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1. Introduction

Let Kn be the set of all convex bodies in Rn having non-empty interiors, i.e., K ∈ Kn

is a convex compact subset of the n-dimensional Euclidean space Rn with int (K) �= ∅. 
As usual, we denote by 〈·,·〉 the inner product on Rn × R

n with associated Euclidean 
norm ‖ · ‖, and Sn−1 ⊂ R

n denotes the (n − 1)-dimensional unit sphere, i.e., Sn−1 =
{x ∈ R

n : ‖x‖ = 1}.
For K ∈ Kn we write SK(·) and hK(·) to denote its surface area measure and support 

function, respectively, and νK to denote the Gauß map assigning the outer unit normal 
νK(x) to an x ∈ ∂∗K, where ∂∗K consists of all points in the boundary ∂K of K having 
a unique outer normal vector. If the origin o lies in K ∈ Kn, the cone-volume measure 
of K on Sn−1 is given by

VK(ω) =
∫
ω

hK(u)
n

dSK(u) =
∫

ν−1
K (ω)

〈x, νK(x)〉
n

dHn−1(x), (1.1)

where ω ⊆ Sn−1 is a Borel set and, in general, Hk(x) denotes the k-dimensional Hausdorff 
measure. Instead of Hn(·), we also write V(·) for the n-dimensional volume.

The name cone-volume measure stems from the fact that if K is a polytope with 
facets F1, . . . , Fm and corresponding outer unit normals u1, . . . , um, then

VK(ω) =
m∑
i=1

V([o, Fi])δui
(ω). (1.2)

Here δui
is the Dirac delta measure on Sn−1 concentrated at ui, and for x1, . . . , xm ∈ R

n

and subsets S1, . . . , Sl ⊆ R
n we denote the convex hull of the set {x1, . . . , xm, S1, . . . , Sl}

by [x1, . . . , xm, S1, . . . , Sl]. With this notation [o, Fi] is the cone with apex o and basis Fi.
In recent years, cone-volume measures have appeared and were studied in various 

contexts, see, e.g., F. Barthe, O. Guedon, S. Mendelson and A. Naor [6], K.J. Böröczky, 
E. Lutwak, D. Yang and G. Zhang [10,11], M. Gromov and V.D. Milman [18], M. Lud-
wig [28], M. Ludwig and M. Reitzner [29], E. Lutwak, D. Yang and G. Zhang [32], 
A. Naor [34], A. Naor and D. Romik [35], G. Paouris and E. Werner [36], A. Stancu [42], 
G. Zhu [45,46], K.J. Böröczky and P. Hegedűs [8].

In particular, cone-volume measures are the subject of the logarithmic Minkowski prob-
lem, which is the particular interesting limiting case p = 0 of the general Lp-Minkowski 
problem – one of the central problems in convex geometric analysis. It is the task:

Find necessary and sufficient conditions for a finite Borel measure μ on Sn−1 to be 
the cone-volume measure VK of K ∈ Kn with o in its interior .

In the recent paper [11], K.J. Böröczky, E. Lutwak, D. Yang and G. Zhang solved the 
logarithmic Minkowski problem in the even case, i.e., they characterized the cone-volume 
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measure of o-symmetric convex bodies {K ∈ Kn : K = −K}. In order to state their 
result, we say that a finite Borel measure μ on Sn−1 satisfies the subspace concentration 
condition if for any linear subspace L ⊆ R

n

μ(L ∩ Sn−1) ≤ dimL

n
μ(Sn−1), (1.3)

and equality in (1.3) for some L implies the existence of a complementary linear sub-
space L̃ such that

μ(L̃ ∩ Sn−1) = dim L̃

n
μ(Sn−1), (1.4)

and hence suppμ ⊆ L ∪ L̃, i.e., the support of the measure “lives” in L ∪ L̃.
Via this condition, cone-volume measures of origin-symmetric convex bodies have been 

completely characterized by K.J. Böröczky, E. Lutwak, D. Yang and G. Zhang.

Theorem I. (See [11, Theorem 1.1].) A non-zero finite even Borel measure on Sn−1 is 
the cone-volume measure of an origin-symmetric convex body if and only if it satisfies 
the subspace concentration condition.

In the planar case, this result was proved earlier for discrete measures, i.e., for poly-
gons, by A. Stancu [40,41]. For cone-volume measures of origin-symmetric polytopes 
(cf. (1.2)), the necessity of (1.3) was independently shown by M. Henk, A. Schürmann 
and J.M. Wills [24] and B. He, G. Leng and K. Li [22].

We recall that the centroid of a k-dimensional convex compact set M ⊂ R
n is de-

fined as

cen(M) = Hk(M)−1
∫
M

x dHk(x),

and a convex body will be called centered if cen(K) = o.
Centered bodies seem to be the right and natural class of convex bodies in order to 

extend Theorem I to general convex bodies. In fact, in [23] it was shown by M. Henk 
and E. Linke that the necessity part of Theorem I also holds for centered polytopes, i.e.,

Theorem II. (See [23, Theorem 1.1].) Let P ∈ Kn be a centered polytope. Then its 
cone-volume measure VP satisfies the subspace concentration condition.

The proof of Theorem II relies heavily on the discrete structure of polytopes, in 
particular on the finite polytopal cell-decomposition of the projection of a polytope by its 
skeletons. Our main result extends Theorem II and thus the necessity part of Theorem I, 
to general convex bodies.
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Theorem 1.1. Let K ∈ Kn be centered. Then its cone-volume measure VK satisfies the 
subspace concentration condition.

While the subspace concentration condition is also sufficient to characterize cone-
volume measures among even non-trivial Borel measures, the cone-volume measure of 
a centered convex body K ∈ Kn has to satisfy some extra properties. For example, in 
Theorem 4.1 we will prove that VK(Ω) ≥ 1/(2n) for any open hemisphere Ω ⊂ Sn−1

and we also provide a characterization of the equality case.
If K is not centered, then the subspace concentration condition may not hold any 

more. In fact, it was recently shown by G. Zhu [45] that for u1, . . . , um ∈ Sn−1 in 
general position, m ≥ n + 1, and arbitrary positive numbers γ1, . . . , γm there always 
exists a (not necessarily centered) polytope P ∈ Kn with outer unit normals ui and 
VP ({ui}) = γi, 1 ≤ i ≤ m. In other words, Zhu settled the logarithmic Minkowski 
problem for discrete measures whose support is in general position. In [9] this result 
was unified with the sufficiency part of the subspace concentration condition in the even 
discrete case by introducing the notation of essential subspaces. For a given finite Borel 
measure μ on Sn−1 a subspace L, 1 ≤ dimL ≤ n − 1, is called essential if L ∩ suppμ
is not concentrated on any closed hemisphere of L ∩ suppμ. K.J. Böröczky, P. Hegedűs 
and G. Zhu [9] proved that every finite discrete measure on Sn−1 which satisfies the 
subspace concentration condition for all essential subspaces is the cone-volume measure 
of a polytope. In the case n = 2, this result was obtained before by A. Stancu [41].

In general, however, the centroid of such a polytope P is not the origin, and the 
characterization of cone-volume measures of general polytopes or convex bodies is still 
a challenging and important problem. We note that (1.4), i.e., the equality case of the 
subspace concentration condition is a kind of condition on the cone-volume measure 
which is independent of the choice of the origin (cf. Proposition 3.5 in Section 3).

In order to state a consequence of Theorem 1.1 we need the notation of an isotropic 
measure, going back to K.M. Ball’s reformulation of the Brascamp–Lieb inequality in [2]. 
A Borel measure μ on Sn−1 is called isotropic if

Idn =
∫

Sn−1

u⊗ u dμ(u),

where Idn is the n × n-identity matrix and u ⊗ u the standard tensor product, i.e., 
u ⊗u = u uᵀ. Equating traces shows μ(Sn−1) = n for an isotropic measure. The subspace 
concentration condition holds for a Borel measure μ on Sn−1 if and only if μ has an 
isotropic normalized linear image, i.e., there exists a Φ ∈ GL(n) such that

Idn = n

μ(Sn−1)

∫
Sn−1

Φu

‖Φu‖ ⊗ Φu

‖Φu‖ dμ(u). (1.5)

The equivalence in this general form is due to K.J. Böröczky, E. Lutwak, D. Yang 
and G. Zhang [12], while the discrete case was established earlier by E.A. Carlen and 
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D. Cordero-Erausquin [14], and J. Bennett, A. Carbery, M. Christ and T. Tao [7] in 
their study of the Brascamp–Lieb inequality. Moreover, the case when strict inequal-
ity holds for all subspaces in (1.3) for a measure μ is due to B. Klartag [27]. Isotropic 
measures on Sn−1 are also discussed, e.g. in F. Barthe [3,4], E. Lutwak, D. Yang and 
G. Zhang [31,33]. We note that isotropic measures on Rn play a central role in the KLS 
conjecture by R. Kannan, L. Lovász and M. Simonovits [25], see, e.g., F. Barthe and 
D. Cordero-Erausquin [5], S. Brazitikos, A. Giannopoulos, P. Valettas and B.-H. Vrit-
siou [13], O. Guedon and E. Milman [20], and B. Klartag [26].

From Theorem 1.1 and the equivalence (1.5) we immediately conclude

Corollary 1.2. Every convex body K ∈ Kn has an affine image, whose cone-volume mea-
sure is isotropic.

This, in particular, answers a question posed by E. Lutwak, D. Yang and G. Zhang [32].
Another consequence of Theorem 1.1 is related to the SL(n) invariant U-functional

U(K) of a convex body K ∈ Kn containing the origin in its interior. It was introduced 
by E. Lutwak, D. Yang and G. Zhang [30] and it is defined as

U(K) =

⎛
⎜⎝ ∫

u1∧...∧un �=0

dVK(u1) · · ·dVK(un)

⎞
⎟⎠

1
n

,

where the integral is over all subsets (u1, . . . , un) ∈ Sn−1×· · ·×Sn−1 such that the vectors 
u1, . . . , un are linearly independent. The U-functional has proved very useful in obtaining 
strong inequalities for the volume of projection bodies (see, e.g., [30]). For information 
on projection bodies we refer to the books by Gardner [17] and Schneider [39], and for 
more information on the importance of centro-affine functionals we refer to C. Haberl 
and L. Parapatits [21,29] and the references within.

We readily have U(K) ≤ V(K), and equality holds if and only if VK(L ∩ Sn−1) = 0
for any non-trivial subspace L ⊂ R

n according to K.J. Böröczky, E. Lutwak, D. Yang 
and G. Zhang [12]. In [12, Theorem 1.3] an optimal lower bound on the U-functional of 
a measure satisfying the subspace concentration condition is given. In combination with 
Theorem 1.1 we immediately get the best possible bound on U(K) in terms of V(K)
which was conjectured in [12].

Corollary 1.3. Let K ∈ Kn be centered. Then

U(K) ≥ (n!)1/n

n
V(K),

with equality if and only if K is a parallelepiped.
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In particular, U(K) > (1/e)V(K). For polytopes, Theorem 1.3 was shown in [23], 
where the special cases if K is an origin-symmetric polytope, or if n = 2, 3 were verified 
by B. He, G. Leng and K. Li [22], and G. Xiong [44], respectively.

The paper is organized as follows. In the next section we will collect some basic facts 
on log-concave functions and notations from convexity which will be used later on. The 
third section is devoted to the proof of Theorem 1.1, and in the last section we will show 
another characteristic property of cone-volume measures of convex bodies with centroid 
at the origin (Theorem 4.1).

2. Preliminaries

Good general references for the theory of convex bodies are provided by the books by 
Gardner [17], Gruber [19], Schneider [39] and Thompson [43].

The support function hK : Rn → R of a convex body K ∈ Kn is defined, for x ∈ R
n, 

by

hK(x) = max{〈x, y〉 : y ∈ K}.

A boundary point x ∈ ∂K is said to have a unit outer normal (vector) u ∈ Sn−1

provided 〈x, u〉 = hK(u). x ∈ ∂K is called singular if it has more than one unit outer 
normal, and ∂∗K is the set of all non-singular boundary points. It is well known that 
the set of singular boundary points of a convex body has Hn−1-measure equal to 0. For 
each Borel set ω ⊆ Sn−1, the inverse spherical image of ω is the set of all points of ∂K
which have an outer unit normal belonging to ω. Since the inverse spherical image of ω
differs from ν−1

K (ω) ⊆ ∂∗K by a set of Hn−1-measure equal to 0, we will often make no 
distinction between the two sets. We recall that νK denotes the Gauß map assigning the 
outer unit normal νK(x) to an x ∈ ∂∗K.

For K ∈ Kn the Borel measure SK on Sn−1 given by

SK(ω) = Hn−1(ν−1
K (ω))

is called the (Aleksandrov–Fenchel–Jessen) surface area measure. Observe that

V(K) = VK(Sn−1) =
∫

Sn−1

hK(u)
n

dSK(u).

As usual, for two subsets C, D ⊆ R
n and non-negative reals ν, ρ ≥ 0 the Minkowski 

combination is defined by

ν C + ρD = {ν c + ρ d : c ∈ C, d ∈ D}.

By the celebrated Brunn–Minkowski inequality we know that the n-th root of the volume 
of the Minkowski combination is a concave function. More precisely, for two convex 
compact sets K0, K1 ∈ Kn and for λ ∈ [0, 1] we have
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V((1 − λ)K0 + λK1)1/n ≥ (1 − λ) V(K0)1/n + λV(K1)1/n (2.1)

with equality for some 0 < λ < 1 if and only if K0 and K1 lie in parallel hyperplanes 
or they are homothetic, i.e., there exist t ∈ R

n and ρ ≥ 0 such that K1 = t + ρ K0 (see 
also [16]).

Let f : C → R>0 be a positive function on an open convex subset C ⊆ R
n with the 

property that there exists a k ∈ N such that f1/k is concave. Then by the (weighted) 
arithmetic–geometric mean inequality

f((1 − λ)x + λ y) =
(
f1/k((1 − λ)x + λ y)

)k

≥
(
(1 − λ)f1/k(x) + λf1/k(y)

)k

≥ f1−λ(x) · fλ(y).

This means that f belongs to the class of log-concave functions which by the positivity 
of f is equivalent to

ln f((1 − λ)x + λ y) ≥ (1 − λ) ln f(x) + λ ln f(y)

for λ ∈ [0, 1]. Hence, for all x, y ∈ C there exists a subgradient g(y) ∈ R
n such that (cf., 

e.g., [38])

ln f(x) − ln f(y) ≤ 〈g(y), x− y〉. (2.2)

If f is differentiable at y, the subgradient is the gradient of ln f at y, i.e., g(y) =
∇ ln f(y) = 1

f(y)∇f(y).
For a subspace L ⊆ R

n, let L⊥ be its orthogonal complement, and for X ⊆ R
n we 

denote by X|L its orthogonal projection onto L, i.e., the image of X under the linear 
map forgetting the part of X belonging to L⊥.

Here, for K ∈ Kn and a d-dimensional subspace L, 1 ≤ d ≤ n − 1, we are interested 
in the function measuring the volume of K intersected with planes parallel to L⊥, i.e., 
in the function

fK,L : L → R≥0 with x �→ Hk(K ∩ (x + L⊥)),

where k = n − d is the dimension of L⊥. By the Brunn–Minkowski inequality (2.1)
and the remark above, fK,L is a log-concave function on K|L which is positive in the 
relative interior of K|L (cf. [1]). fK,L is also called the k-dimensional X-ray of K par-
allel to L⊥ (cf. [17]). By well-known properties of (log-)concave functions we have (see, 
e.g., [38,39]).
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Proposition 2.1.

i) fK,L is continuous on int (K)|L. Moreover, fK,L is Lipschitzian on any compact 
subset of (intK)|L.

ii) fK,L is on int (K)|L almost everywhere differentiable, i.e., there exists a dense subset 
D ⊆ int (K)|L, where ∇fK,L exists.

Now for K ∈ Kn with centroid at o, i.e., cen(K) = o, we have by Fubini’s theorem 
with respect to the decomposition L ⊕ L⊥

o =
∫
K

x dHn(x)

=
∫

K|L

⎛
⎜⎝ ∫

(x̂+L⊥)∩K

x̃dHk(x̃)

⎞
⎟⎠ dHd(x̂)

=
∫

K|L

fK,L(x̂) cen((x̂ + L⊥) ∩K) dHd(x̂).

Writing cen((x̂ + L⊥) ∩K) = x̂ + ỹ with ỹ ∈ L⊥ gives

∫
K|L

fK,L(x̂) x̂dHd(x̂) = 0. (2.3)

3. Proof of Theorem 1.1

For the proof of Theorem 1.1 we will first establish some more properties of the 
function fK,L, where we always assume that L ⊂ R

n is a d-dimensional linear subspace, 
1 ≤ d ≤ n −1, with k-dimensional orthogonal complement L⊥. We recall that a function f

is said to be upper semicontinuous on K|L if whenever x, ym ∈ K|L for m ∈ N and ym
tends to x, then

f(x) ≥ lim sup
m→∞

f(ym).

Although in general fK,L is not continuous in the points in the relative boundary 
of K|L, the purpose of the first lemma is to show that fK,L behaves “continuously” for 
sequences from the relative interior of K|L.

Lemma 3.1. Let K ∈ Kn.

i) fK,L : K|L → R≥0 is upper semicontinuous.
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ii) Let o ∈ intK and x ∈ K|L. Then

lim
m→∞

fK,L(e
−1
m x) = fK,L(x).

Proof. For i) let x, ym ∈ K|L, m ∈ N, be such that limm→∞ ym = x. According to the 
Blaschke selection principle (cf., e.g., [39]), we may assume that the sequence of compact 
convex sets

Cm = [(ym + L⊥) ∩K] − ym ⊂ L⊥

converges to a compact convex set C ⊂ L⊥ in the Hausdorff topology. Since the k-volume 
in L⊥ is a continuous functional we have Hk(C) = limm→∞ fK,L(ym). However, x +
C ⊂ K, and therefore fK,L(x) ≥ Hk(C).

The second property follows immediately from i), since in view of o ∈ intK and the 
concavity of f1/k

K,L we also know

fK,L(e− 1
mx) ≥ e−

k
m fK,L(x). �

In general, and in contrast to the polytopal case, the gradient ∇fK,L might not be 
bounded, but, as the next lemma will show, the integral 

∫
K|L〈∇fK,L(x), x〉dx exists.

Lemma 3.2. Let K ∈ Kn. Then 
∫
K|L〈∇fK,L(x), x〉dx exists.

Proof. For short we write f = fK,L. It suffices to show that ‖∇fK,L‖ belongs to the 
class L1(K|L) of absolute integrable functions on K|L.

Due to Proposition 2.1 ii), ∇f(x) exists almost everywhere in K|L and so we may 
write

∇f(x) = ∇
(
(f 1

k )k(x)
)

= kf
k−1
k (x)∇f

1
k (x) (3.1)

for almost all x ∈ K|L.
By the Brunn–Minkowski theorem (2.1) the set

M = {(x, f 1
k (x)) : x ∈ K|L}

is part of the boundary of a (d + 1)-dimensional compact convex set. Thus

∫
K|L

‖∇f
1
k ‖ dHd(x) ≤

∫
K|L

√
1 + ‖∇f

1
k ‖2 dHd(x) = Hd(M) < ∞.

In view of (3.1) we obtain ‖∇fK,L‖ ∈ L1(K|L). �
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The next identity has been proved in the special case of polytopes in [23]. In the 
discrete case, however, the proof depends heavily on the polynomial character of the 
function fK,L. Here we need a different approach.

Lemma 3.3. Let K ∈ Kn with o ∈ intK. Then

nVK(L ∩ Sn−1) = dV(K) +
∫

K|L

〈∇fK,L(x), x〉 dHd(x).

Proof. We remark that due to Lemma 3.2 the identity is well-defined. Again we write 
f = fK,L, and let F : K|L → L be the vector field given by

F (x) = f(x)x.

By Proposition 2.1 i), F is actually a Lipschitz vector field on any compact subset of 
(intK)|L. Apparently, for m ∈ N the set

Em = e−
1
mK|L ⊂ (intK)|L

is a compact Lipschitz domain, whose (relative) boundary with respect to the linear 
space L will be denoted by ∂(Em). Now Proposition 4.1.2 and Theorem 6.5.4 from 
Pfeffer [37] give the following Gauß–Green divergence theorem for Lipschitz vector fields 
on Lipschitz domains (which goes back to H. Federer [15])

∫
Em

divF (x) dHd(x) =
∫

∂Em

〈F (x), νEm
(x)〉 dHd−1(x). (3.2)

For y ∈ ∂(K|L) we certainly have νK|L(y) = νEm
(e− 1

m y), and thus the right hand side 
of (3.2) becomes

∫
∂Em

〈F (x), νEm
(x)〉 dHd−1(x)

= e−
(d−1)

m

∫
∂(K|L)

〈F (e− 1
m y), νK|L(y)〉 dHd−1(y)

= e−
d
m

∫
∂(K|L)

f(e− 1
m y)〈y, νK|L(y)〉 dHd−1(y).

Thus, Lemma 3.1 ii) and the Lebesgue dominated convergence theorem imply
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lim

m→∞
∂Em

〈F (x), νEm
(x)〉 dHd−1(x)

=
∫

∂(K|L)

f(y)〈y, νK|L(y)〉 dHd−1(y).
(3.3)

In order to evaluate the right hand side of (3.3) let M = ∂K ∩ (L⊥ + ∂(K|L)). Then the 
set of points of ∂K in M with a unique normal vector, i.e., ∂∗K ∩M coincides with the 
set of points in ν−1

K (L ∩ Sn−1). In addition, if z ∈ M ∩ ∂∗K, then νK|L(z|L) = νK(z). 
Hence, (3.3) and (1.1) lead to

lim
m→∞

∫
∂Em

〈F (x), νEm
(x)〉 dHd−1(x)

=
∫

∂(K|L)

f(y)〈y, νK|L(y)〉 dHd−1(y)

=
∫

∂(K|L)

〈z, νK(z)〉 dHn−1(z) = nVK(L ∩ Sn−1).

(3.4)

For the left hand side of (3.2) we observe that if ∇f(x) exists at x ∈ int (K)|L, then

divF (x) = d f(x) + 〈x,∇f(x)〉.

Thus, in view of Proposition 2.1 ii) we may write
∫
Em

divF (x) dHd(x) = d

∫
Em

f(x) dHd(x) +
∫
Em

〈x,∇f(x)〉 dHd(x).

Since 
∫
K|L f(x) dHd(x) = V(K) and due to Lemma 3.2 we deduce

lim
m→∞

∫
Em

divF (x) dHd(x) = dV (K) +
∫

K|L

〈x,∇f(x)〉 dHd(x). (3.5)

Combining (3.2), (3.4) and (3.5) completes the proof. �
If K is an o-symmetric convex body, the Brunn–Minkowski inequality (2.1) implies 

that the function fK,L(x) attains its maximum at the origin o. Hence, with (2.2) we find

〈∇fK,L(x), x〉 ≤ fK,L(x) (ln fK,L(x) − ln fK,L(o)) ≤ 0,

for every x ∈ int (K)|L where ∇fK,L(x) exists. Although this is no longer true for 
centered convex bodies, the next lemma shows that it holds in the average. The proof 
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of this lemma is essentially the one of [23, Lemma 2.2] where it is stated under the 
additional assumption that the integral 

∫
K|L〈∇fK,L(x), x〉 dHd(x) exists. The existence 

is guaranteed here by Lemma 3.2. For completeness’ sake we will give the short proof.

Lemma 3.4. Let K ∈ Kn be centered. Then∫
K|L

〈∇fK,L(x), x〉 dHd(x) ≤ 0,

with equality if and only if fK,L is constant on K|L.

Proof. Again, let f = fK,L and let g : int (K)|L → L be a subgradient of f . For 
z ∈ (intK)|L, applying (2.2) to y = o and x = z first, and next to y = z and x = o, 
we deduce that

〈g(z), z〉 ≤ ln f(z) − ln f(o) ≤ 〈g(o), z〉, (3.6)

where g is a subgradient of f . In particular, if ∇f exists at z ∈ (intK)|L, then 
〈∇f(z), z〉 ≤ 〈g(o), zf(z)〉. Together with the property cen(K) = o we get from (2.3)

∫
K|L

〈∇f(z), z〉 dHd(z) ≤
∫

K|L

〈g(o), zf(z)〉 dHd(z) = 0. (3.7)

Obviously, if f is constant the integral vanishes. Let us assume that equality holds 
in (3.7) and hence for almost all z ∈ (intK)|L in (3.6). In particular, we have ln f(z) −
ln f(o) = 〈g(o), z〉, and in turn f(z) = f(o)e〈g(o),z〉 for almost all z ∈ (intK)|L. Since f
is continuous on (intK)|L, Lemma 3.1 ii) yields that f(z) = f(o)e〈g(o),z〉 for all z ∈ K|L. 
However, we even know that f 1

k is concave and thus, g(o) = o, i.e., f is constant. �
Now we are ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let L be a d-dimensional linear subspace. By Lemma 3.3 and 
Lemma 3.4, we immediately obtain the subspace concentration inequality

VK(L ∩ Sn−1) = d

n
V (K) + 1

n

∫
K|L

〈∇fK,L(x), x〉 dHd(x) ≤ d

n
V(K).

Let us assume that equality holds, and hence fK,L(x) = fK,L(o) for x ∈ K|L according 
to Lemma 3.4. For x ∈ K|L let Cx = K ∩ (x + L⊥). Since for any x ∈ K|L there exists 
η > 0 with −ηx ∈ K|L we have

η
Cx + 1

C−ηx ⊆ Co.
1 + η 1 + η
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The Brunn–Minkowski inequality (2.1) implies

fK,L(o)
1

n−d = Hn−d(Co)
1

n−d ≥ Hn−d

(
η

1 + η
Cx + 1

1 + η
C−ηx

) 1
n−d

≥ η

1 + η
fK,L(x)

1
n−d + 1

1 + η
fK,L(−ηx)

1
n−d .

Since fK,L(x) = fK,L(−ηx) = fK,L(o) we have equality in the above inequality and by 
the equality characterization in the Brunn–Minkowski inequality we conclude that Cx is 
a translate of Co, i.e., we have Cx = [cen(Cx) − cen(Co)] + Co.

Now let v0, v1, . . . , vd ∈ K|L be affinely independent with 
∑d

i=0 vi = o. Then ∑d
i=0

1
d+1 Cvi ⊆ Co, and thus 

∑d
i=0

1
d+1 cen(Cvi) = cen(Co). In particular,

cen(Co) ∈ A = aff{cen(Cv0), . . . , cen(Cvd)},

where aff{} denotes the affine hull. For every x ∈ K|L there exists η > 0 such that 
−ηx ∈ [v0, . . . , vd]. Hence we may write λx +

∑d
i=0 λivi = o with λ +

∑d
i=0 λi = 1 and 

λ, λi ≥ 0 for i = 0, . . . , d. As above it follows λ cen(Cx) +
∑d

i=0 λicen(Cvi) = cen(Co), 
and so cen(Cx) ∈ A as well.

Therefore, setting L̃ = A − cen(Co), M = (K ∩ L̃) we get K = M + Co and M
and Co are contained in complementary subspaces. In particular, suppVK ⊆ L ∪ L̃⊥ and 
L ∩ L̃⊥ = {o}.

The proof of the reverse direction of the equality characterization (1.4) is given in the 
next proposition (Proposition 3.5), since it is a condition on the cone-volume measure 
which is independent of the location of the origin. �

The proof of Proposition 3.5 uses Minkowski’s characterization theorem of the surface 
area measure of a convex body (cf., e.g., [39, Theorem 8.2.2]). It says that for dimen-
sions n ≥ 2 a finite Borel measure μ on Sn−1 is the surface area measure SK of an 
n-dimensional convex body K in Rn if and only if

(a) μ
(
{v ∈ Sn−1 : 〈u, v〉 > 0}

)
> 0 for any u ∈ Sn−1,

(b)
∫

Sn−1

v dμ(v) = o. (3.8)

In addition, if M is another n-dimensional convex body in Rn with SM = SK then M
is a translate of K.

In dimension one, i.e., n = 1, we have for any convex body (segment) K ⊂ R
1 that 

SK({1}) = SK({−1}) = 1, and therefore both (a) and (b) still hold for μ = SK on S0. 
However, μ is a finite Borel measure on S0 satisfying (a) and (b) if and only if there 
exists a s > 0 such that μ({1}) = μ({−1}) = s.
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Proposition 3.5. Let K ∈ Kn with o ∈ intK and let supp VK ⊆ L ∪ L̃ for proper 
complementary linear subspaces L, L̃ ⊂ R

n. Then

VK(L ∩ Sn−1) = dimL

n
VK(Sn−1) = dimL

n
V(K).

Proof. In order to shorten the following let L1 = L, L2 = L̃, m1 = dimL1, m2 =
dimL2 = n −m1, and hence 1 ≤ m1, m2 ≤ n − 1. The concentration of VK onto L1 ∪L2
also implies the same for the surface area measure SK, i.e., suppSK ⊆ L1∪L2 (cf. (1.1)), 
and let SK,i(·) be the restrictions of SK(·) onto Li ∩ Sn−1, i = 1, 2.

Since SK satisfies (3.8), both SK,i also satisfy (3.8). Hence, as discussed above, there 
exist λi > 0 and mi-dimensional convex bodies Ci ⊂ Li such that for any Borel set 
ω ⊆ Li ∩ Sn−1 and i = 1, 2

SCi
(ω) = λi · SK,i(ω) = λi · SK(ω).

Let M1 = L⊥
2 ∩(C1+L⊥

1 ), M2 = L⊥
1 ∩(C2+L⊥

2 ) and K = M1+M2. Then, in particular, 
K|Li = M i|Li = Ci, i = 1, 2, and for any Borel set ω ⊆ L1 ∩ Sn−1 we have

SK(ω) = Hm2(M2) · SC1(ω) = λ1Hm2(M2) · SK(ω)

and, analogously, we obtain

SK(ω) = Hm1(M1) · SC2(ω) = λ2Hm1(M1) · SK(ω)

for any Borel set ω ⊆ L2 ∩ Sn−1.
Therefore there exists αi > 0 such that SK = Sα1 M1+α2 M2

, and from the uniqueness 
of the solution of the Minkowski problem up to translations we deduce that there exist 
translates Mi of αiM i such that K = M1 +M2, and M1 ⊂ L⊥

2 , M2 ⊂ L⊥
1 . In particular, 

both Mi contain o in their relative interiors and with M ′
1 = M1|L1 (which is homothetic 

to C1) we get

V(K) = Hm1(M ′
1) · Hm2(M2) = Hm2(M2) ·

∫
∂∗M ′

1

〈x, νM ′
1
(x)〉

m1
dHm1−1(x). (3.9)

However (1.1) yields that

VK(L1 ∩ Sn−1) =
∫

M2+∂∗M ′
1

〈x, νK(x)〉
n

dHn−1(x)

= Hm2(M2) ·
∫

∂∗M ′
1

〈x, νM ′
1
(x)〉

n
dHm1−1(x). (3.10)

Combining (3.9) and (3.10) implies the proposition. �
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4. Another property of the cone-volume measure of centered convex bodies

We start by recalling two basic notions/concepts about convex bodies. Firstly, K ∈ Kn

is called a cylinder if it is of the form [p, q] +C for p, q ∈ R
n and an (n − 1)-dimensional 

convex compact set C. We call p + C and q + C the bases of the cylinder, and [p, q]
a generating segment.

Secondly, let v ∈ Sn−1 and let M ∈ Kn with support function hM (·). For any t with 
−hM (−v) < t < hM (v), we replace the section M ∩ (t v + v⊥) with the (n − 1)-ball of 
the same Hn−1-measure, centered at t v in tv + v⊥. Here, v⊥ is the abbreviation for the 
linear subspace orthogonal to v. The closure M̃ of the union of these (n − 1)-balls is 
called the Schwarz rounding of M with respect to the line Rv. It is a convex body by the 
Brunn–Minkowski theorem, and apparently we have V(M̃) = V(M). If M̃ is a cylinder 
whose bases are orthogonal to v, then all sections of the form M ∩ (t v + v⊥) are of the 
same Hn−1-measure, and hence M is a cylinder, as well. For more on Schwarz rounding 
we refer to [19].

Theorem 4.1. Let K ∈ Kn be centered. Then

VK(Ω) ≥ 1
2nV(K),

for any open hemisphere Ω =
{
u ∈ Sn−1 : 〈u, v〉 > 0

}
, v ∈ Sn−1. Equality holds if and 

only if K is a cylinder whose generating segment is parallel to the center v of Ω.

Proof. For simplification we assume V(K) = 1. Let

Ω =
{
u ∈ Sn−1 : 〈u, v〉 > 0

}
be an open hemisphere with v ∈ Sn−1. The idea of the proof is to construct a cylinder Z
with rotational symmetry around Rv such that V (Z) = 1, and

VK(Ω) ≥ VZ−cen(Z)(Ω) = 1
2n.

To construct Z, first we apply a linear transform Φ to ensure that the supporting hy-
perplane H at λv ∈ ∂ΦK for suitable λ > 0 is orthogonal to v and VK(Ω) = VΦK(Ω). 
Then we shake ΦK onto H to obtain K ′ such that H is still a supporting hyperplane 
and K ′ ∩H = K ′|H. The next step is to use Schwarz rounding with respect to Rv and 
finally we compare the resulting K̃ to a suitable cylinder Z with rotational symmetry 
around Rv.

For any convex body M ∈ Kn with o ∈ intM and x ∈ M |v⊥ let

ρM (x) = max{t ∈ R : x + t v ∈ M},
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and let ϕM (x) = x + ρM (x) v. In particular the points of ∂M where all outer normals 
have an acute angle with v are of the form ϕM (x) for x ∈ intM |v⊥. Therefore

VM (Ω) = V(ΞM ) for ΞM =
⋃

x∈M |v⊥

[o, ϕM (x)].

For x ∈ (intM |v⊥)\{o} let z = θ−1x ∈ ∂M |v⊥ for some θ ∈ (0, 1). Since 
[ϕM (z), o, ϕM (o)] ⊆ ΞM we have

x + Rv intersects ΞM in a segment of length at least (1 − θ)‖ϕM (o)‖. (4.1)

Let λ = ρK(o) and hence λv ∈ ∂K, and let H0 be a supporting hyperplane of K
at λv. For a basis v1, . . . , vd−1 of the linear subspace H0−λv, we define the linear map Φ
by Φv = v, and Φvi = vi|v⊥ for i = 1, . . . , d − 1. In particular, we have cen(ΦK) = o, 
det Φ = 1, (ΦK)|v⊥ = K|v⊥, and H = λv + v⊥ is a supporting hyperplane of ΦK at 
λv ∈ ∂(ΦK). In addition, V(ΦK) = V(K) = 1, and ΞΦK = Φ(ΞK) implies that

VΦK(Ω) = VK(Ω).

Next we shake ΦK down to the supporting hyperplane H, i.e., for each x ∈ (ΦK)|v⊥, 
we translate the section (x + Rv) ∩ (ΦK) by (λ − ρΦK(x))v. Hence one endpoint of the 
translated section lies in H. The resulting convex body is denoted by K ′ and we have

K ′|v⊥ = (ΦK)|v⊥ = C − λ v for C = K ′ ∩H.

In addition V(K ′) = V(ΦK) = 1, and ΞK′ is the cone [o, C].
For x ∈ (intK ′|v⊥)\{o}, it follows by (4.1) that x + Rv intersects ΞΦK in a segment 

of length at least the length of ΞK′ ∩ (x + Rv) and so

VK(Ω) = VΦK(Ω) = V(ΞK) ≥ V(ΞK′) = VK′(Ω). (4.2)

Next we consider the position of the centroid cen(K ′) of K ′. Due to the definition of the 
shaking process we know that

〈cen(K ′), u〉 = 〈cen(ΦK), u〉 = 0 for u ∈ v⊥, and

〈cen(K ′), v〉 ≥ 〈cen(ΦK), v〉 = 0 with equality if and only if K ′ = ΦK.

We deduce

cen(K ′) = η v where η ≥ 0, with η = 0 if and only if K ′ = ΦK, (4.3)

and in view of (4.2)

VK(Ω) ≥ VK′−cen(K′)(Ω) with equality if and only if K ′ = ΦK. (4.4)
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Now let K̃ be the Schwarz rounding of K ′ with respect to the line Rv. Then V(K̃) =
V(K ′) = 1, VK′(Ω) = V

K̃
(Ω) and by the rotational symmetry of K̃ with respect to R v, 

we get from (4.3)

cen(K̃) = cen(K ′) = η v where η ≥ 0, with η = 0 if and only if K ′ = ΦK (4.5)

and so by (4.4)

VK(Ω) ≥ V
K̃−cen(K̃)(Ω) with equality if and only if K ′ = ΦK. (4.6)

Finally we compare K̃ to the cylinder Z over the (n − 1)-ball H ∩ K̃, where V(Z) =
V(K̃) = 1 and Z and K lie on the same side of H. Observe that V

K̃
(Ω) = VZ(Ω) and 

by the rotational symmetry of Z we certainly have 〈cen(Z), u〉 = 0 for u ∈ v⊥. On the 
other hand the rotational symmetry of K̃ and K̃|v⊥ = (H ∩ K̃) − λv yield that

〈x, v〉 > −hZ(−v) > 〈y, v〉 for all x ∈ (intZ)\K̃ and y ∈ K̃\Z.

Therefore,

cen(Z) = τ v where τ ≥ η, with τ = η if and only if Z = K̃.

Together with (4.5) and (4.6) we conclude

VK(Ω) ≥ VZ−cen(Z)(Ω) = 1/(2n) with equality iff K ′ = ΦK and Z = K̃,

i.e., with equality if and only if K is a cylinder whose generating segment is parallel 
to v. �
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