ON THE DISCRETE LOGARITHMIC MINKOWSKI PROBLEM

KAROLY J. BOROCZKY, PAL HEGEDUS, AND GUANGXIAN ZHU

ABSTRACT. A new sufficient condition for the existence of a solution for the logarithmic Minkowski
problem is established. This new condition contains the one established by Zhu [69] and the discrete
case established by Boroczky, Lutwak, Yang, Zhang [6] as two important special cases.

1. INTRODUCTION

The setting for this paper is n-dimensional Euclidean space R". A convexr body in R" is a
compact convex set that has non-empty interior. If K is a convex body in R", then the surface
area measure, Sk, of K is a Borel measure on the unit sphere, S"!, defined for a Borel w C S™!
(see, e.g., Schneider [61]), by

SK(w):/ L)
acEVK w

where vy : 9’ K — S™ ! is the Gauss map of K, defined on &' K, the set of points of K that have
a unique outer unit normal, and H" ! is (n — 1)-dimensional Hausdorff measure.

As one of the cornerstones of the classical Brunn-Minkowski theory, the Minkowski’s existence
theorem can be stated as follows (see, e.g., Schneider [61]): If p is not concentrated on a great
subsphere of S"!, then y is the surface area measure of a convex body if and only if

/S udy(u) = 0.

The solution is unique up to translation, and even the regularity of the solution is well investigated,
see e.g., Lewy [40], Nirenberg [57], Cheng and Yau [12], Pogorelov [60], and Caffarelli [9].

The surface area measure of a convex body has clear geometric significance. Another important
measure that is associated with a convex body and that has clear geometric importance is the
cone-volume measure. If K is a convex body in R"™ that contains the origin in its interior, then the
cone-volume measure, Vi, of K is a Borel measure on S"~! defined for each Borel w C S"~! by

1
Vk(w) = —/ z - v () dH" 7 (z).
N Jzevt(w)
For references regarding cone-volume measure see, e.g., [5-8,42-44,55,56, 58, 62-64,69].
The Minkowski’s existence theorem deals with the question of prescribing the surface area mea-
sure. The following problem is prescribing the cone-volume measure.

Logarithmic Minkowski problem: What are the necessary and sufficient conditions on a
finite Borel measure p on S™! so that p is the cone-volume measure of a convex body in R™?

In [45], Lutwak showed that there is an L, analogue of the surface area measure (known as
the L, surface area measure). In recent years, the L, surface area measure appeared in, e.g.,
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[1,4,10,22,23,25,26,31,42-44,47-49, 52,53, 55,56,58,59,64]. In [45], Lutwak posed the associated
L, Minkowski problem which extends the classical Minkowski problem for p > 1. In addition,
the L, Minkowski problem for p < 1 was publicized by a series of talks by Erwin Lutwak in the
1990’s. The L, Minkowski problem is the classical Minkowski problem when p = 1, while the
L, Minkowski problem is the logarithmic Minkowski problem when p = 0. The L, Minkowski
problem is interesting for all real p, and have been studied by, e.g., Lutwak [45], Lutwak and
Oliker [46], Chou and Wang [14], Guan and Lin [21], Hug, et al. [35], Béroczky, et al. [6]. Additional
references regarding the L, Minkowski problem and Minkowski-type problems can be found in,
e.g., [6,11,14,20-24,33-35, 38, 39,41, 45,46,51,54,62,63,70,71]. Applications of the solutions to
the L, Minkowski problem can be found in, e.g., [2,3,13,15,16,27-29, 36, 37,50, 66, 68].

A finite Borel measure p on S™! is said to satisfy the subspace concentration condition if, for
every subspace & of R", such that 0 < dim& < n,

dim &

n

(1.2) pEns" ) < p(S"),
and if equality holds in (1.2) for some subspace &, then there exists a subspace &', that is comple-
mentary to £ in R", so that also
. dim¢&
p(& NS = ——=p(S").

The measure g on S™ ! is said to satisfy the strict subspace concentration inequality if the
inequality in (1.2) is strict for each subspace £ C R"™, such that 0 < dim¢ < n.

Very recently, Béroczky and Henk [5] proved that if the centroid of a convex body is the origin,
then the cone-volume measure of this convex body satisfies the subspace concentration condition.
For more references on the progress of the subspace concentration condition, see, e.g., Henk et
al. [32], He et al. [30], Xiong [67], Boroczky et al. [8], and Henk and Linke [31].

In [6], Boroczky, et al. established the following necessary and sufficient conditions for the
existence of solutions to the even logarithmic Minkowski problem.

Theorem 1.1 (Boroczky,Lutwak,Yang,Zhang). A non-zero finite even Borel measure on S™™1 is
the cone-volume measure of an origin-symmetric convex body in R™ if and only if it satisfies the
subspace concentration condition.

The convex hull of a finite set is called a polytope provided that it has positive n-dimensional
volume. The convex hull of a subset of these points is called a facet of the polytope if it lies entirely
on the boundary of the polytope and has positive (n — 1)-dimensional volume. If a polytope P
contains the origin in its interior and has N facets whose outer unit normals are wuq, ..., uy, and
such that if the facet with outer unit normal u; has (n — 1)-measure a; and distance from the
origin hy for all k € {1,..., N}, then

1 N
Vp = ﬁ Z hkak(Suk
k=1

where 9, denotes the delta measure that is concentrated at the point uy.

A finite subset U (with no less than n elements) of S"~! is said to be in general position if any
k elements of U, 1 < k < n, are linearly independent.

For a long time, people believed that the data for a cone-volume measure can not be arbitrary.
However, Zhu [69] proved that any discrete measure on S"~! whose support is in general position
is a cone-volume measure.
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Theorem 1.2 (Zhu). A discrete measure, u, on the unit sphere S"' is the cone-volume measure
of a polytope whose outer unit normals are in general position if and only if the support of u is in
general position and not concentrated on a closed hemisphere of S™ 1.

A linear subspace £ (1 < dim¢& < n — 1) of R™ is said to be essential with respect to a Borel
n—1 ; : : n—1
measure g on S™ ! if € Nsupp(u) is not concentrated on any closed hemisphere of £ N .S™~ 1.

Definition 1.3. A finite Borel measure p on S 1 is said to satisfy the essential subspace concen-
tration condition if, for every essential subspace & (with respect to ) of R™, such that 0 < dim¢ <
n?

dim &

(1.3) pEN s < p(s" ),
and if equality holds in (1.8) for some essential subspace & (with respect to ), then there exists a
subspace &', that is complementary to & in R", so that
. dim¢&
(1.4) p(& NS = ——=p(S").

Definition 1.4. The measure i on S™~! is said to satisfy the strict essential subspace concentration
inequality if the inequality in (1.3) is strict for each essential subspace & (with respect to ) of R™,
such that 0 < dim& < n.

We would like to note that if u is a Borel measure on the unit sphere that is not concentrated
on a closed hemisphere and satisfies the essential subspace concentration condition, and & is an
essential subspace (with respect to p) that reaches the equality in (1.3), then by Lemma 5.2, &’ (in
(1.4)) is an essential subspace with respect to .

It is the aim of this paper to establish the following.

Theorem 1.5. If u is a discrete measure on S™~ ' that is not concentrated on any closed hemisphere
and satisfies the essential subspace concentration condition, then u is the cone-volume measure of
a polytope in R™ containing the origin in its interior.

If 4 is a non-trivial even Borel measure on S™ !, and £ is a k-dimensional linear subspace
of R™ spanned by some vectors vy, ..., v € supp(p) for 1 < k < n — 1, then —vy,...,—v; €
supp(u), as well, and hence ¢ is an essential subspace. In particular, for even discrete measures,
Theorem 1.5 is equivalent to the sufficient condition of Theorem 1.1. However, there are non-even
discrete measures that satisfy the essential subspace concentration condition, but not the subspace
concentration condition. For example, if a k-dimensional subspace &, 1 < k < n — 1, intersects
the support of the measure in k + 1 unit vectors uy, ..., u; such that uq,..., u; are independent,
and ug = aquy + ... + aguy for aq,...,a, > 0, then there is no condition on the restriction of
the measure to £ N S"~L. Therefore, for discrete measures, Theorem 1.5 is a generalization of the
sufficient condition of Theorem 1.1.

We claim that if the support of a discrete measure p is in general position, then the set of essential
subspaces (with respect to ) is empty. Otherwise, there exists a subspace £ with 1 < dim¢& < n—1
such that supp(u) N € is not concentrated on a closed hemisphere of S*~1N¢. Then we can choose
dim¢ + 1 (< n) vectors from supp(p) N ¢ that are linearly dependent. But this contradicts the
fact that supp(u) is in general position. From our declaration, we have, Theorem 1.5 contains
Theorem 1.2 as an important special case.

In R?, Theorem 1.5 leads to the main result of Stancu ( [62], pp. 162), where she applied a
different method called the crystalline deformation.

New inequalities for cone-volume measures are established in section 6.
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2. PRELIMINARIES

In this section, we collect some basic notations and facts about convex bodies. For general
references regarding convex bodies see, e.g., [17-19,61,65].

The vectors of this paper are column vectors. For z,y € R", we will write x - y for the standard
inner product of  and y, and write |z| for the Euclidean norm of z. We write S"~! = {x € R" :
|z| = 1} for the boundary of the Euclidean unit ball B” in R", and write x,, for the volume of the
unit ball. Let Vi (M) denote the k-dimensional Hausdorff measure of an at most k-dimensional
convex set M. In addition, if K = n — 1, then we also use the notation |M].

Suppose X1, X5 are subspaces of R", we write X; L Xy if z1-29 =0 for all z € X; and 25 € Xs.
Suppose X is a subspace of R™ and S is a subset of R", we write S|x for the orthogonal projection
of S on X.

Suppose C'is a subset of R", the positive hull, pos(C'), of C is the set of all positive combinations
of any finitely many elements of C. Let lin(C') be the smallest linear subspace of R” containing
C. The diameter of C' is defined by

d(C) = sup{lz —y| : z,y € C}.
For Ky, Ko C R™ and ¢y, ¢y > 0, the Minkowski combination, ¢; K1 + ¢o K5, is defined by
K|+ oKy = {Cll‘l + oo i T € Kl,ZEQ € Kg}
The support function hg : R — R of a compact convex set K is defined, for x € R", by
h(K,z) =max{z-y:y € K}.
Obviously, for ¢ > 0 and x € R", we have
h(cK,z) = h(K,cx) = ch(K, x).
The convex hull of two convex sets K, L in R" is defined by
K, Lj={z:z=Xx+(1-Ny,0<A<land z,y € KUL}.
The Hausdorff distance of two compact sets K, L in R" is defined by
(K,L)=inf{t>0: K C L+tB",L. C K+tB"}.
It is known that the Hausdorff distance between two convex bodies, K and L, is
(K,L) = max, |h(K,u) — h(L,u)]|.
ueS™ "

We always consider the space of convex bodies as metric space equipped with the Hausdorff
distance. It is known that if a sequence {K,,} of convex bodies tends to a convex body K in
R"™ containing the origin in its interior, then Sk, tends weakly to Sk, and hence Vi tends weakly
to Vi (see Schneider [61]).

For a convex body K in R", and u € S"™ !, the support hyperplane H(K,u) in direction u is
defined by

HKu)={zeR":z-u=h(K,u)},
the face F(K,u) in direction u is defined by
F(K,u)=KNH(K,u).

Let P be the set of all polytopes in R™. If the unit vectors uq, ..., ux are not concentrated on a
closed hemisphere, let P(uy,...,uy) be the set of all polytopes P € P such that the set of outer
unit normals of the facets of P is a subset of {uy,...,uyx}, and let Py (uq, ..., uy) be the the set of
all polytopes P € P such that the set of outer unit normals of the facets of P is {uy,...,un}.
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3. AN EXTREMAL PROBLEM RELATED TO THE LOGARITHMIC MINKOWSKI PROBLEM

Let us suppose 71, ..., v € (0,00), and the unit vectors us,...,uy are not concentrated on a
closed hemisphere. Let

N

(3.0) p=> Yibu,
i=1

and for P € P(uq,...,un) define ®p : Int (P) — R by

0r(6) = [ 10w (h(Pou) =€) duu)
(3.1) N
= Zyklog (h(P,Uk) — f . uk),
k=1

where Int (P) is the interior of P.
In this section, we study the following extremal problem:

(3.2) inf{ max Po(§) : Q € P(uy,...,uy) and V(Q) = |,u|} )
&elnt (Q)

where |u| = 351, .

We will prove that the solution of problem (3.2) solves the corresponding logarithmic Minkowski
problem.

For the case where uy, ..., uy are in general position and @) € Py(uy, ..., uy), problem (3.2) was
studied in [69]. The results and proofs in this section are similar to [69]. However, for convenience
of the readers, we give detailed proofs for these results.

Lemma 3.1. Suppose p = Z,i\;l Yilu, 18 a discrete measure on S"! that is not concentrated on
a closed hemisphere, and P € P(uy,...,uy), then there exists a unique point £(P) € Int (P) such
that

®p(E(P)) = max Pp(E).

¢eint (P)

Proof. Let 0 < A < 1 and &1,& € Int (P). From the concavity of the logarithmic function,

ADp(E) + (1 - \)@p(€) = A / log (A(P, ) — & - u) du(u)

Sn—1

S1=0) [ log(h(Pou) = & wdn(w

I
WE

e Mog((Pur) = &1 - uk) + (1 = A) log(R(P,ur) = & - u)]

el
Il
—

] =

Vi log [(P, ur) — (A§y + (1 — A)&a) - ug]

i
I

= ®p(A1 + (1 = N)&2),

with equality if and only if & - up = & - u for all £ = 1,..., N. Since the unit vectors uq,...,uy
are not concentrated on a closed hemisphere, R"=lin{uy, ...,uy}. Thus, £ = &. Therefore, ®p is
strictly concave on Int (P).

Since P € P(uy, ...,uy), for any x € OP, there exists some ig € {1,..., N} such that

h(P,u,) = x - wj,.
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Thus, ®p(§) — —oo whenever ¢ € Int (P) and £ — x. Therefore, there exists a unique interior
point £(P) of P such that

Dp(§(P)) = (nax dp ().

Obviously, for A > 0 and P € P(uy, ..., uy),

(3-3) §(AP) = XE(P),

and if P; € P(uy,...,uy) and P; converges to a polytope P, then P € P(uy, ..., uy).
For the case where uy, ..., uy are in general position, the following lemma was proved in [69].

Lemma 3.2. Suppose j1 = 25:1 VO, 8 a discrete measure on S™! that is not concentrated on a
closed hemisphere, P; € P(uq,...,uy) and P; converges to a polytope P, then lim; . &(F;) = &(P)
and
lim @, (¢(P)) = Bp(E(P)).
Proof. Since {(P) € Int (P) by Lemma 3.1, we have
liminf ®p,(§(F;)) > liminf p, (§(P)) = @p((P)).
i—00 100

Let z be any accumulation point of the sequence {£(P;)}; namely, the limit of a subsequence
{&(Py)}. Since ®p. (£(F;)) is bounded from below, and h(P,uy) — {(F;) - u is bounded from above
for k=1,...,N, it follows that

lim inf(h(P ) — £(P) - ug) = liminf(h(Ps ug) — £(P) - ug) > 0
for k =1,..., N, and hence z € Int (P). We deduce that
Dp(2) = lim Dp(E(P)) = lim B, (E(Py)) > liminf Dy (6(P) > Dp(E(P).
Therefore Lemma 3.1 yields z = £(P). O
The following lemma will be needed, as well.
Lemma 3.3. Suppose p = Zszl YOy, 18 a discrete measure on S™' that is not concentrated on

a closed hemisphere, P € P(uy,...,uyn), then

=0.

N
U
;%h(Ruk) —&(P) - we

Proof. We may assume that £(P) is the origin because for z,£ € Int P, we have ®p_,(§ — x) =
$p(€). Since ¢ p(&) attains its maximum at the origin that is an interior point of P, differentiation
gives the desired equation. 0

Lemma 3.4. Suppose p = Z,i\;l Yilu, 18 a discrete measure on S"! that is not concentrated on
a closed hemisphere, and there exists a P € Py(uq, ...,uy) with {(P) =0, V(P) = |u| such that

®p(0) = inf {gerlrlll?%(@ D0(&) : Q € P(ug,...,un) and V(Q) = |,u|} .

Then,

N
k=1
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Proof. According to Equation (3.3), it is sufficient to establish the lemma under the assumption
that |u| = 1.

From the conditions, there exists a polytope P € Py(uq,...,uy) with £(P) is the origin and
V(P) =1 such that

®p(0) = inf {fg{lg}({@) Q0(€): Q € Pluy,...,un) and V(Q) = 1} .

For 71, ...,7x € R, choose |t| small enough so that the polytope

N
Pt = m{]; CX Uy < h(P,U'L) +t7’1} € PN(Ul, ...,UN).
i=1
In particular, h(P;, u;) = h(P,w;) + tr; for i = 1,...,n, and Lemma 7.5.3 in Schneider [61] yields
that

V(P)
o = T|F(P,u)|.

i=1

Let A(t) = V(B,)"=. Then A(t)P, € Py(uy, ..., uy), VM) P) =1, A(t) is C* and

N

(35) N(0) =~ S mlF(P )]

i=1

B(t) = max /  Tog (N®)Pa ) — €< ) di)

=3 log(A(#)A(Pry ) — £(1) - ).

It follows from Lemma 3.3, that

N
Uk, i
3.7 ’ =0
(8:7) ; TNORP un) — €(1) - un
for i = 1,...,n, where u, = (ug1, ..., ur,)". In addition, since £(P) is the origin, we have
ol u
3.8 0.
(3:8) Z%h(P, ur)

Let F' = (Fy,..., F,) be a function from a small neighbourhood of the origin in R"*! to R™ such
that

Uk,
T NOR(Pr ) — (Exttps + e + Enttron)

in(tagla 7571) =

IM-

for i =1,...,n. Then,

OF; _ i otV OR(P ) + A7)

O |61 en) p APy, ug) — (E1upy + oo + Entien)]?
OF; al Uk iUk,

9; (t&1sbn) - ; o APy ug) — (Grug + oo+ Enupn))?
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are continuous on a small neighborhood of (0,0, ...,0) with

<8F ) Z
—_— ukuk 5
(0,-50)/ e h(P

where ukug is an n X n matrix. Since the unit vectors uy, ..., uy are not concentrated on a closed
hemisphere, R" =lin{uy, ..., ux}. Thus, for any x € R™ with x # 0, there exists a u;, € {u,...,un}
such that wu;, - © # 0. Then,

(Z G ukuk> T = Z m(m g )?

Yio
> 7 TR
- h(P; ui0)2 <w uZO)

Therefore, (—§ . )) is positive definite. By this, the fact that F;(0,...,0) =0 for i = 1,...,n, the
fact that gg is contmuous on a neighborhood of (0,0, ...,0) for all 1 <4,j < n and the implicit

2>0.

function theorem, we have
§'(0) = (£(0), ..., £,(0))
exists.
From the fact that ®(0) is a minimizer of ®(¢) (in Equation (3.6)), Equation (3.5), the fact that
SV 7 = 1 and Equation (3.8), we have
0= <I>/(0)

Z h(P, ) + NO) PG, —€1(0) -y
- 7’“ h(P, uy)

S T E(Pws) [V (Poug) + 73, — €(0) - w
- 27k 1P, up)

_ Z| PUZ|T’L Z VETk £(0) - XN: Uk
i—1 h Puk — PYkh(P, uk)

-3 (h(fz,kuw ) ‘FUZW)

k=1

Since 7, ..., Ty are arbitrary, we deduce that v, = %h(P, ug)|F(P,ug)| for k=1,...,N. O

4. EXISTENCE OF A SOLUTION OF THE EXTREMAL PROBLEM

In this section, we prove Lemma 4.7 about the existence of a solution of problem (3.2) for the
case where the discrete measure is not concentrated on any closed hemisphere of S"~! and satisfies
the strict essential subspace concentration inequality. Having the results of the previous section,
the essential new ingredient is the following statement (see Lemma 4.5).

If 11 is a discrete measure on S™! that is not concentrated on any closed hemisphere of S"~! and
satisfies the strict essential subspace concentration inequality, and {P,,} is a sequence of polytopes
of unit volume such that the set of outer unit normals of P,, is a subset of the support of i, and
lim,;, 00 d(Py,) = 00 then

lim ®p (£(P)) = 0.

m— 00
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It is equivalent to prove that any subsequence of {F,,} has some subsequence {P,,} such that
limy, o0 Pp_, (§(Prr)) = 00.

To indicate the idea, we sketch the argument for n = 2. Let suppu = {us,...,un}, and let
wy, = min{hp, (u) + hp, (—u) : v € S'} be the minimal width of P,,. Since lim,, ;o d(Py,) = oo
and V(P,,) = 1, we have lim,, ;oo w,, = 0. As P,, is a polygon, we may assume that w,, =
hp, (u1) + hp, (—uy) possibly after taking a subsequence and reindexing. If the angle of u; and u;
is o € (0,7) then Vi(F (P, u;)) < wy,/ sin a, thus lim,, o d(P,,) = oo implies that —u; € supp p
for large m, say uy = —uy. Let v € ST be orthogonal to uy, and let v; = u({u;}) fori =1,..., N,
We may translate P, in a way such that o € Int P, in a way such that hp_(u1) = hp, (us) = w,,/2,
and hp, (v) = hp, (—v) hold for large m. Thus V' (P,,) = 1 yields the existence of a constant ¢; > 0
such that hp, (u;) > ¢1/wy, for i = 3,...,N. Now linu,; is an essential subspace with respect
to u, and hence v; + 72 < v3 + ... + yn according to the strict essential subspace concentration
inequality. Therefore writing ¢o = min{2, ¢;}, we have

N
liminfexp (®p, (£(F,))) > liminfexp (Pp,(0)) = liminf H hp,, (u;)"
i=1

m—00 m—00 m—00 - -
w1+ [ ¢ Y3t +YN c Y3t YN =YL V2
>  lim (—m> (—1) > lim =2 = 00.
m—oo \ 2 Wy, m—oo \ Wy,

In the higher dimensional case, the idea is the very same. Only instead of one essential linear
subspace like in the planar case, we will find essential subspaces Xy C ... C X,_; in a way such
that for j = 0,...,¢ — 1, Py|x. is "much larger” than P,|x,; for large m after taking suitable

J

subsequence. This is achieved in the preparatory statements Lemmas 4.1 to 4.4.
Given N sequences, the first two observations will help to do book keeping of how the limits of
the sequences compare.

Lemma 4.1. Let {hi;}52,, ..., {hn;}32, be N (N > 2) sequences of real numbers. Then, there
exists a subsequence, {j,}°2, of N and a rearrangement, iy, ...,in, of 1,..., N such that

hll]n S th]n S e S h/

iNjn?
for alln € N.

Proof. We prove it by induction on N. We first prove the case for N = 2. For j € N| consider the
sequence

h; = max{hy;, ho;}.
Since {h;}32, is an infinite sequence and h; either equals to hy; or equals to hy; for all j € N, there
exists an iy € {1,2} and a subsequence, {j,}>°;, of N such that

N, = hisj,
for all n € N. Let 7, € {1,2} with iy # i5. Then,
hi i <h

iljn i2jn7
for all n € N.
Suppose the lemma is true for N = k (with & > 2), we next prove that the lemma is true for

N =k + 1. For j € N, consider the sequence
hj = max{hlj, hgj, . hk—&—lj}‘
Since {hj}?il is an infinite sequence and h; equals one of hyj, hyj, ..., hxq1j for all j € N, there
exists an ix41 € {1,2,...,k + 1} and a subsequence, {j,}>°, of N such that
h; =h

Jn l+1Jn
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for all n € N.
Consider the sequences {h;;, }o2; (1 <i < k+ 1 with ¢ # i41,). By the inductive hypothesis,

there exists a subsequence, j,,, of j, and a rearrangement, 1, ..., i, of 1, ..., z'k/:l, ..., k+1 such that
hiljnl < hi?j”l <...<Z h
for all I € N. By this and the fact that h;, = h;,,;, forall [ € N, we have
hiljnl S h‘7;2jnl S S hikjnl S hik+1jnl
for all [ € N. O
Lemma 4.2. Let {hy;}32,, ..., {hn;}52, be N (N > 2) sequences of real numbers with
hij < hgj < ... < hyj

ik:jnl

for all 7 € N, lim;_,o h1; = 0 and lim;_,o h; = 0o. Then, there exist ¢ > 1,
l=ap<a <...<o < N<I<N+1=a4
and a subsequence, {j, 152, of N such that if i =1, ..., q, then

lim —29" = oo,
n—00 haz 1jn
if1=0,...,q, and a; <k < 1 — 1, then
B
lim —~n
n—oo haz]n
exists and equals to a positive number.
Proof. Let ag = 1. By conditions,
g o hey g
hlj 15 hlj

mj_,ooZ—? either exists (equals to a positive number) or goes to oo, and limjﬁm};—i’?‘ = 00. Thus,
J J
there exists an a; (1 < ay < N) such that for 1 <i < a; — 1,

— hij

lim; o — < 00
and

e «1]

lim; 00— = 00

Hence, we can choose a subsequence, {j/}°2,, of N such that
lim hangy

=
n—oo hl]% ’

and for 1 <1< aq — 1,

. [
13 haj
By choosing a3 — 2 times subsequences of j/, we can find a subsequence, {j//}>,, of {j/}°,
such that "
lim —24n — 00,
134
and for 1 <1 <aq — 1,
h

. ,L s
lim —~
n=oo hajy
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exists and equals to a positive number.
By repeating (at most N —ay times) similar arguments for the sequences {h;;n }o2 | (y < i < N),
we can find ¢ > 1,

l=ap<a <...<og < N<N+1=a4

and a subset, {j,}°°,, of N that satisfy the conditions in the lemma. O
The following lemma compares positive hull and linear hull.

Lemma 4.3. Suppose uy,...,u; € S (d>2), R = lin{uy,...,w}, and uy, ..., u; are not concen-
trated on a closed hemisphere of St then

R? = pos{uy, ..., u;}.
Moreover, there exists X > 0 depending on ui, ...,u; such that any u € S can be written in the
form
u = ai1ui1 + ...+ aiduid

where {u;,, ..., w;, } CA{ur, ..., } and 0 < ag;y,...;a;, < A\
Proof. Let @ be the convex hull of {uy, ...,u}, which is a polytope. Since uy, ..., u; are not concen-
trated on a closed hemisphere of S¢~!, the origin is an interior point of Q. In particular, rB? C Q
for some r > 0.

For u € S% !, there exists some ¢ > r such that tu € 9Q. It follows that tu € F for some facet

F of ). We deduce from the Charateodory theorem that there exists vertices wu;,, ..., u;, of I’ that
tu lies in their convex hull. In other words,

tu = a; u;; + ..o+ QU
where a;,,...,a;;, > 0 and o + ... + a;; = 1. Therefore we choose a;;, = oy, /t < 1/r for
j=1,...,d, which in turn satisfy u = a;,u;, + ... + a;,u;,. In particular, we may take A = 1/r. [

The following lemma will be the last preparatory statement.

Lemma 4.4. Suppose u is a discrete measure on S™! that is not concentrated on any closed
hemisphere of S~ with supp(u)= {u1,...,un} and p(u;) = v; fori=1,...,N. If P,, is a sequence
of polytopes with V(Py,) = 1, £&(P,,) is the origin, the set of outer unit normals of P, is a subset
of {u1,...,un}, limy, o d(Py,) = 00 and

h(Pm,Ul) S h(Pm,’LLQ) S S h(Pm,UN)

for all m € N. Then, there exist ¢ > 1, and 1 = ap < a1 < ... <oy < N < N+ 1 = ag41 such
that if 7 =1,...,q, then

(P, g
(4.0a) fi o tas)

m—00 h(Pm7 uaj_1> o

and if j =0,...,q and o;; < k < a4 — 1, then

(4.0b) lim S )

— " = 1 < 0.
oo h(Pm7uaj> kj o0

Moreover, X; = pos{uy, ..., uq, ,—1} are subspaces of R™ for all 0 < j < q and
1 <dim(X,) < dim(X;) < ... < dim(X,) = n.
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Proof. By the conditions that lim,, . d(P,,) = oo, V(K) = 1 and h(Pp,u1) < h(Pp,uz) <
h( P, uy) for all m € N, we have,

lim h(P,,u;) =0and lim A(P,,ux) = 0.

m—00 m— 00

IN

From Lemma 4.2, we may assume that there exist ¢ > 1, and
l=ap<a <...<o < N<I<N+1=q4

that satisfy Equations (4.0a) and (4.0b).
For 7 =0,...,q — 1, we consider the cone

Yj = pos{ui, ..., Ua,,, 1}
and its negative polar
Yi={veR":v-y; <O0foralli=1,.. a;,—1}.

Let 0<j<¢g-1,1<p<ajy—landve¥;n S™=1. From the condition that £(P,,) is the
origin and Lemma 3.3,

N
Z Z(U uz
h(Pm, u;)

=1

By this and the fact that v € ¥ N .S™~ 1,

h( Py, up)
OZ%U Up E hP up%v Uz)
’L#p mo Z
h(P,,,u,)
> _ j : my Yp) o
- ' h(Pm,U,Z) ryl(rv UZ)
120541
B Z h(Pm,up)ﬁy'
o X h(Pm,'Ll,l) v
1200541

By this, (4.0a) and (4.0b), we have, 7,(v - u,) is no bigger than 0, and no less than any negative
number. Thus,
v-u, =0
for all p=1,...,0511 — 1 and v € X5 N S"". Then, for any u € lin{uy, ..., uq,,,~1} and v € ¥,
u-v = 0. Hence,
X0 lin{ug, ., e, 1} = {0}

We claim that {uy, ..., uq,,,~1} is not concentrated on a closed hemisphere of "~ 'Nlin{us, ..., ta, 1}
Otherwise, there exists a vector uy € lin{uy, ...,uaj+1,1} such that up # 0 and up - u, < 0 for
all p = 1,...,a5:1 — 1. This contradicts the fact that ¥ N lin{uy, ..., ua,,, 1} = {0}. Hence,
{uy,...,uq,,,—1} is not concentrated on a closed hemisphere of S"~' N lin{uy, ..., uq,,,~1}. By
Lemma 4.3,

lin{us, ..., o, —1} = Pos{us, ..., Ua,,,—1}-

Let X; = pos{ui, ..., U, 1}, dj = dim X for j = 0,...,q, and d_; = 0. Obviously, dy > 1 and

d, = n. We claim that dy < d; < ... < d,. Otherwise, there exist 0 < k <! < ¢ such that d; = d,

and thus X, = X;. We write A > 0 for the constant of Lemma 4.3 depending on uy,...,uy. By
Lemma 4.3, there exist u;,, ey Uiy € {ur, o tay 1} and 0 < ;s ..y a;, < A such that

Ugy = Qg Uz + ...+ Aig, Uig, -
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Hence,
h( Py te,) = h( Py, aiyuiy, + ... + aidkuidk)
< ap (P wiy) + oo+ @iy h(Prs wiy ),
for all m € N. But this contradicts (4.0a) and (4.0b). Therefore,
1<dy<di <..<dg=n.
0J

Lemma 4.5. Suppose u is a discrete measure on S™! that is not concentrated on any closed
hemisphere of S"!, and satisfies the strict essential subspace concentration inequality. If P, is a
sequence of polytopes with V(Py,) = 1, £(P,,) is the origin, the set of outer unit normals of P, is
a subset of the support of p and lim,, . d(P,,) = oo, then

/ log h( Py, w)dpu(a)
Snfl

1s mot bounded from above.

Proof. Without loss of generality, we can suppose |u| = 1. Let supp(p) = {u,...,un}, and
p({u;}) =vi,i=1,..., N. From Lemma 4.1, we may assume that

(4.1) h(Ppyur) < ... < (P, un),

for all m € N. Since lim,;, o d(Py,) = 00 and V(K) = 1,
lim h(Pp,u;) =0and lim h(P,,uy) = occ.
m—0o0

m—00
By Lemma 4.4, there exist ¢ > 1, and
l=ap<a <...<o < N<I<N+1=a4
such that if j =1, ..., ¢, then
h( P, tq,)
4.2 lim —————— =
(4.22) mose (Pt )
and if j =0,...,q and o; <k < oj4; — 1, then

h(P
(4.2b) lim J2(Fm: )

—= =t < 00.
m—00 h(Pmauaj) 7

Moreover, X; = pos{ui, ..., Uy, ,~1} are subspaces of R" with respect to u for all 0 < j < ¢ with
1<dy<d; <...<dy=n,

where d; = dim(Xj). In particular, Xo,..., X, 1 are essential subspaces.
Let Xg = Xy, and if j =1, ..., ¢, then let

X; =X X,

From the definition of X; and )N(j, we have, le il XjQ for j1 # jo, dim)?j =d; —dj—; > 0 for
j=0,...,q, and R" is a direct sum of Xo, ...,Xq.

Let A > 0 be the constant of Lemma 4.3 for us,...,uy. Suppose 0 < j < gand u € X; N S" 1.
By Lemma 4.3, there exists a subset, {u;,, ...,uid]_}, of {u1,...;uq;,,—1} and 0 < @y, ..., a4, < A
such that

dj

U= AUy + ...+ aidjul-dj.
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Then,
h( P, u) = h(Pp, ai,uy + ... + aidjuidj)
< i (B y) + o+ @iy (P iy ).
By this, (4.2a) and (4.2b), if m is large, then
h( P, u) < tjh(Pp, ug,) for all u € X; NS"
where t; = d;jA(ta,;,,-1,; +1) > 0. Hence, for j =0,...,q,
Pplg, Ctjh(Pr, o) (B" N X;).

By this and the fact that R™ is a direct sum of Xo, ..., Xq,

q

J=0

where the summation is Minkowski sum. Let

1
d;i—d;_

W = max t‘j/{dj_d] 1,
0<j<q ° WY1

where 4, _q;_, is the volume of the (d; — d;_1)-dimensional unit ball. Then, for j =0, ...,q
Vi —a;-, <tjh(Pm;Uaj)(B" ﬁf(ﬂ) < (Wh( P, )B4

From this, the fact that R" is a direct sum of Xp, ..., )qu, and Fubini’s formula, we have

1=V(Py)

<V ( i t P (P, ;) (B™ N Xj))

j=0

Il
,EQ

i
o

Vaayo (43(Ps o)) (B* N1 X;) )

=

< | L @h(Prn, g, )5 %1

.
Il
=)

It follows from 0 = d_; < dp < ... < d; = n that if m is large, then

q
Z (@ - M) log h( P, e, ) > —logw.
= \n n

We rewrite the last inequality as

qg—1
, h(P,,, Uy,
(4.3) log h( Py, ta,) > — Z ﬂ log ( “ ”)

— 1] .
n h( P, ta,.,,) 08w

For j =0,...,q, we set 3; = u(X; NS"1) = Z?i{l_l ~i, and B_; = 0. We deduce from the facts
that X is an essential subspace with d; = dim(Xj), and from the condition that u satisfies the
strict essential subspace concentration condition that

d
(4.4) Bi< =2 for0<j<qg-—1.
n
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By the fact that h(P,,,u1) < h(Pp,us) < ... < h(Ppy,uy), the fact that 6q =1 and (4.3),
a;—1 as—1

N
> yilog (P, i) = Y Yilog h(Po, i) + Y Yilog h(Po, i) + .. + Z vilog h( P, u;)
=1 1=1 i=a =0y

a1—1 as—1

> Z Yilog h( Py, tag) Z vilog h( Py, tta, ) + .. + Z ¥ log M( Py, U, )

i=1 1= i=0y

q
:Z 5] 1 logh(Pmaua)

J=0

q—1
h(Pr, )
:logh(Pm,uaq)—f— Bilog —————
jz_% J WP, ta,.,)

q—1
d; WP, o)
> i) pog ATm Tey)
N oew ];0 (ﬁ] n ) o8 h(Pﬂ”w uaj+1)
It follows from (4.1), (4.2a), (4.4) that for j =0,...,q — 1,
d; h( Py, ta ;)
li ) og — 7 W
i (55 oo WPty

Therefore,
N

lim Z% log h( Py, u;) = 0.

m—r00

[
The following lemma will be needed (see, [71], Lemma 3.5).
Lemma 4.6. If P is a polytope in R™ and vy € S with V,,_1(F(P,vy)) = 0, then there exists a
0o > 0 such that for 0 < § < &y
V(PN {z:z- vy > h(Pug) —0}) = cud™ + ... + 0%,
where ¢, ..., cy are constants that depend on P and vy.

Now, we have prepared enough to prove the main result of this section.

Lemma 4.7. Suppose the discrete measure j1 = Zivzl Y0y, 1S not concentrated on a closed hemi-

sphere. If p satisfies the strict essential subspace concentration inequality, then there exists a
P € Pn(uy,...,uyn) such that £(P) =0, V(P) = |u| and

®p(0) = inf {Eerﬁ?z(@) Do(&) : Q € P(uy,...,un) and V(Q) = |,u\} ,

where ®g (&) = [gn-1l0g (R(Q,u) — & - u) dpu(u).

Proof. Tt is easily seen that it is sufficient to establish the lemma under the assumption that |u| = 1.
Obviously, for P,Q € P(uq,...,uy), if there exists an x € R"™ such that P = @ + x, then

Dp(E(P)) = 2o(£(Q)).
Thus, we can choose a sequence P; € P(uy, ...,uy) with {(P;) = 0 and V(P;) = 1 such that ®p,(0)

converges to

inf {gerlrlll??@ Q&) - Q € P(ug, ...,uny) and V(Q) = 1} :
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Choose a fixed Py € P(uq,...,uyn) with V(Fy) = 1, then
it { s 20(6): Q€ Plursesuy) nd V(Q) = 1] < n(€(P0)

We claim that P; is bounded. Otherwise, from Lemma 4.5, ®p (£(F;)) is not bounded from
above. This contradicts the previous inequality. Therefore, P; is bounded.

From Lemma 3.2 and the Blaschke selection theorem, there exists a subsequence of P; that
converges to a polytope P such that P € P(uy,...,uy), V(P) =1, {(P) = 0 and

(4.5) ®p(0) = inf {geIIn?iiQ) Q&) : Q € P(ug,...,uy) and V(Q) = 1} )

We next prove that F(P,u;) are facets for all i« = 1,..., N. Otherwise, there exists an iy €
{1,..., N} such that

F(P, Uio)

is not a facet of P.
Choose ¢ > 0 small enough so that the polytope

Ps=Pn{z:z-uy, <h(Puy,)— 0} € Pluy,....,un),

and (by Lemma 4.6)
V(P(;) =1- (cnén + ...+ 0252),

where c¢,,, ..., co are constants that depend on P and direction u,,.
From Lemma 3.2, for any §; — 0 £(Ps,) — 0. We have,

lim £(Py) = 0.
Let ¢ be small enough so that h(P,ux) > £(Ps) - ur + 6 for all k € {1,..., N}, and let
A=V(P) 7 = (1= (cad™ + ... + 202)) 7.
From this and Equation (3.3), we have

N N

1T (hONPs, i) = €OPy) - ux)™ = AT [ (P, wx) = E(Ps) - upe) ™

k=1 k=1

a Vi h(Pa uio) - f(PzS) * Uiy — Y 7o

- kH () =€) ) { B(P,ui,) — £(Py) - s
- _ﬂ (h(P U ) - g(P) S )'Yk (1 B h(Pﬁuio)_éé(Pfs)'"io )'Yio
e Y (= (eabn 4 o+ 020?))
< T h(P P g (-
- _k[[l< (Pruu) = £(Fs) ) ] (T =(cad™ + ... + 262))n

where dy = d(P) is the diameter of P. Thus,

(4.6) D, (E(AP5)) < @p (E(F5)) + B(9),

where

1
(4.7) B(9) = i, log (1 — di) - log (1= (0" + ... + ¢267)) .
0
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Obviously,

. —1/dy +l ne, 0"t 4 4 2e90
_%Ol—é/do nl— (c, 0"+ ... + c202)

when the positive ¢ is small enough. From this and the fact that B;(0) =0,
B(§) <0

(4.8) B'(5)

<0,

when the positive ¢ is small enough.
From this and Equations (4.6), (4.7), (4.8), there exists a 9 > 0 such that Ps, € P(uq, ..., un)
and

CD)\OP(SO (g()‘OPlSo)) < ¢P<§(P5o)) < CI)P(&(P)) = CI)p(O),

where )\0 = V(Pgo)_%. Let P() = )\0P50 — £(>\0P50), then P() S P(Ul, ...,UN), V(P(]) = 1, g(P()) =0
and

®p,(0) < ®p(0).
This contradicts Equation (4.5). Therefore, P € Py(uy, ..., uy). O

5. EXISTENCE OF THE SOLUTION TO THE DISCRETE LOGARITHMIC MINKOWSKI PROBLEM

If 11 is a Borel measure on S™~! and ¢ is a proper subspace of R", it will be convenient to write
pe for the restriction of p to S"' N ¢. In this section, we prove the main result Theorem 1.5
of this paper based on the folowing idea. Let u be discrete measure on S™~ !, n > 2, that is not
concentrated on any closed hemisphere and satisfies the essential subspace concentration condition.
If p satisfies the strict essential subspace concentration inequality, then Lemma 4.7 yields that p is
a cone volume measure. Otherwise there exist complementary proper subspaces £ and & such that
supppu = S" TN (EUE), and pe and u’g are not concentrated on any closed hemisphere of £ N S"™~1
and & N S™ ! respectively, and satisfy the essential subspace concentration condition. Therefore
pte and p are cone volume measures on § N S™1and & N S™ L, respectively, by induction on the
dimension of the ambient space, which in turn imply that u is a cone volume measure.

However, it is possible that dim & = 1. Therefore in order to execute the plan, we extend the
notions occuring in Theorem 1.5 to R!. The role of a compact convex set containing the origin in
its interior is played by some interval K = [a,b] with a < 0 and b > 0, and closed hemispheres
of S = {—1,1} are {1} and {—1}. The cone volume measure on S° associated to K satisfies
Vic({—1}) = |a| and Vk({1}) = b. In addition, we say that a non-trivial measure p on S satisfies
the essential subspace concentration inequality if it is not concentrated on any closed hemisphere;
namely, if p({—1}) > 0 and p({1}) > 0. These notions are in accordance with Definition 1.3
because if n = 1, then there is no subspace £ such that 0 < dim& < n.

We note that the notion of strict essential subspace concentration inequality is defined and used
only if the dimension n > 2.

The following lemma will be needed. The proof is the same that of Lemma 7.1 in [6].

Lemma 5.1. Suppose n > 2, u is a discrete measure on S™~! that satisfies the essential subspace
concentration condition. If € is an essential linear subspace with respect to y for which

p(ENS™) = Lu(s™) dime,

then e satisfies the essential subspace concentration condition.

For even measures, the following lemma was stated for even measures as Lemma 7.2 in [6].
However, the proof in [6] does not use the property that the measure is even.
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Lemma 5.2. Let £ and & be complementary subspaces in R™ with 0 < dim & < n. Suppose p is a
Borel measure on S"! that is concentrated on S"' N (EUE'), and so that

pENS™™) = Lp(s™) dimE.

If pe and pe are cone-volume measures of convex bodies in the subspaces & and &', then i is the
cone-volume measure of a convex body in R™.

In addition, we also need the following lemma.

Lemma 5.3. Suppose pi is a Borel measure on S™ 1, n > 2, that is not concentrated on any closed
hemisphere, and 1 concentrated on two complementary subspaces & and £ of R™. Then, ¢ is
not concentrated on any closed hemisphere of £ N S™' and pg is not concentrated on any closed
hemisphere of & N S™1.

Proof. We only need prove that pg is not concentrated on any closed hemisphere of £ N S™ 1.
Suppose g is concentrated on a closed hemisphere, C, of £ N S™"!. Then, u is concentrated on

SN pos{C U¢'}.

However, S"! N pos{C U ¢’} is a closed hemisphere of S"~!. This contradicts the conditions of
the lemma. Therefore, y¢ is not concentrated on any closed hemisphere of £ N S™ 1. U

Now, we have prepared enough to prove the main theorem of this paper.

Theorem 5.4. If i is a discrete measure on S™ 1, n > 1 that is not concentrated on any closed
hemisphere and satisfies the essential subspace concentration condition, then p is the cone-volume
measure of a polytope in R™.

Proof. We prove Theorem 5.4 by induction on the dimension n > 1. If n = 1, then the theorem
trivially holds, therefore let n > 2.

If u satisfies the strict essential subspace concentration inequality, then p is the cone-volume
measure of a polytope in R" according to Lemma 3.4 and Lemma 4.7.

Therefore we assume that there exists an essential subspace (with respect to u), £, of R”,
and a subspace, &', of R such that & & are complementary subspaces of R™, 1 concentrated on
SN {E U’} with

dim & dim &’

p(S"tNeE) = p(S™1) and p(S" T NE) = p(S").
From the fact that ;o is not concentrated on a closed hemisphere and Lemma 5.3, we have, u,
is not concentrated on a closed hemisphere of S*' N ¢, and g is not concentrated on a closed
hemisphere of S""'N¢’. By Lemma 5.1, ¢ satisfies the essential subspace concentration condition
on £ N S™ 1 and ue satisfies the essential subspace concentration condition on & N S™~*. From
the induction hypothesis, 1 is the cone-volume measure of a convex body in { NR", and p, is the
cone-volume measure of a convex body in & NR". By Lemma 5.2, i is the cone-volume measure
of a convex body in R". Since p is discrete, p is the cone-volume measure of a polytope in R”. [

6. NEW INEQUALITIES FOR CONE-VOLUME MEASURES

In this section, we establish some inequalities for cone-volume measures.
The following example shows that the cone-volume measure of a convex body does not need to
satisfy the essential subspace concentration condition with respect to essential linear subspace.
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Example 6.1. Letuy, ..., u, be an orthonormal basis of R™, and let W = {x € uy : |zw;| <1, i =
2,...,n} be an (n—1)-dimensional cube. Forr >0 andi=1,...,n—1, & =lin{uy,...,u;} is an
essential subspace for the cone-volume measure of the truncated pyramid P, = [—ru;+1rW,uy+W].

If r > 0 is small, then P, approzimates [o,u; + W], and thus
Vpr(fi N Sn_l) > Vpr({ul}) = V([O, U + W]) > %V(PT)
We next establish new inequalities for the cone-volume measures.
Lemma 6.2. If K is a convez body in R", n > 3, with o €Int(K), then for u € S"!
(6.1) Vie({u}) + Ve ({=u}) +2(n — )/ Ve ({u}) Ve ({—u}) < V(K),

with equality if and only if F(K,—u) is a translate of F(K,u), K = [F(K,u), F(K,—u)], and
(K, u) = h(K, —u).

In R?, we have

Lemma 6.3. If K is a convex body containing the origin in its interior in R?, and u € S*, then

(6.2) Vie({u}) + vV ({~u}) < VV(K),
with equality if and only if K is a trapezoid with two sides parallel to u*, and u" contains the
intersection of the diagonals.

We obtain the following estimate from Lemma 6.2 and Lemma 6.3.
Corollary 6.4. If K is a convex body in R™, n > 2 with o €Int(K) and u € S"!, then

1 2
Viel{u)) - Vie({—u}) < 55 (V(K))",
with equality if and only if F(K,—u) is a translate of F(K,u), K = [F(K,u), F(K,—u)], and
h(K,u) = h(K, —u).
We next prove Lemma 6.2 and Lemma 6.3 together.

Proof. For the case |F(K,u)|-|F(K,—u)| =0, Lemma 6.2 and Lemma 6.3 are trivially true. Thus
we prove Lemma 6.2 and Lemma 6.3 under the condition that |F(K, u)| - |F(K, —u)| > 0.

Let Vk({u}) = o > 0 and Vx({—u}) = 8 > 0, let hgx(u) = a and hx(—u) = b, and for
0<z<a-+blet

K, = ((a—2)u+u")NK.
Since K is a convex body,
x a+b—x
a+bF(K’ W+ +b

From this and the Brunn-Minkowski inequality,

T at+b—=x
F(K, — PR ——
a+b (K, —u) + a+b

_ ( < F(K,—u)+%F(K7U))

F(K,u) C K,.

|K.| >

F(K,u)
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with equality if and only if K, = 5 F(u(K, —u)+ “ZibIF(K u), and F(K,—u)|,. and F (K, u)|,x
are homothetic.

Let t = 222 From (6.3) and Fubini’s formula,

a-+b
V(K) = /0 K, |da

a+b . n—1
2/ < ’ ‘F(K,—u)|"il+m|F(K,u)|"il) dx
0

a+b a+b
! 1 1 n—1
(6.4) = (a+b)/0 <t|F(K, w71 + (1 —t)|F(K, _u)|m) dt
n—1 . i1 n
, i )
1=0
a—l—b e
ZIF K, w) |7 [ F (K, —u) |55
Let S; = |F(K,u)| and Sy = |F(K, —u)|. From (6.4) and the arithmetic-geometric inequality,
we have

1—1

V(K) = “bZSn 15,

n -
=0

65 b n-1 n—1—1 n—1—1
(6:5) :—S1+ S2-|— Z(Snlsnl‘i‘bsnlsnl)

> a+ 8+ 2(n—1)y/ap.

Thus, we get (6.1) and (6.2).
From the equality conditions for (6.3), (6.4) and the arithmetic-geometric inequality, we have,

equality holds in (6.5) if and only if (K, u)|,. and F(K, —u)|,. are homothetic, K = [F(K,u), F(K,

and
2i—n—+1

()

forall1<i<n-—1.

Therefore, equality holds in (6.2) (n = 2) if and only if K is a trapezoid with two sides parallel
to ut, and ut contains the intersection of the diagonals.

When n > 3, (6.6) hold for ¢ = 1,...,n — 1. Thus, § = g; = 1. Therefore, equality holds in
(6.1) if and only if F/(K, —u) is a translation of F(K,u), K = [F(K,u), F(K, —u)], and hg(u) =
hK(—u). O
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