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1. Introduction

Let K™ be the set of all convex bodies in R™ having non-empty interiors, i.e., K € K"
is a convex compact subset of the n-dimensional Euclidean space R™ with int (K) # 0.
As usual, we denote by (-,-) the inner product on R™ x R™ with associated Euclidean
norm || - ||, and S"~! C R™ denotes the (n — 1)-dimensional unit sphere, i.e., "1 =
{z eR": ||z|| = 1}.

For K € K™ we write Sk (-) and hg(-) to denote its surface area measure and support
function, respectively, and vk to denote the Gaufl map assigning the outer unit normal
vi(x) to an x € 0, K, where 9, K consists of all points in the boundary 0K of K having
a unique outer normal vector. If the origin o lies in K € K", the cone-volume measure
of K on S™! is given by

View = [ M) 45 ) = / i 3, (o), (L1)

“ vi' (W)
where w C S~ is a Borel set and, in general, Hy,(z) denotes the k-dimensional Hausdorff
measure. Instead of H,(-), we also write V(-) for the n-dimensional volume.
The name cone-volume measure stems from the fact that if K is a polytope with
facets Fy,..., F,, and corresponding outer unit normals w1, ..., U, then

m

Vie(w) =3 V([o, F])du, (). (1.2)

i=1

Here §,, is the Dirac delta measure on S™~! concentrated at u;, and for z1, ...,z € R"
and subsets S, ...,5; C R™ we denote the convex hull of the set {z1,...,%m,S1,...,S5}
by [1,...,Zm,S1,...,5]. With this notation [o, F;] is the cone with apex o and basis F;.

In recent years, cone-volume measures have appeared and were studied in various
contexts, see, e.g., F. Barthe, O. Guedon, S. Mendelson and A. Naor [6], K.J. Boroczky,
E. Lutwak, D. Yang and G. Zhang [10,11], M. Gromov and V.D. Milman [18], M. Lud-
wig [28], M. Ludwig and M. Reitzner [29], E. Lutwak, D. Yang and G. Zhang [32],
A. Naor [34], A. Naor and D. Romik [35], G. Paouris and E. Werner [36], A. Stancu [42],
G. Zhu [45,46], K.J. Boroczky and P. Hegediis [8].

In particular, cone-volume measures are the subject of the logarithmic Minkowski prob-
lem, which is the particular interesting limiting case p = 0 of the general L,-Minkowski
problem — one of the central problems in convex geometric analysis. It is the task:

Find necessary and sufficient conditions for a finite Borel measure u on S™~ 1 to be
the cone-volume measure Vg of K € K™ with o in its interior.

In the recent paper [11], K.J. Béréczky, E. Lutwak, D. Yang and G. Zhang solved the
logarithmic Minkowski problem in the even case, i.e., they characterized the cone-volume
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measure of o-symmetric convex bodies {K € K" : K = —K}. In order to state their
result, we say that a finite Borel measure p on S™~! satisfies the subspace concentration
condition if for any linear subspace L C R"
dim L
w(Lns) < SRZ g, (1.3)
n

and equality in (1.3) for some L implies the existence of a complementary linear sub-
space L such that

dim L,
n

LSty = p(S™h), (1.4)
and hence supppu C LU Z, i.e., the support of the measure “lives” in L U L.

Via this condition, cone-volume measures of origin-symmetric convex bodies have been
completely characterized by K.J. Béréczky, E. Lutwak, D. Yang and G. Zhang.

Theorem L. (See [11, Theorem 1.1].) A non-zero finite even Borel measure on S™~! is
the cone-volume measure of an origin-symmetric conver body if and only if it satisfies
the subspace concentration condition.

In the planar case, this result was proved earlier for discrete measures, i.e., for poly-
gons, by A. Stancu [40,41]. For cone-volume measures of origin-symmetric polytopes
(cf. (1.2)), the necessity of (1.3) was independently shown by M. Henk, A. Schiirmann
and J.M. Wills [24] and B. He, G. Leng and K. Li [22].

We recall that the centroid of a k-dimensional convex compact set M C R" is de-
fined as

cen(M) = Hp(M)™? /xd?—[k(a:),
M

and a convex body will be called centered if cen(K) = o.

Centered bodies seem to be the right and natural class of convex bodies in order to
extend Theorem I to general convex bodies. In fact, in [23] it was shown by M. Henk
and E. Linke that the necessity part of Theorem I also holds for centered polytopes, i.e.,

Theorem II. (See [23, Theorem 1.1].) Let P € K™ be a centered polytope. Then its
cone-volume measure Vp satisfies the subspace concentration condition.

The proof of Theorem II relies heavily on the discrete structure of polytopes, in
particular on the finite polytopal cell-decomposition of the projection of a polytope by its
skeletons. Our main result extends Theorem I and thus the necessity part of Theorem I,
to general convex bodies.
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Theorem 1.1. Let K € K™ be centered. Then its cone-volume measure Vi satisfies the
subspace concentration condition.

While the subspace concentration condition is also sufficient to characterize cone-
volume measures among even non-trivial Borel measures, the cone-volume measure of
a centered convex body K € K™ has to satisfy some extra properties. For example, in
Theorem 4.1 we will prove that Vi (Q) > 1/(2n) for any open hemisphere  C S"~!
and we also provide a characterization of the equality case.

If K is not centered, then the subspace concentration condition may not hold any
more. In fact, it was recently shown by G. Zhu [45] that for wui,...,u, € S"! in
general position, m > n + 1, and arbitrary positive numbers 1, ..., 7, there always
exists a (not necessarily centered) polytope P € K™ with outer unit normals u; and
Vp({ui}) = v, 1 < i < m. In other words, Zhu settled the logarithmic Minkowski
problem for discrete measures whose support is in general position. In [9] this result
was unified with the sufficiency part of the subspace concentration condition in the even
discrete case by introducing the notation of essential subspaces. For a given finite Borel
measure ¢ on S” ! a subspace L, 1 < dimL < n — 1, is called essential if L N suppu
is not concentrated on any closed hemisphere of L Nsuppu. K.J. Boroczky, P. Hegediis
and G. Zhu [9] proved that every finite discrete measure on S™~! which satisfies the
subspace concentration condition for all essential subspaces is the cone-volume measure
of a polytope. In the case n = 2, this result was obtained before by A. Stancu [41].

In general, however, the centroid of such a polytope P is not the origin, and the
characterization of cone-volume measures of general polytopes or convex bodies is still
a challenging and important problem. We note that (1.4), i.e., the equality case of the
subspace concentration condition is a kind of condition on the cone-volume measure
which is independent of the choice of the origin (cf. Proposition 3.5 in Section 3).

In order to state a consequence of Theorem 1.1 we need the notation of an isotropic
measure, going back to K.M. Ball’s reformulation of the Brascamp-Lieb inequality in [2].
A Borel measure p on S~ is called isotropic if

Id, = / u®udp(u),
Sn—1

where Id,, is the n x n-identity matrix and v ® u the standard tensor product, i.e.,
u®u = uu'. Equating traces shows u(S"~!) = n for an isotropic measure. The subspace
concentration condition holds for a Borel measure p on S™~! if and only if y has an
isotropic normalized linear image, i.e., there exists a ® € GL(n) such that

n Dy (o)
Id, = / ® dp(u). 1.5
W ) Tl ® o] ¥ (15)

Sn—1

The equivalence in this general form is due to K.J. Boroczky, E. Lutwak, D. Yang
and G. Zhang [12], while the discrete case was established earlier by E.A. Carlen and
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D. Cordero-Erausquin [14], and J. Bennett, A. Carbery, M. Christ and T. Tao [7] in
their study of the Brascamp—Lieb inequality. Moreover, the case when strict inequal-
ity holds for all subspaces in (1.3) for a measure p is due to B. Klartag [27]. Isotropic
measures on S"~! are also discussed, e.g. in F. Barthe [3,4], E. Lutwak, D. Yang and
G. Zhang [31,33]. We note that isotropic measures on R™ play a central role in the KLS
conjecture by R. Kannan, L. Lovdsz and M. Simonovits [25], see, e.g., F. Barthe and
D. Cordero-Erausquin [5], S. Brazitikos, A. Giannopoulos, P. Valettas and B.-H. Vrit-
siou [13], O. Guedon and E. Milman [20], and B. Klartag [26].
From Theorem 1.1 and the equivalence (1.5) we immediately conclude

Corollary 1.2. Every convex body K € K™ has an affine image, whose cone-volume mea-
sure s isotropic.

This, in particular, answers a question posed by E. Lutwak, D. Yang and G. Zhang [32].

Another consequence of Theorem 1.1 is related to the SL(n) invariant U-functional
U(K) of a convex body K € K™ containing the origin in its interior. It was introduced
by E. Lutwak, D. Yang and G. Zhang [30] and it is defined as

n

U(K) = / dVig(u1)---dVi(uy) ,
UL AURFO
where the integral is over all subsets (ug, . ..,u,) € S"71x---xS"~! such that the vectors
U1,..., U, are linearly independent. The U-functional has proved very useful in obtaining

strong inequalities for the volume of projection bodies (see, e.g., [30]). For information
on projection bodies we refer to the books by Gardner [17] and Schneider [39], and for
more information on the importance of centro-affine functionals we refer to C. Haberl
and L. Parapatits [21,29] and the references within.

We readily have U(K) < V(K), and equality holds if and only if V(LN S"" 1) =0
for any non-trivial subspace L C R™ according to K.J. Boréczky, E. Lutwak, D. Yang
and G. Zhang [12]. In [12, Theorem 1.3] an optimal lower bound on the U-functional of
a measure satisfying the subspace concentration condition is given. In combination with
Theorem 1.1 we immediately get the best possible bound on U(K) in terms of V(K)
which was conjectured in [12].

Corollary 1.3. Let K € K" be centered. Then

(n)t/n

U(K) > V(K),

with equality if and only if K is a parallelepiped.
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In particular, U(K) > (1/e)V(K). For polytopes, Theorem 1.3 was shown in [23],
where the special cases if K is an origin-symmetric polytope, or if n = 2,3 were verified
by B. He, G. Leng and K. Li [22], and G. Xiong [44], respectively.

The paper is organized as follows. In the next section we will collect some basic facts
on log-concave functions and notations from convexity which will be used later on. The
third section is devoted to the proof of Theorem 1.1, and in the last section we will show
another characteristic property of cone-volume measures of convex bodies with centroid
at the origin (Theorem 4.1).

2. Preliminaries

Good general references for the theory of convex bodies are provided by the books by
Gardner [17], Gruber [19], Schneider [39] and Thompson [43].

The support function hg : R™ — R of a convex body K € K" is defined, for z € R™,
by

hi(x) = max{(z,y) : y € K}.

A boundary point z € JK is said to have a unit outer normal (vector) u € S"~1
provided (z,u) = hg(u). x € 0K is called singular if it has more than one unit outer
normal, and 0,K is the set of all non-singular boundary points. It is well known that
the set of singular boundary points of a convex body has H,,_i-measure equal to 0. For
each Borel set w C S™!, the inverse spherical image of w is the set of all points of 0K
which have an outer unit normal belonging to w. Since the inverse spherical image of w
differs from 1/;(1 (w) C 0+ K by a set of H,_1-measure equal to 0, we will often make no
distinction between the two sets. We recall that vx denotes the Gaul map assigning the
outer unit normal vk (x) to an x € 0, K.

For K € K™ the Borel measure Sk on S"~! given by

Sk (w) = Ha-1 (V' (W)
is called the (Aleksandrov-Fenchel-Jessen) surface area measure. Observe that

V(K) =Vg(S"1) = / hKT(“)d Sk (u).

Sn—1

As usual, for two subsets C, D C R™ and non-negative reals v, p > 0 the Minkowski
combination is defined by

vC+pD={vc+pd:ceC,de D}.

By the celebrated Brunn—Minkowski inequality we know that the n-th root of the volume
of the Minkowski combination is a concave function. More precisely, for two convex
compact sets Ko, K1 € K™ and for A € [0,1] we have
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V(1= X) Ko+ AK)Y™ > (1= X)) V(Ko)Y™ + A V(K&)' (2.1)

with equality for some 0 < A < 1 if and only if Ky and K; lie in parallel hyperplanes
or they are homothetic, i.e., there exist ¢ € R™ and p > 0 such that K1 =t + p Ko (see
also [16]).

Let f: C — R-( be a positive function on an open convex subset C' C R™ with the
property that there exists a k € N such that f'/* is concave. Then by the (weighted)
arithmetic—geometric mean inequality

F(A=Nz+ry) = (/51 =) x—l—)\y))k

(
> (1= NP a) + A1)
> f1 @) fAy)

This means that f belongs to the class of log-concave functions which by the positivity
of f is equivalent to

Inf(1-=XNz+Ay)>1—=NInf(z)+ Aln f(y)

for A € [0, 1]. Hence, for all 2,y € C there exists a subgradient g(y) € R™ such that (cf.,
e.g., [38))

In f(z) —In f(y) < (9(y),z — ). (2.2)

If f is differentiable at y, the subgradient is the gradient of In f at y, ie., g(y) =
Vin f(y) = f(y)vf( y)-

For a subspace L C R™, let L+ be its orthogonal complement, and for X C R™ we
denote by X|L its orthogonal projection onto L, i.e., the image of X under the linear
map forgetting the part of X belonging to L.

Here, for K € K™ and a d-dimensional subspace L, 1 < d < n — 1, we are interested
in the function measuring the volume of K intersected with planes parallel to L', i.e.,
in the function

frer i L — Rsg with = Hi (K N (z + L)),

where k = n — d is the dimension of L*. By the Brunn-Minkowski inequality (2.1)
and the remark above, fx 1 is a log-concave function on K|L which is positive in the
relative interior of K|L (cf. [1]). fx,r is also called the k-dimensional X-ray of K par-
allel to L (cf. [17]). By well-known properties of (log-)concave functions we have (see,
e.g., [38,39]).
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Proposition 2.1.

i) fr,r is continuous on int (K)|L. Moreover, fx 1 is Lipschitzian on any compact
subset of (int K)|L.

ii) fx.r is onint (K)|L almost everywhere differentiable, i.e., there exists a dense subset
D Cint (K)|L, where V fx 1, exists.

Now for K € K™ with centroid at o, i.e., cen(K) = o, we have by Fubini’s theorem
with respect to the decomposition L @ L+

0= /zd’l—[n(z)

_ / / FAH(F) | dHa(3)

K|L \(@+LL)nK

- /fK,L(s?:)cen((:%-i-LL)ﬁK)d/Hd(f)-

Writing cen((2 + L) N K) = & + § with § € L+ gives

/ Fren(8) & dHa(@) = 0. (2.3)

3. Proof of Theorem 1.1

For the proof of Theorem 1.1 we will first establish some more properties of the
function fx 1, where we always assume that L C R" is a d-dimensional linear subspace,
1 < d < n—1, with k-dimensional orthogonal complement L*. We recall that a function f
is said to be upper semicontinuous on K|L if whenever z,y,, € K|L for m € N and y,,
tends to z, then

f(@) = limsup f(ypm).

m—roo

Although in general fg j is not continuous in the points in the relative boundary
of K|L, the purpose of the first lemma is to show that fx ; behaves “continuously” for
sequences from the relative interior of K|L.

Lemma 3.1. Let K € K.

1) fr,r: K|L — Rxq is upper semicontinuous.
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ii) Let o€ int K and x € K|L. Then

lim frp(em @) = ().

Proof. For i) let x,y,, € K|L, m € N, be such that lim,, o ¥ = x. According to the
Blaschke selection principle (cf., e.g., [39]), we may assume that the sequence of compact
convex sets

C = [(ym + LY N K] — ymp € L+

converges to a compact convex set C' C L in the Hausdorff topology. Since the k-volume
in L is a continuous functional we have Hy(C) = limy, 00 frc.1(ym). However, z +
C C K, and therefore fx 1 (z) > Hi(C).

The second property follows immediately from i), since in view of o € int K and the
concavity of f ;/ IZ we also know

frple mz) > e m frep(z). O

In general, and in contrast to the polytopal case, the gradient V fx ; might not be
bounded, but, as the next lemma will show, the integral fK‘L<VfK’L(x), x)dx exists.

Lemma 3.2. Let K € K". Then fK|L<VfK_,L(x),x)dx exists.

Proof. For short we write f = fg 1. It suffices to show that ||V fk | belongs to the
class L'(K|L) of absolute integrable functions on K|L.

Due to Proposition 2.1 ii), V f(z) exists almost everywhere in K|L and so we may
write

Vi) =V (15 @) = kf T @)V (@) (3.1)

for almost all z € K|L.
By the Brunn—Minkowski theorem (2.1) the set

M = {(z, f}(a)) : v € K|L}
is part of the boundary of a (d 4+ 1)-dimensional compact convex set. Thus
[ 19t aHate) < [ 1 1V dba(e) = Ha() < .
K|L K|L

In view of (3.1) we obtain ||V fk 1| € L*(K|L). O
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The next identity has been proved in the special case of polytopes in [23]. In the
discrete case, however, the proof depends heavily on the polynomial character of the
function fx 1. Here we need a different approach.

Lemma 3.3. Let K € K™ with o € int K. Then

DV (LN S = dV(K) + /<VfK,L(x),x> AHa().
K|L

Proof. We remark that due to Lemma 3.2 the identity is well-defined. Again we write
f=fkr,andlet F: K|L — L be the vector field given by

By Proposition 2.1 i), F' is actually a Lipschitz vector field on any compact subset of
(int K)|L. Apparently, for m € N the set

E, =e¢ mK|L C (int K)|L

is a compact Lipschitz domain, whose (relative) boundary with respect to the linear
space L will be denoted by O(FE,,). Now Proposition 4.1.2 and Theorem 6.5.4 from
Pfeffer [37] give the following GauBB—Green divergence theorem for Lipschitz vector fields
on Lipschitz domains (which goes back to H. Federer [15])

/divF(x) dHq(z) = /(F(x),yEm(x)) dHg—1(z). (3.2)

Em FE,

For y € 9(K|L) we certainly have vy, (y) = vg,, (e~ 1y), and thus the right hand side
of (3.2) becomes

/ (F(2), v, (1)) Ay ()
OE,

—e T m /(F(e_#y)WK\L(y»de—l(y)
A(K|L)

— & / Fe )y, v () dHas (9).

B(K|L)

Thus, Lemma 3.1 ii) and the Lebesgue dominated convergence theorem imply
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lim (F(x),vg,, () dHq—1(z)

m—o0
OFEm,

= / f(y)(y,z/K‘L(y» dHa—1(y).

J(K|L)

(3.3)

In order to evaluate the right hand side of (3.3) let M = K N (L*+ +d(K|L)). Then the
set of points of 0K in M with a unique normal vector, i.e., 9, K N M coincides with the
set of points in viz' (L N S™~1). In addition, if 2 € M N 9. K, then v 1 (2|L) = vk(2).
Hence, (3.3) and (1.1) lead to

lim (F(z),vg,, (z)) dHg-1(z)

m—0o0
OE,

_ / F0) , vicin () dHa 1 (y) (3.4)

I(K|L)

= /<Z,Z/K(Z)>d7'[n_1(z)ZTLVK(LﬂSnil).

O(K|L)
For the left hand side of (3.2) we observe that if V f(z) exists at = € int (K)|L, then
divF(z) =d f(x) + (z, Vf(x)).
Thus, in view of Proposition 2.1 ii) we may write

/ divF(z) dHa(z) = d / F(w) dHa(z) + / (2, V f(2)) dHa().

m

Since fK‘L f(z)dHq(z) = V(K) and due to Lemma 3.2 we deduce

lim | divF(z) dHa(z) = dV(K) + / (x, V f(z)) dHa(z). (3.5)

m—0o0
Em K|L

Combining (3.2), (3.4) and (3.5) completes the proof. O

If K is an o-symmetric convex body, the Brunn-Minkowski inequality (2.1) implies
that the function fx 1 (x) attains its maximum at the origin o. Hence, with (2.2) we find

(Viro(x),z) < fx.o(z) (In fr p(z) —In fr,L(0)) <0,

for every x € int (K)|L where Vfk () exists. Although this is no longer true for
centered convex bodies, the next lemma shows that it holds in the average. The proof
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of this lemma is essentially the one of [23, Lemma 2.2] where it is stated under the
additional assumption that the integral fK|L<va’L(‘r)7 x) dHq(x) exists. The existence
is guaranteed here by Lemma 3.2. For completeness’ sake we will give the short proof.

Lemma 3.4. Let K € K™ be centered. Then

/ (V fi.1 (), 2) dHa(x) < 0,

K|L
with equality if and only if fi 1 is constant on K|L.

Proof. Again, let f = fx . and let g : int (K)|L — L be a subgradient of f. For
z € (int K)|L, applying (2.2) to y = o and « = z first, and next to y = z and z = o,
we deduce that

(9(2),2) <In f(z) = In f(o) < {g(0), 2), (3.6)

where ¢ is a subgradient of f. In particular, if V[ exists at z € (int K)|L, then
(Vf(2),2z) < {g(0),zf(z)). Together with the property cen(K) = o we get from (2.3)

/ (V1(2). 2) dHa(z) < / (9(0), 2 (2)) dHa(z) = 0. (3.7)

K|L K|L

Obviously, if f is constant the integral vanishes. Let us assume that equality holds
in (3.7) and hence for almost all z € (int K)|L in (3.6). In particular, we have In f(z) —
In f(0) = (g(0), 2), and in turn f(z) = f(0)e'9(®)*) for almost all z € (int K)|L. Since f
is continuous on (int K)|L, Lemma 3.1 i) yields that f(z) = f(0)e{9(®)?) for all z € K|L.
However, we even know that f % is concave and thus, g(o) = o, i.e., f is constant. O

Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let L be a d-dimensional linear subspace. By Lemma 3.3 and
Lemma 3.4, we immediately obtain the subspace concentration inequality

Vg(LNsS" 1) = gV(K) + % / (Vi p(x),z)dHa(z) <

K|L

S

V(K).

Let us assume that equality holds, and hence fk (z) = fk (o) for z € K|L according
to Lemma 3.4. For x € K|L let C, = K N (z + L*). Since for any = € K|L there exists
1 > 0 with —na € K|L we have

n 1
— C,+—0C_,, CC,.
1+7 14+n "
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The Brunn—Minkowski inequality (2.1) implies

1 1 n 1 n—d
n—d — _ n—d > _ B
fr,L(0)7=8 = Hu_g(Co)nd > Hyg <1+n0 + an nx>

n 1 1d
meL( ) +FfKL( n)n=d.

Y

Since fr,r(x) = fx,.(—nz) = fK 1 (0) we have equality in the above inequality and by
the equality characterization in the Brunn—Minkowski inequality we conclude that C, is
a translate of C,, i.e., we have C, = [cen(C,) — cen(C,)] + C,.

Now let vo,v1,...,04 € K\L be affinely independent with Z?:o v; = o. Then

P Cy; C C,, and thus S7

0 d+1 cen(C,,) = cen(C,). In particular,

i=0 d+1
cen(C,) € A = aff{cen(Cy,),...,cen(Cy,)},

where aff{} denotes the affine hull. For every € K|L there exists n > 0 such that
—nzx € [vg,...,vq). Hence we may write Az + Z?:o Aiv; = o with A + Zj:o A; =1 and
A A >0 fori=0,...,d. As above it follows Acen(C,) + ZLO Aicen(C,,) = cen(Cy),
and so cen(C,) € A as well.

Therefore, setting L = A — cen(C,), M = (KN L) we get K = M + C, and M
and C, are contained in complementary subspaces. In particular, supp Vg C LUL' and
LN L+ = {o}.

The proof of the reverse direction of the equality characterization (1.4) is given in the
next proposition (Proposition 3.5), since it is a condition on the cone-volume measure
which is independent of the location of the origin. O

The proof of Proposition 3.5 uses Minkowski’s characterization theorem of the surface
area measure of a convex body (cf., e.g., [39, Theorem 8.2.2]). It says that for dimen-
sions n > 2 a finite Borel measure p on S™ ! is the surface area measure Si of an
n-dimensional convex body K in R™ if and only if

(a) p({vesS™ " : (u,v)>0}) >0 forany ue S",

(b) / vdu() = o. (3.8)

Sn—1

In addition, if M is another n-dimensional convex body in R™ with Sy; = Sk then M
is a translate of K.

In dimension one, i.e., n = 1, we have for any convex body (segment) K C R! that
Sk({1}) = Sk ({—1}) = 1, and therefore both (a) and (b) still hold for u = Sx on S°.
However, p is a finite Borel measure on SY satisfying (a) and (b) if and only if there
exists a s > 0 such that p({1}) = p({-1}) = s.
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Proposition 3.5. Let K € K™ with o € int K and let suppVg C LU L for proper
complementary linear subspaces L, L. C R™. Then

dim L dim L

Vg(LNnsS" 1) = -

VK(Snil) =

V(K).

Proof. In order to shorten the following let L1y = L, Ly = Z, my = dim Ly, mgy =
dim Ly = n —mq, and hence 1 < mq, mo < n — 1. The concentration of Vi onto Ly U Lo
also implies the same for the surface area measure Sk, i.e., supp S C L1 ULy (cf. (1.1)),
and let Sk ;(-) be the restrictions of Sk (-) onto L; N.S™~1, i =1,2.

Since Sk satisfies (3.8), both Sk ; also satisfy (3.8). Hence, as discussed above, there
exist A\; > 0 and m;-dimensional convex bodies C; C L; such that for any Borel set
wCL;,NnS"landi=1,2

Sc,(w) = Xi - Ski(w) = Xi - Sk (w).

Let My = Ly N(Cy1+Li), My = LiN(Cy+Ly) and K = M+ Ms. Then, in particular,
K|L; = M;|L; = C;, i = 1,2, and for any Borel set w C L; N .S"~! we have

S (W) = Humy (M2) - Sc, (w) = MHin, (Ma) - S (w)
and, analogously, we obtain
Se(w) = Hin, (M1) - Sc, (W) = AaHin, (M) - Sk (w)

for any Borel set w C Ly N .S™ 1.

Therefore there exists a; > 0 such that Sk = S, 77, 1+, 37, @nd from the uniqueness
of the solution of the Minkowski problem up to translations we deduce that there exist
translates M; of a; M; such that K = My + Ms, and M; C LQL, My C Lf. In particular,
both M; contain o in their relative interiors and with M{ = M;|L; (which is homothetic
to C1) we get

z, vy (T

V) = Hon, () o, (00) = Hon (00) - [ 228 g0,y (39)
9. M
However (1.1) yields that
Vi(Lins"™) = (@, vx(@) ”Tf(x» dHp 1 (2)
M2+8*M{
= Moy (Ma) - / M dH o, —1(z). (3.10)
8. M]

Combining (3.9) and (3.10) implies the proposition. 0O
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4. Another property of the cone-volume measure of centered convex bodies

We start by recalling two basic notions/concepts about convex bodies. Firstly, K € K™
is called a cylinder if it is of the form [p, ¢] + C for p,q € R"™ and an (n — 1)-dimensional
convex compact set C. We call p + C and ¢ + C the bases of the cylinder, and [p, q]
a generating segment.

Secondly, let v € S"~! and let M € K" with support function hj(-). For any ¢ with
—hp(—v) <t < hp(v), we replace the section M N (tv + v') with the (n — 1)-ball of
the same H.,,_i-measure, centered at ¢t v in tv 4+ v. Here, v is the abbreviation for the
linear subspace orthogonal to v. The closure M of the union of these (n — 1)-balls is
called the Schwarz rounding of M with respect to the line Ro. It is a convex body by the
Brunn—-Minkowski theorem, and apparently we have V(M )=V(M). If M is a cylinder
whose bases are orthogonal to v, then all sections of the form M N (tv + v') are of the
same H,,_i-measure, and hence M is a cylinder, as well. For more on Schwarz rounding
we refer to [19].

Theorem 4.1. Let K € K™ be centered. Then

1
Vi(Q) > —V(K
K( )— m ( )a
for any open hemisphere Q) = {u e st (u,v) > O}, v € 8"~ Equality holds if and
only if K is a cylinder whose generating segment is parallel to the center v of ).

Proof. For simplification we assume V(K) = 1. Let
Q={ues"": (uv) >0}

be an open hemisphere with v € S"~1. The idea of the proof is to construct a cylinder Z
with rotational symmetry around Rv such that V(Z) =1, and

Vi(Q) > Vz_cen(2)(2) = o
To construct Z, first we apply a linear transform ® to ensure that the supporting hy-
perplane H at Av € 9PK for suitable A > 0 is orthogonal to v and Vg (2) = Vg (Q).
Then we shake ®K onto H to obtain K’ such that H is still a supporting hyperplane
and K' N H = K'|H. The next step is to use Schwarz rounding with respect to Rv and
finally we compare the resulting K to a suitable cylinder Z with rotational symmetry
around Ru.
For any convex body M € K" with o € int M and x € M|v™ let

pyu(x) =max{t e R:x+tve M},
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and let pp(x) = @ + par(z) v. In particular the points of M where all outer normals
have an acute angle with v are of the form ¢y (x) for € int M|vt. Therefore

VM(Q) = V(EN[) for EM = U [07 (pM(I)]
zeEM vt

For z € (intMv)\{o} let z = 67'z € IMJp" for some § € (0,1). Since
[nr(2),0,021(0)] C Zpr we have

x + Ru intersects Zps in a segment of length at least (1 — 0)||¢ar(0)]l- (4.1)

Let A = pi (o) and hence v € JK, and let Hy be a supporting hyperplane of K
at Av. For a basis v1,...,v4_1 of the linear subspace Hy — Av, we define the linear map ¢
by ®v = v, and ®v; = v;|vt for i = 1,...,d — 1. In particular, we have cen(®K) = o,
det® = 1, (PK)jvt = K|vt, and H = \v + v is a supporting hyperplane of ®K at
Av € O(PK). In addition, V(®K) = V(K) =1, and Z¢x = ®(Ek) implies that

V@K(Q) = VK(Q)

Next we shake ® K down to the supporting hyperplane H, i.e., for each 2 € (®K)|vt,
we translate the section (x + Rv) N (PK) by (A — pak(z))v. Hence one endpoint of the
translated section lies in H. The resulting convex body is denoted by K’ and we have

K'lvt = (®K)|jvt =C - \v for C=K'NH.
In addition V(K') = V(®K) = 1, and Eg- is the cone [o, C].
For z € (int K'|vt)\{o}, it follows by (4.1) that = + Ruv intersects Z¢x in a segment
of length at least the length of Zx/ N (z + Rv) and so

Vi (Q) = Vor () = V(Ek) = V(Ek') = Vi (). (4.2)

Next we consider the position of the centroid cen(K’) of K’. Due to the definition of the
shaking process we know that

(cen(K'),u) = (cen(®K),u) =0 for u € v, and
{cen(K"),v) > (cen(®K),v) = 0 with equality if and only if K/ = K.

We deduce
cen(K') =nv where n > 0, with n = 0 if and only if K’ = &K, (4.3)
and in view of (4.2)

Vi () > Vi _cen(x) () with equality if and only if K’ = ®K. (4.4)
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Now let K be the Schwarz rounding of K’ with respect to the line Rv. Then V(K) =
V(K') =1, Vig/(Q2) = V() and by the rotational symmetry of K with respect to R,
we get from (4.3)

cen(K) = cen(K') = nv where n > 0, with n = 0 if and only if K’ = &K (4.5)
and so by (4.4)

V() >V () with equality if and only if K’ = ®K. (4.6)

Iﬂ(i—cen(?)

Finally we compare K to the cylinder Z over the (n —1)-ball HN K, where V(Z) =
V(K) =1 and Z and K lie on the same side of H. Observe that Vz(Q2) = Vz(Q) and
by the rotational symmetry of Z we certainly have (cen(Z),u) = 0 for u € v. On the
other hand the rotational symmetry of K and K|vt = (H N K) — v yield that

(z,v) > —hz(—v) > (y,v) forall z € (intZ)\K and y € K\Z.
Therefore,
cen(Z) =7v where 7 >, with 7 = 7 if and only if Z = K.
Together with (4.5) and (4.6) we conclude
VE(Q) > Vz_cen(2)(2) =1/(2n) with equality iff K’ = ®K and Z = K,

i.e., with equality if and only if K is a cylinder whose generating segment is parallel
tov. O

Acknowledgments

We are grateful to Rolf Schneider for various ideas shaping this paper. We also ac-
knowledge fruitful discussions with Daniel Hug and David Preiss about the Gaufi—Green
theorem, and we thank the referee for many valuable comments and suggestions.

References

[1] K.M. Ball, Logarithmically concave functions and sections of convex sets in R™, Studia Math. 88
(1988) 69-84.

[2] K.M. Ball, Volume ratios and a reverse isoperimetric inequality, J. Lond. Math. Soc. 44 (1991)
351-359.

[3] F. Barthe, On a reverse form of the Brascamp—Lieb inequality, Invent. Math. 134 (1998) 335-361.

[4] F. Barthe, A continuous version of the Brascamp—Lieb inequalities, in: Geometric Aspects of Func-
tional Analysis, in: Lecture Notes in Math., vol. 1850, Springer, Berlin, 2004, pp. 53-63.

[5] F. Barthe, D. Cordero-Erausquin, Invariances in variance estimates, Proc. Lond. Math. Soc. 106
(2013) 33-64.


http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42616C6C3A31393838766Fs1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42616C6C3A31393838766Fs1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42616C3931s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42616C3931s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4261723938s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4261723034s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4261723034s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4243453133s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4243453133s1

720 K.J. Béréczky, M. Henk / Advances in Mathematics 286 (2016) 703-721

[6] F. Barthe, O. Guedon, S. Mendelson, A. Naor, A probabilistic approach to the geometry of the
l3-ball, Ann. Probab. 33 (2005) 480-513.
[7] J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp-Lieb inequalities: finiteness, structure,
and extremals, Geom. Funct. Anal. 17 (2007) 1343-1415.
(8] K.J. Boroczky, P. Hegedlis, The cone volume measure of antipodal points, Acta Math. Hungar.
146 (2) (August 2015) 449-465, http://dx.doi.org/10.1007/s10474-015-0511-z.
9] K.J. Boroczky, P. Hegedlis, G. Zhu, On the discrete logarithmic Minkowski problem, Int. Math.
Res. Not. IMRN (2015), http://dx.doi.org/10.1093 /imrn/rnv189, in press, arXiv:1409.7907.
[10] K.J. Boroezky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn—Minkowski inequality, Adv. Math.
231 (2012) 1974-1997.
[11] K.J. Boroczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math.
Soc. 26 (2013) 831-852.
[12] K.J. Béroczky, E. Lutwak, D. Yang, G. Zhang, Affine images of isotropic measures, J. Differential
Geom. 99 (3) (2015) 407-442.
[13] S. Brazitikos, A. Giannopoulos, P. Valettas, B.-H. Vritsiou, Geometry of Isotropic Convex Bodies,
Math. Surveys Monogr., vol. 196, AMS, 2014.
[14] E. Carlen, D. Cordero-Erausquin, Subadditivity of the entropy and its relation to Brascamp-Lieb
type inequalities, Geom. Funct. Anal. 19 (2009) 373-405.
[15] H. Federer, The Gauss—Green theorem, Trans. Amer. Math. Soc. 58 (1945) 44-76.
[16] R.J. Gardner, The Brunn—Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002) 355-405.
[17] R.J. Gardner, Geometric Tomography, 2nd edition, Encyclopedia Math. Appl., vol. 58, Cambridge
University Press, Cambridge, 2006.
[18] M. Gromov, V.D. Milman, Generalization of the spherical isoperimetric inequality for uniformly
convex Banach spaces, Compos. Math. 62 (1987) 263-282.
[19] P.M. Gruber, Convex and Discrete Geometry, Grundlehren Math. Wiss., vol. 336, Springer, Berlin,
2007.
[20] O. Guedon, E. Milman, Interpolating thin-shell and sharp large-deviation estimates for isotropic
log-concave measures, Geom. Funct. Anal. 21 (2011) 1043-1068.
[21] C. Haberl, L. Parapatits, The centro-affine Hadwiger theorem, J. Amer. Math. Soc. 27 (3) (2014)
685-705.
[22] B. He, G. Leng, K. Li, Projection problems for symmetric polytopes, Adv. Math. 207 (2006) 73-90.
[23] M. Henk, E. Linke, Cone-volume measures of polytopes, Adv. Math. 253 (2014) 50-62.
[24] M. Henk, A. Schiirmann, J.M. Wills, Ehrhart polynomials and successive minima, Mathematika 52
(2005) 1-16.
[25] R. Kannan, L. Lovasz, M. Simonovits, Isoperimetric problems for convex bodies and a localization
lemma, Discrete Comput. Geom. 13 (1995) 541-559.
[26] B. Klartag, A Berry—Esseen type inequality for convex bodies with an unconditional basis, Probab.
Theory Related Fields 145 (2009) 1-33.
[27] B. Klartag, On nearly radial marginals of high-dimensional probability measures, J. Eur. Math.
Soc. (JEMS) 12 (2010) 723-754.
[28] M. Ludwig, General affine surface areas, Adv. Math. 224 (2010) 2346-2360.
[29] M. Ludwig, M. Reitzner, A classification of SL(n) invariant valuations, Ann. of Math. 172 (2010)
1223-1271.
[30] E. Lutwak, D. Yang, G. Zhang, A new affine invariant for polytopes and Schneider’s projection
problem, Trans. Amer. Math. Soc. 353 (2001) 1767-1779.
[31] E. Lutwak, D. Yang, G. Zhang, Volume inequalities for subspaces of L,, J. Differential Geom. 68
(2004) 159-184.
[32] E. Lutwak, D. Yang, G. Zhang, L? John ellipsoids, Proc. Lond. Math. Soc. 90 (2005) 497-520.
[33] E. Lutwak, D. Yang, G. Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129
(2007) 1711-1723.
[34] A. Naor, The surface measure and cone measure on the sphere of Iy, Trans. Amer. Math. Soc. 359
(2007) 1045-1079.
[35] A. Naor, D. Romik, Projecting the surface measure of the sphere of I, Ann. Inst. Henri Poincaré
Probab. Stat. 39 (2003) 241-261.
[36] G. Paouris, E. Werner, Relative entropy of cone measures and L, centroid bodies, Proc. Lond.
Math. Soc. 104 (2012) 253-286.
[37] W.F. Pfeffer, The Divergence Theorem and Sets of Finite Perimeter, CRC Press, Boca Raton, FL,
2012.
[38] R.T. Rockafellar, Convex Analysis, Princeton University Press, 1997.


http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42474D4E3035s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib42474D4E3035s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424343543037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424343543037s1
http://dx.doi.org/10.1007/s10474-015-0511-z
http://dx.doi.org/10.1093/imrn/rnv189
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3133s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3133s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3134s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424C595A3134s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424756563134s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib424756563134s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4343453039s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4343453039s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4665643435s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib476172646E6572737572766579s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4761723935s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4761723935s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib47724D3837s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib47724D3837s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib477275626572626F6F6Bs1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib477275626572626F6F6Bs1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib47754D3131s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib47754D3131s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib48616265726C506172617061746974733A32303133s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib48616265726C506172617061746974733A32303133s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib484C4C3036s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib48654C3134s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4853573035s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4853573035s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B4C4D3935s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B4C4D3935s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B6C613039s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B6C613039s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B6C613130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4B6C613130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C75643130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C75523130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C75523130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3031s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3031s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3034s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3034s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3035s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4C595A3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E616F3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E616F3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E61523033s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E61523033s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5061573132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5061573132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5066653132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5066653132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib526F636B6166656C6C61723A313939377777s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E616F3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E616F3037s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E61523033s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib4E61523033s1

K.J. Béréczky, M. Henk / Advances in Mathematics 286 (2016) 703-721 721

[39] R. Schneider, Convex Bodies: The Brunn—Minkowski Theory, Encyclopedia Math. Appl., vol. 44,
Cambridge University Press, Cambridge, 1993, second expanded edition, 2014.

[40] A. Stancu, The discrete planar Lo-Minkowski problem, Adv. Math. 167 (2002) 160-174.

[41] A. Stancu, On the number of solutions to the discrete two-dimensional Lo-Minkowski problem, Adv.
Math. 180 (2003) 290-323.

[42] A. Stancu, Centro-affine invariants for smooth convex bodies, Int. Math. Res. Not. IMRN (2012)
2289-2320.

[43] A.C. Thompson, Minkowski Geometry, Encyclopedia Math. Appl., vol. 63, Cambridge University
Press, Cambridge, 1996.

[44] G. Xiong, Extremum problems for the cone-volume functional of convex polytopes, Adv. Math. 225
(2010) 3214-3228.

[45] G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math. 262 (2014) 909-931.

[46] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom. 101 (1) (2015)
159-174.


http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5363683933s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5363683933s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5374613032s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5374613033s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5374613033s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5374613132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5374613132s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib54686F3936s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib54686F3936s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib58696F3130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib58696F3130s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5A6875313461s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5A6875313462s1
http://refhub.elsevier.com/S0001-8708(15)00362-X/bib5A6875313462s1

	Cone-volume measure of general centered convex bodies
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1.1
	4 Another property of the cone-volume measure of centered convex bodies
	Acknowledgments
	References


