p 1 f
In addition there exists a half space H, such that w lies on its boundary,
and H, Nint K = (. We deduce again from (3.1) that

tV(K) > V(H NQ) >V <H2+ N <w + A(“ﬂ_l) K)) > WV(K).
Now t < ﬁ yields that \ > % and 2(et)'/™ < %, which in turn implies that
< (1—2(et)/™)~t < 14 4(et)/m O
Corollary 3.2. Let K,(QQ € K™. Then
Shom (K, Q) < 128,61(K, Q)" if Svol (K, Q) < i
dvol (K, Q) < 3n 0pom (K, Q) if Ohom (K, Q) < 35

Proof. We will use the fact that 1+s <e® <1+2sand1-s<e*<1-3
for s € (0,1).

Due to the translation and scaling invariance of the distances dyo1(-, ), Ohom (* *)
we may assume that ¢(K) = ¢(Q) = o, and V(K) = V(Q) = 1. In partic-
ular, V(KAQ) = dvo1(K,Q), and hence the estimates for the exponential
function and Lemma 3.1 yield with s = dy01(K, Q) that

e 2" g - (1= (se)n)K c QN K C Q.

Using the analogous formula e‘Qel/nsl/nQ C K, we conclude the first esti-
mate.

For the second estimate, let t = dpom (K, Q). It follows that e 'K C Q C
'K, thus V(KAQ) < e™ — e ™ < 3nt. O

Our next goal is Lemma 3.4 stating that one does not need to insist on
the common centroid in the definition of dy,. We prepare the argument by
the following observation for which we denote by ||z||x_x = min{p > 0 :
x € p(K — K)} the norm induced by the difference body K — K.

Lemma 3.3. Let K € K" and x € R". Then
V(KA(z + K)) < 2n|z|| k- V(K).
Proof. We may assume that x # o. Let y, 2z € K such that = ||z||k—x (y —
z), and hence
[zl x—x = llzll/lly = =]-
Applying Steiner symmetrization with respect to the hyperplane 2 shows

that

V(K) > Hyn_z””ﬂn_l(mxl).
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We deduce by Fubini’s theorem that
V(KA(z + K)) < 2||z||Hp_1 (K|zt) < 2n||z||g—x V(K).
U
Lemma 3.4. Let K,Q € K" with V(KAQ) < tV(K) fort € (0, ;). Then
1e(Q) = e(K) ||k -k <4nt  and Sy (K, Q) < 9In’t.

Proof. We may assume that V(K) = 1, ¢(K) = o and that the Lowner
ellipsoid E, i.e., the minimal volume ellipsoid containing K — K, is a ball (see,
e.g., [23]). In particular, n~Y/2E ¢ K — K C E, and the Brunn-Minkowski
and Rogers-Shephard theorems yield that 2" < V(K — K) < (2:) (cf. [48,
Theorem 10.4]). Since the volume of a centrally symmetric convex body
over the volume of its Lowner ellipsoid is at least 2"/(n!V(B"™)) according
to K. Ball [2], we have

2 ! 2mn™
o < V(E) < (:) ;—nV(B“) <3 6: V(B™).
It follows that
(3.2) \/%B” C K — K CnB" and thus 1 ||lz]| < |lz|xk—x < 2|

Therefore, to prove Lemma 3.4, it is sufficient to verify the corresponding
estimate for |c(Q)]|.

If ¢(Q) = o, then we are done, otherwise let u = ¢(Q)/||c(Q)]|. We have
Q C 2K C 2nB™ by Lemma 3.1 and (3.2), and V(Q) > 1 — ¢ implies
V(Q)~! < 2. By (3.2) we also have

/ (u, z) dzx
Q

)

le(@)lx-x < 2[le(Q)] = 2V(Q)™H{u, ¢(Q)) = 2V(Q) ™"

/Q (u, ) do

/Q \K<u,x> dx — /K \Q<u, 2 dz

:4/ |{(u, x)| dz < 4nt.
KAQ

Let K/ = K + ¢(Q), thus Lemma 3.3 and (3.3) imply that V(KAK') <
8nt. We observe that Q' = ¢(Q) + V(Q)~/"(Q — ¢(Q)) satisfies ¢(Q') =
(@), V(Q') =1, and V(QAQ) <t by 1 -t <V(Q) <1+t (cf. Lemma
3.1). Therefore

Sl K, Q) = V(K'AQ') < V(K'AK) + V(KAQ) + V(QAQ') < 9n’t.

O

and since ¢(K) = o we get

le(@)lx—x <2V(Q) ™

(3.3) =2V(Q)™!
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4. SOME CONSEQUENCES OF THE STABILITY OF THE BRUNN-MINKOWSKI
INEQUALITY

Concerning the Brunn-Minkowski theory, including the properties of mixed
volumes, the main reference is R. Schneider [48]. We use the Brunn-Minkowski
theory in LT in the terminology of Theorem 1.1, whose dimension is k =
n —d. For k,m > 1, let

IE ={(i1, ... im) s i, €N, j=1,...,mand iy + ... +ip = k}.

For compact convex sets C1,...,Cy, in RF and (i1,...,4,) € Iﬁb, the non-
negative mixed volumes V(C,i1;...; Cp, i) were defined by H. Minkowski
in a way such that if aq,..., apn > 0, then

A1) He | D> oG = > LA
j=1

. - 11y ik
(i1yeorim) €Lk, ’

V(Ci,i1;...;Cmyim)ad - .-y

The mixed volume V(Ci,i1;...;Ch,4n) actually depends only on the Cj
with i; > 0, does not depend on the order how the pairs C},; are indexed,
and we frequently ignore the pairs Cj,i; with i; = 0. We have V(C1,k) =
Hi(Ch), and V(C1,i1;. .. ; Cpy i) > 0 if each Cj is k-dimensional. It follows
by the Alexandrov-Fenchel inequality that

(4.2) V(Cyyit;. .5 Cyim)® = T He(Cy)Y.
j=1

An important special case of (4.2) is the classical Minkowski inequality,
which says

(4.3) V(C1,1;Ca, k — 1)F > My (CYHi(C)F

Equality holds for k-dimensional C'; and Cs in the Minkowski inequality
(4.3) if and only if C and Cy are homothetic. We remark that the equality
conditions in the Alexandrov-Fenchel inequality (4.2) are not yet clarified in
general.

Now the Alexandrov-Fenchel inequality (4.2), and actually already the
Minkowski inequality (4.3) yields the classsical (general) Brunn-Minkowski
theorem stating that if Cy,...,C,, are compact convex sets in R¥, and
a1,y >0, then (cf. (2.1))

1/k
(4.4) Hy, Z Oz]'Cj > Z ain(Ci)l/k.

j=1 J=1
Equality holds for k-dimensional C1, ..., Cy, and positive aq, ..., ay, in the

Brunn-Minkowski inequality (4.4) if and only if C; and C; are homothetic
forj=2,...,m.
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We need the following stability version of the Minkowski inequality (4.3)
due to A. Figalli, F. Maggi and A. Pratelli [16]. If C, Cy are k-dimensional
compact convex sets in R¥, and

(4.5) V(C1,1;Co k — 1)k <(1+ 8)7_[16(01)%’{(02)1971
for small € > 0, then [16] proves that
(4.6) 8ol (C1, C2) < Fue/?

where the explicit 7, > 0 depends only on the dimension k.

We remark that here we only work out the estimate with respect to the
symmetric volume distance dy,.1, and then just use Corollary 3.2 for dpom-
Actually, V.I. Diskant [13] proved that (4.5) implies

(4.7) Shom (C1, C2) < Apet/®

for an unknown 4; > 0 depending only on k. We note that (4.6) and
Corollary 3.2 readily yields a version of (41.7) with exponent i instead of %

Combining the stability versions (4.6) and (4.7) with Lemma 3.3 and
Lemma 3.4 leads to the following stability version of the Brunn-Minkowski
inequality:.

Lemma 4.1. For any k > 1, m > 2 and w € (0,1], there exist positive
eo(k,m,w) and vy(k,m,w) depending only on k, m and w such that if k-
dimensional compact convex sets Cy,C1,...,Ch in ]Rk, and a1, ...,0u, >0
satisfy that a;/o; > w and Hi(C;) =V fori,j=1,...,m, and

a1Cr1+ ...+ apnCp C Cy and Hi(Co) <e“(a;+...+ am)kV
for some € € (0,e9(k,m,w)), then fori=1,...,m, we have

5V01(Ci,00) S ’y(kvmaw)el/2a

C(Co) — Z CtiC(Ci)

< (ar ...+ )y (k,m,w)et/2.

Co—Co

Proof. First we assume that Cyp = a1C1+. . .4, Ch,. For 1 <i < j < m, we
apply the Alexandrov-Fenchel inequality (4.2) to each term in (4.1) except
for kaia;?_lV(Ci, 1;Cj, k — 1) and deduce that
el + ... +am)V > kaiaf_lV(Ci, 1;Cjk—1)+
(a1 +...+ am)k - kaiaffl] V.

In other words,
kaioTIV(Ci, 1;Cy k — 1) < kool 'V 4 (¢ = D)o + ..+ )MV

Here (a1 + ...+ ap)F < (%)kaiaﬁ_l, and hence

2 rm\k
V(C;,1;Ci k—1) < (= V.
(C,1;C4, k 1)<1+k<w) 5)
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Thus (4.6) yield
(48) 5vol(0i7 C]) < ’7(1{77 m, w)sl/Q

for ¥(k, m,w) depending only on k, m and w. To compare to Cy, we may
assume that V=1, a1 +... + oy = 1 and ¢(C;) = o for i = 1,...,m. Let
M=CiNn...NnCy,.

It follows from (4.8) that

Hp(CAM) < m-3(k,m,w)e?, i=1,...,m,
and hence Hy(M) > 1 —m - 5(k,m,w)e'/?. Since M C C; fori=1,...,m
yields M C Cy = Y"1, ;C;, and Hi(Cop) < e, we deduce

Hip(CoACH) < 29(k,m,w)e'/?, i=1,...,m.

Therefore Lemma 3.3 and Lemma 3.4 imply the required estimates for
dvol(Ci, Cp) and ¢(Cp) in the case Cy = a1 C1 + ... + @ Cpy.

Finally, in the general case, let C, = a1Ci + ... + @, Cry, and hence
Cy C Cp. We may assume again that V =1, a; + ... + a; = 1 and
c(C;) = o for i =1,...,m. The argument above and C{; C Cj yield that

(5\,0](01',06) < ’}/*(k',m,OJ)El/27

l|e(Ch < ||e(Cp)] < 4t (k,m,w)el/?

Mey—co cy—ci,
for v*(k,m,w) > 0 depending on k,m,w. It follows from the Brunn-
Minkowski inequality that 1 < H(C{) < Hp(Co) < €. Since C} C Cy,

we conclude Lemma 4.1 by Lemma 3.4. ([
To prove the next Proposition 4.3, we need the following observation.

Lemma 4.2. If M is a convex body in R¢ such that —M C nM for some
n > 1, then there exists an d-simplex T' C M whose centroid is the origin
such that M C nd3/?T.

Proof. We may assume that the John ellipsoid E of maximal volume con-
tained in M N(—M) is Euclidean ball, and let T C E be an inscribed regular
simplex. Then n~'M c M N (~M) C VdE C d*>T. O

For Proposition 4.3 we use the notation of the previous sections, i.e.,
K € K" is a centered convex body, d, k € {1,...,n—1} with d+k = n, and
L is a d-dimensional linear subspace. For = € K|L, we set

f(@) = fr,p(x) = Hi(K N (z+ LY)).

Proposition 4.3. There exist to,y > 0 depending on n with the following
properties. Lett € (0,1g), let M, C K|L be a d-dimensional convex compact
set, and let K, = KN (M, + L*Y). If et < f(z)/f(0) < e holds for any
x € M,, then there exist a k-dimensional compact convex set C C L*, and
a complementary d-dimensional compact convex set M such that

Ovol(K,C + M) §7max{w,tl/2}.
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Proof. Since ¢(K) = o we have —K C nK (cf. [48, p. 155]). Hence —K|L C
nK|L and we may choose, according to Lemma 4.2, vy, ...,vq € e SK|L,
for some s > 0, such that vg + ...+ vg = 0, and

(4.9) e *K|L c n®?[uvg, ..., vq].
For z € e *K|L, let K(x) = K N (z + L), and let
oy TV X
(4.10) K(z) = K(x), and hence Hi(K(x)) = f(o).

We define
A = aff{c(K(v)),...,c(K(vq))},
M = {yeA:(y+LH)ne*K # 0},
C = K(o)—c(K(0)).

We compare K, with M + C. To this end we consider the affine bijection
¢ : L — A defined by the correspondance {¢(z)} = AN (z+ L) for x € L.
In particular,

d
@11)  o(v) = (K@), i=0,....d and gp(o):dilZc(K(v )
i=0

Let x € e *K|L. We have - —d>x € $[vo, . .., vq] according to (1.9), thus

2n5/2 Z%’Uz where Zazflandaz_ (d—|—1) 1=0,...,d.

We define

s _ Bf@Y* _

g = o )l/k where (= T4 ons2

P Bzf( z)l/k Oéi2n5/2 .

51' = f( )l/k Where 5i:m,’£:0,...,d,

and hence 3 + Z;j:o B; =1 and Sz + Z?:o Biv; = 0. The condition on the
function f yields that

e F < Bt Byt ...+ By < etlF
and the ratio of any two of 3, B, ..., B4 is at least 1/(4n5/2). In particular,

(B4 Bo+ ...+ Ba)* f(0) = Hi(K (0)),
and the convexity of K implies (cf. (4.10))

d
2)+ Y BiK(v;) = BK () + Y BiK (vi) C K (o).
=0 ;
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We deduce from Lemma 4.1, the stability version of the Brunn-Minkowski
inequality, that there exists v* > 0 depending on n such that for i =0, ..., d,
we have

(4.12) Svol (K (v5), K (0)), 8yl (K (), K (0)) < v*t/2,
d
(4.13) c(K(0)) = Be(K (x)) = > Bic(K (v;)) <2,
i=1 K(o)—K(o)

First we asssume that x = o. In this case, (4.11) and (4.13) yield
(4.14) le(K(0)) = ()l k(o) -rc(0) < 712

Next let z € e *K|L be arbitrary. We have So(x) + Z?:o Bip(vi) = (o)
because ¢ is affine. We recall that C' = K(0) — ¢(K(0)). Let

d
w = (K (0)) — Be(K (2)) — 3 Bie(K (v))
=1

Since By(x) = p(o) — Z?:o Bip(vi), we have

le(K (@) = ()| oo = 1Be(K (x)) —ﬁﬁgo(a:))”co

< BB (@) +w = Be())lle—c | |l = wle—c
B B
_ Nle(K (0) = p(0) = Sy Bile(K (v:) — p(vi))llo-c
B
le(K (0)) — Be(K () — o5, Bic(K (vi)) |e—c
3 :

As p(v;) = ¢(K (v;)) according to (4.11), it follows by (4.13) and (4.14) that

_l’_

@15) el @) - e@loe < T2 < ol

For € e *K|L, by (4.15), (4.12) and (4.10),
Hi((C+p(2))AK (2)) < Hi((C + 0(2)) A(C + (K (2))))

+ Hi((C + e(K (2)))A(K (2) — e(K (2)) + ¢(K (2))))
+ Hi (K (x) = e(K (2)) + (K (x)) AK (z))
< 9P 2yt (C).

Hence, by Fubini’s theorem we get
V(K,A(M + C)) < 9n®2*tV/2V(M + C).

This and Lemma 3.4 yield the required estimate for dy,. U
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5. SOME MORE PROPERTIES OF [ ()

Here we establish some more properties of the log-concave function (cf. (2.3))
fr.L: L = Rso with x — Hi (KN (z+ LL)),

and use the notation introduced in Section 2, i.e., K € K™ is an n-dimensional
centered convex body, L is a d-dimensional subspace L, 1 <d <n —1, and
we set k = n — d. Since we will keep K and L fixed, we just write f(z)
instead of fx r(z). Asin Section 2 let g(x) be the subgradient of f(z), and
we recall that g(z) = V f(z)/f(x) almost everywhere on int (K)|L.

For n > 0, we set

My = {ze€K|L:Inf(z)—Inf(o) = (g(0), ) —n},
K, = Kn(M,+L").
Since In f is concave, both M, and K, are compact and convex.

Lemma 5.1. Let n > 0. Then
/K|L<Vf(x),m)d7-ld(x) < —nV(K\K,).

Proof. Let x € (int K)|L and n > 0, and let us assume In f(z) — In f(0) <
(g9(0),z) —n. Then by (2.2) we have (g(z),z) < (g9(0),z) —n. Hence if V f
exists at x € (int K)|L, then
(Vf(x),x) 0 provided that z € M,),

);

(Vf(x),z) (g(0), f(x)x) — f(x)n provided that = & M,.
We conclude the lemma by (2.4) and the fact that V(K\K;) = f(K|L)\M7, f(z)dz.
O

<
<

Lemma 5.2. Letn € [0,1]. If V(K\K,) < V(K)/(2"¢), then

[0,

e T < /(@) <e" forT= 7n3/2171/2 and x € M,.
f(o)
Proof. By Lemma 3.1 we have K C K, and f(z) > f(o )eld ~" for
x € K. We claim that for +y € K,
(5.1) [{g(0),y)| < 3v/kn.

The concavity of f1/% yields that

1/k _N\1/k (g(0),y)/k (g(0),—y)/k
f(o)l/k 2 f(y) +2f( y) Z f(o)l/ke—n/ke —1_26

Fo) kel <1 " (<9(;,{; y>>2> |

Since €' < 1+ 2t for t € [0, 1], we conclude (5.1).
It follows from § K C K, and —K C nK (since ¢(K) = o) that § (K|L) C
M, and —(K|L) C n(K|L). In particular, if z € M, is arbitrary, then +y €

Y
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M, for y = 5-x. We deduce from (5.1) that |( (0), [{g(0),y)|

z)| = 2n
6nvkn Therefore the lemma follows from f(0)el9(0®) =1 < f(z) < f(0)el9(2)2),

O 2IA

6. PROOFS OF THEOREM 1.1 AND THEOREM 1.2

For the proofs of the two stability theorems 1.1 and 1.2, let K € K™ be

centered, and let
d—e

Vi(LNsS™ 1) > V(K)

for a proper linear subspace L with dim L = d and some ¢ € (0, (2%¢)~°).
As before, for z € K|L let

f(z) = Hp(K N (z+ L)),

According to Lemma 2.2, the condition on V(L N S" 1) is equivalent to
(6.1) / (Vf (@), 2)dHa(z) > —V(K).
K|L

Proof of Theorem 1.1. We set = ¢*/5, and use the notation of Lemma 5.1.
It follows from (6.1) and Lemma 5.1 that

V(K\K,) < /5V(K) < V(K)/(2"e),
and from Lemma 5.2 that
ot < f(z)

= 1(0)
We assume that ¢ is small enough in order to apply Proposition 4.3 with
M. = M, and t = Tn%2e2/>. We deduce the existence of an (n — d)-

dimensional compact convex set C' C L+, and complementary d-dimensional
compact convex set M such that

Syl (K, C + M) < /5.
By Corollary 3.2 implies that
Shom (K, C + M) < "/,
completing the proof of Theorem 1.1. O

<et fort = n3/2e2/5 and x € M.

Proof of Theorem 1.2. We may assume K|L = [—a,b] where 0 < a < b.
Since ¢(K) = o implies —K C nK according to B. Griinbaum (cf.[24], [48,
p. 155]) we have b < na.

We set n = £2/3, and use again the notation of Lemma 5.1. We deduce
from (6.1) and Lemma 5.1 that

(6.2) V(K\K,) < 3V(K) < V(K)/(2"),
and from Lemma 5.2 that
f(z)

(6.3) e ' < o)

<et fort =7n3/2e13 and x € M.
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It follows from Lemma 3.1 and (6.2) that i[—a,b] C M,, therefore the
concavity of In f and (6.3) yield that

(6.4) f(z) < e*flo) for x € [—a,bl.

Let M, = [—ay, by] for a,,b, > 0. Since K\ K, contains two cones, one with

base K(—ay,) and height a — a,, and the other with base K (b,) and height
b — by, we get by (6.3), (6.2) and (6.4) that

a—a,+b—0, _ a—ap+b—>

———Te T flo) £ ——(f(—ay) + f(by))

n n
< V(K\K,) < e3V(K) < e3¢ f(0)(a + b).
In particular,
My (M) = ay, + by > (1 — 2ne3)(a + b).
Here and below ~1,79,... denote positive constants depending on n. We
deduce by (6.3) that if € is small enough, then

af(—a) +bf(b) = nVr(LNS" ) >(1—-e)V(K)>(1—e)Hi(M,)e " f(o)
> (1=mes)(a+b)f(o).

Slilnce b>aand ;35 > r%irl by b < na, (6.4) implies that if € is small enough,
then

F(=a), £(b) = (1 = 72¢3) £(0).
As In f is concave, we have
F(x) > (1= ~2e3) f(0) for z € [~a,b].

However, -9 C(b) + aLer C(—a) C C(0), where C(z) = K N (x+ L*). Thus,

Lemma 4.1 yields that
(6.5)  dwi(C(0),C(=a)) < 3e
Hence,
C = (C(=a) — &) N (C(b) — ) for & = c(C(—a)) and § = c(C(b)).
From (6.4) and (6.5) we get
7,9+ C C K and V(K) < (1 +ves)V([#, 7] + O).

[
=

and dy01(C(0),C(b)) < 3eb.

Using Lemma 3.4, we replace C by a suitably smaller homothetic copy C
such that ¢(C') = o, and obtain that there exist x € £+ C and y € g+ C
satisfying o € [z,y], e *||z|| < [ly|| < €||z|| for s = 755%, and

[2,y) +C C K and V(K) < (1+70)V((2,y] + O).

Finally, if z € [—a,b], then —z/n € [—a,b] and %H C(2) + 747 C(=2/n) C

C(o0). Therefore, Lemma 3.1, Lemma 4.1 and the estimates above imply

K C [,y + (1 + 7se)C.
Which completes the proof of Theorem 1.2. O
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7. STABILITY OF THE U-FUNCTIONAL U(K)

Let m € {1,...,n}. In this section, a finite sequence w1, ..., u,, always
denote points of $"~1, and by lin { X} we denote the linear hull of a set X.
As in [30], we define o,,,(K) > 0 by

(K™ = / LAV g () - - AV i (t)-
UL AUmMF#OD

In particular, o1(K) = V(K), o,(K) = U(K), and for m < n, we have

(7.1)
Tl (K)m—H —

/ N 20 (V(K) — VK(Sn_l N lin{ul, ce ,Um})) dVK(ul) cee dVK(Um)

As Vi (S"tnlin{uy, . .., upm}) < 2 V(K) for linearly independent uy, . . ., tm
according to Theorem II, we deduce that
(7.2) T (K™ > (1 - T) V(E)om(K)™.
n
Therefore the inequality of Theorem 111 follows from

1 —1)! !
UK > SV (R)o ) > 2 T vty = Tvio
Now we assume that
(n!)l/"
U(K) < (1+¢)——— V(K),

where € > 0 is small enough to satify all estimates below. In particular,
€< #é@, where &y comes from Theorem 1.2. Applying (7.1) for m = 1,
(7.2) for m > 2, and using (1 + )" < =1 4 2pe gives

(7.3) /S TH(V(K)fVK(S”_lﬂlin{u})) dVg(u) < (

For any X C S"!, there exists u € X maximizing Vg (S™ ! N lin{u})
because different 1-dimensional subspaces have disjoint intersections with
5™~ We consider linearly independent vy, . .., v, € S® ! such that v; max-
imizes V¢ (S"~'Nlin{u}) for u € S"~!, and v; maximizes V (S" ! Nlin{u})
for all w € S" N\lin{vy,...,v; 1} ifi =2,...,n. Let L = lin{vy,...,v,_1},
and let Vi (5" nlin{v,}) = (2 — ¢)V(K), and hence ¢ € [0, 2] (cf. (1.3)).
Thus, we have

(7.4) Vi (S" ' nlinfv;}) > (£ —t)V(K) fori=1,...,n,
(7.5) Vi (S" ' nlinfu}) < (2 —t)V(K) for u e S*1\L.

We deduce from (7.3), (7.5) and Vg (S"~ ! nlin{u}) < L V(K) for u €
Sm=1N L that

(ZL+ ) V(K)VE (S NL) + 22 V(K) VR (S"'NL) < (%2 4 2ne) V(K)?.

n—1

+ 2n5> V(K)2
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Since Vi (5" 1\L) > L V(K) according to Theorem 1I, we conclude that
t < 2n%. In particular, Vg (S" ' Nlin{v;}) > (2 — 2n%e)V(K) for i =
1,....n by (7.4).

From Theorem 1.2 we find for i = 1,...,n, that there exist an (n — 1)-
dimensional compact convex set C; C v with ¢(C;) = o, and xz;,y; € 0K

I=e

such that y; = —e®*iz, where |s;| < ny,e6, and for i = 1,...,n, we have
(7.6) [z:,9i] + Ci C K,

(7.7) VI ([ei, il + C) < e V(K),

(7.8) K C [z, 5] + (1 + 29,25)C;.

Observe that v; is an exterior normal at x;, ¢ = 1,...,n. After a linear trans-
formation of K, we may also assume that vy,...,v, form and orthonormal

system, and (v;, z; — y;) = 2. In particular,
_ . 1
(7.9) e T < (v, ), (—ui, yi) < €T, T =nYes.

In what follows, we write 71,72, ... for positive constants depending on n
only. It follows from combining (7.6), (7.7) and (7.9) that

(7.10) 1 —mes < Hur(C)/Hao1(Cj) < 1+med ford,je {1,...,n}.
For any ¢ # j € {1,...,n}, we write

wi(vj) = he;(vj) +heoi(=v)),

ai(vy) = max{Ha o(Ci N1 (tu; +v1)) : —hey(~vy) < hey ()}
and recall that hc,(x) denotes the support function. Hence, w;(v;) is the
width of C; in the direction of v;. Observe that C; contains a bipyramid

whose basis has volume a;(v;) and of height w;(v;) which gives the lower
bound in (7.11). For the upper bound we integrate along Rv; to get

(7.11) ﬁwi(vj)ai(vj) < 'anl(cl) < wi(vj)ai(vj) for ¢ 75] S {1, . ,n}.

Let p # q € {1,...,n}, and let t1,tg € R be defined by the properties
that t1x, and tox, lie in the supporting hyperplanes to C; +x, with exterior
normals v, and —vj, respectively. In particular, we can choose t; > ¢y and
t« € R such that

(vp, t1wp) = ety (vp)
(—vp, toxp) = th+xq (—vp)
Hn—2(Cq N (Lep + UIJJ_)) = aq(vp).
It follows from (7.8) and (7.9) that
(7.12) t1 —to > wq(vp)/2,

Cy N (tep + vy ) C tury + (1 + 274657)C.
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Therefore, since C; C v;-, we get ap(vg) > (14 27}156%)_("_2)&(1(01,), and
hence interchanging the role of p and ¢ leads to
1 — ypetn < ag(vy)/ag(vp) < 1+ yacon.
We deduce from (7.10) and (7.11) that
1
(7.13) 1wl o,
2n we(vp)
Let m € {0,1}. According to (7.6) and t,,zp € [xp, yp|, we have t,,x,+C) C
K, and hence
(tmTp, vg) + he, (vg) < hic(vg) = (4, V).
On the other hand, the definition of ¢,, shows that Cy+x, intesects tmwp—i-fuj;
in some z, and hence z is contained in t,,x, 4+ (1 +27h56%)0p by (7.8), which
in turn yields that
. L
(tmp, vg) + (1 + 2967 ) he, (Vg) = (2, vq) = (Tq, Vg)-
We conclude that
1
(7.14) he, (vg) < (xg — tmzp,vg) < (14 2’yh86n)hcp (vg) form =0,1,
and hence
.1 . L
[((t1 — tO)xp»UqH < 2ypetn th (Uq) < 2ypedn wp(“q)-
Applying (7.12), (7.13), and the analoguous argument to y, implies that

a1
(7.15) [(Zps vg) |, [{Yp» Vg)| < v3E0m
Let P be the parallepiped
P={zeR": (z,v) < (mij,v;), (x,—v;) < (y;,—vi), i =1,...,n},

and hence each facet of P contains one of z; + C;, 4, + C;, i =1,...,n. We
claim that

1
7.16 — P CK.
( ) in <
We suppose that (7.16) does not hold and seek a contradiction. Possibly

reversing the orientation of some of the v;, we may asssume that

1 n
(7.17) z= EZ(@,UQW ¢ K.
i=1
In particular, ||z|| < ﬁ by (7.9), and there exists u € S"~! such that
(7.18) (u,z) > (u,x) forx € K.

There exists v, such that |(u,vp)| > 1/4/n, and hence (7.9) and (7.15) yield
that (u,x,) > ﬁ —7456% if (u,v,) > 1/y/n, and (u,y,) > ﬁ — 7456% if
(u,vp) < —1/y/n. However (u,z) < |z| < ﬁ, which contradicting (7.18).

Therefore we conclude (7.16).
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Fori=1,...,n, let
Eoi—1 = [0,x; + C;] and Zy; = [o,y; + Cil.

Since the basis of the cones Zi,...,Z9, lie in different facets of P, the
interiors of =1, ..., =y, are pairwise disjoint. By (7.7) and (7.9) we know
V(E) > (5 — 755é)V(K), and so we get

V(E) > (1 - 2n75¢0)V(K) for E= %, 5 C K.
We conclude from (7.16) that
V(P\K) < V(P\E) = (4n)"V (£ P\E) < (4n)"V (K\E) < ’766%V(K)’

and hence Lemma 3.1 (ii) implies that (1 — fygeﬁ)P C K, completing the
proof of Theorem 1.3.
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