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1 The centroid body

Recall that the support function of a compact convex set K is defined as hK(u) =
maxx∈K{〈u, x〉}. The support function hK is positive homogeneous and convex, and
any function with these properties is the support function of some compact convex
set (see the illuminating paper of M. Berger [2], or the classic [5] by T. Bonnesen &
W. Fenchel).

Let C be a convex body in Rn; namely, C is compact convex and the interior
is non–empty. Then there exists some o–symmetric convex body ΓC, the so called
centroid body, whose support function is

hΓC(u) =
1

V (C)

∫
C

|〈u, x〉| dx.

The name originates from the fact that if C is o–symmetric then there exists a nice
description of ΓC: For any u ∈ Sn−1, denote by γ(u) the centroid of the convex set
{x ∈ C : 〈u, x〉 ≥ 0}. Then γ(u) just parameterizes the boundary of ΓC, and u is
actually the exterior unit normal at γ(u).

Centroid bodies were introduced by C.M. Petty [13], but in some form they
already appeared in the works of C. Dupin (cf. [8]) and W. Blaschke (cf. [3]). For
all the basic properties of centroid bodies mentioned in this section, consult the
paper [12] of V.D. Milman & A. Pajor, or the survey article [11] by E. Lutwak, or
Chapter 9 of the book [9] by R.J. Gardner.

If ϕ is linear then the centroid body of ϕ(C) is ϕ(ΓC). If the origin o ∈ C then
a characteristic property is that V (ΓC) is proportional to the average volume of
simplices in C such that o is one of the vertices. To put this into a more precise form,
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we use the notation [x1, . . . , xm] to denote the convex hull of the points x1, . . . , xm.
Then regardless of whether or not o ∈ C, we have

V (ΓC) =
2n

V (C)n

∫
C

· · ·
∫
C

V ([0, x1, . . . , xn]) dx1 . . . dxn. (1)

Denote by κn the volume of the Euclidean unit ball B in Rn. The Busemann–
Petty projection inequality states that (cf. C.M. Petty [13])

V (ΓC) ≥
(

2κn−1

(n+ 1)κn

)n
· V (C), (2)

where equality holds if and only if C is an ellipsoid. The equivalent statement for the
average of the volume of the simplices (cf. H. Busemann [7]) is called the Busemann
random simplex inequality.

Our first goal is to provide a converse of (2) in the planar case. We start with
o–symmetric domains because most of the applications are concerned with them.

THEOREM 1.1 Assume that C is an o–symmetric convex body in R2. Then the
area A(ΓC) ≤ 5

27
· A(C), and equality holds if and only if C is a parallelogram.

Note that if E is an ellipse and P is a parallelogram with the same area then
(see (2) and Lemma 3.1)

A(ΓP )

A(ΓE)
=

5π2

48
= 1.0280 . . .

Therefore the area of the centroid domain is almost completely determined by the
area of C. This points to one formulation of the so called slicing problem: On one
hand, (2) and the Stirling formula yield that

V (ΓC)
1
n >

1√
2π
· 1√

n
· V (C)

1
n .

Now the slicing problem asks whether there exists an absolute constant c such that

V (ΓC)
1
n < c · 1√

n
· V (C)

1
n . (3)

An early formulation baptized the problem (due to J.D. Vaaler, ca. 1980); namely,
is there an absolute constant c′ such that if C is o–symmetric then

V (C)
n−1
n ≤ c′ · max

θ∈Sn−1

(
C ∩ θ⊥

)
?

The equivalence of the two formulations of the slicing problem is presented in V.
Milman & A. Pajor [12], Section 5. A third formulation is given in Section 2, and
see V.D. Milman & A. Pajor [12], Section 5, or R.J. Gardner [9], Notes to Section
9, for thorough discussion.
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CONJECTURE 1.2 Given the volume of an o–symmetric convex body in Rn,
n ≥ 3, the volume of the centroid body is maximized by the parallelotopes.

Most probably, the parallelotopes are the only extremal bodies. If the conjecture
holds then it yields the existence of the absolute constant c for the slicing problem
(see Lemma 3.1).

Next, let us turn to a conjecture of E. Lutwak (personal communication):

If C is an o–symmetric convex body in Rn then the points∣∣Γ(C ∩ θ⊥)
∣∣ · θ where θ ∈ Sn−1, describe the boundary of a convex body.

(4)

Here | · | stands for the (n− 1)–dimensional Lebesgue measure. Now the Busemann
intersection inequality (cf. H. Busemann [6]) says that if we replace the (n − 1)–
measure of the centroid body of the section with the (n− 1)–measure of the section
then the resulting surface is convex. Therefore the conjecture holds in R2, and
(2) and Theorem 1.1 yield that in R3, the surface of E. Lutwak is convex up to a
constant 1.0280.

On the other hand, we prove that the conjecture (4) fails to hold in Rn for
infinitely many n (see Lemma 7.2). We would like to point out the following inter-
esting phenomenon: Let C and C ′ be o–symmetric convex bodies in Rn such that
C ⊂ C ′. Then for certain n, it may happen that V (ΓC ′) < V (ΓC) (see (19)). On
the hand, A(ΓC ′) ≥ A(ΓC) in R2 (see Lemma 7.3). It would be interesting to know
whether the conjecture (4) holds in R3.

Finally, we discuss convex bodies, which may not be o–symmetric. Given the
the volume of a convex body C in Rn, it is meaningless to ask for the maximum of
V (ΓC) because moving C to infinity increases V (ΓC) beyond any bound. Therefore
we assume that o ∈ C. This condition is also natural from the point of view that
(1) has a geometric meaning in this case.

We consider again only the planar version.

THEOREM 1.3 Let C be a convex body in R2. If o ∈ C then A(ΓC) ≤ 16
27
·A(C),

and equality holds if and only if C is a triangle with o as a vertex.

We conjecture that the analogous statement holds also in higher dimensions.

2 The ellipsoid of inertia

The main reference to this section is the paper V. Milman & A. Pajor [12], and the
basic statements are summarized in R. Gardner [9], Notes to Section 9.
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Let C be a convex body in Rn. Then the function

BC(u, v) =
1

V (C)
·
∫
C

〈u, x〉 · 〈v, x〉 dx

is symmetric, bilinear and BC(u, u) > 0 for u 6= 0. Therefore there exists an o–
symmetric ellipsoid Γ2C whose support function is

hΓ2C(u) =

√
1

V (C)
·
∫
C

〈u, x〉2 dx.

This ellipsoid is usually called the ellipsoid of inertia, but certain associated homo-
thetic ellipsoids are known as Fenchel ellipsoid (cf. C.M. Petty [13]), or Legendre
ellipsoid (cf. W. Blaschke [4] or V. Milman & A. Pajor [12], Section 1.1). We were
not able to find out, who initiated the investigation of this notion, which definitely
traces back at least to the 19th century physics. The relation to physics is that
the so called Legendre ellipsoid has the same second moment of inertia as C with
respect to any hyperplane through the origin (cf. C.M. Petty [13]). Note that the
ellipsoid of inertia is also invariant under linear transformations (see E. Lutwak [10]
for a detailed proof).

According to a classical observation (going back to the 19th century, but can be
found say in W. Blaschke [4], or in C.M. Petty [13])),

V (Γ2C) = κn ·
√
n! ·

√
1

V (C)n

∫
C

· · ·
∫
C

V ([0, x1, . . . , xn]2) dx1 . . . dxn. (5)

It is also a classical fact that given the volume of C, the volume of Γ2C is
minimized by the ellipsoids (cf. W. Blaschke [4]).

Now assume that C is o–symmetric. This restriction is not essential for various
considerations below, but we would like to emphasize the relation to the slicing
problem. The Hölder inequality yields right away that hΓC(u) ≤ hΓ2C(u), and hence

ΓC ⊂ Γ2C. (6)

On the other hand, there exists an absolute constant c0 > 1 such that

Γ2C ⊂ c0 · ΓC (7)

(see V. Milman & A. Pajor [12], Section 1.4). Now the method of proving Theo-
rem 1.1 also yields

THEOREM 2.1 Assume that C is an o–symmetric convex body in R2. Then the
area A(Γ2C) ≤ π

12
· A(C), and equality holds if and only if C is a parallelogram.
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We believe

CONJECTURE 2.2 Given the volume of an o–symmetric convex body in Rn,
n ≥ 3, the volume of the ellipsoid of inertia is maximized by the parallelotopes.

Most probably, the parallelotopes are again the only extremal bodies. If the
conjecture holds then it solves the the slicing problem (see Lemma 3.1).

For the sake of completeness, we recall yet an other formulation of the slicing
problem due to J. Bourgain ca. 1982 (see also V. Milman & A. Pajor [12], Section
5): Assume that C is in isotropic position; namely, V (C) = 1 and Γ2C is a ball.
Then the slicing problem asks for an absolute constant c1 such that if θ is a unit
vector then ∫

C

〈θ, x〉2 dx < c1.

Here the left hand side is independent of θ because of the isotropic position.
In case of possibly not o–symmetric planar convex bodies, the proof of Theo-

rem 1.3 can be easily adopted to the ellipse of inertia:

THEOREM 2.3 Let C be a convex body in R2. If o ∈ C then A(Γ2C) ≤ π
2
√

3
·A(C),

and equality holds if and only if C is a triangle with o as a vertex.

We conjecture that the analogous statement holds also in higher dimensions.

3 The bodies associated to parallelotopes

Let W n be the unit cube [−1
2
, 1

2
]n in Rn. The symmetries of W n yield that Γ2W

n is
a ball, and it follows that the radius is 1√

12
. We deduce by (6) that

V (ΓW n) ≤ V (Γ2W
n) =

(
1√
12

)n
· κn · V (W n). (8)

Next, we consider the planar case, and even determine the centroid body. For
u = (sinα, cosα), α ∈ [−π

4
, π

4
], denote the set of points x ∈ W 2 satisfying 〈u, x〉 ≥ 0

by W (α), and the centroid of W (α) by γ(α). Since

γ(α) = 2 ·
∫
W (α)

x dx,

some elementary calculations yield that

γ′(α) =
1

6
·
(

1

cos2 α
,− tanα · 1

cos2 α

)
.
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Therefore the part of the boundary of ΓW 2 parameterized by γ is the graph of the
function

f(t) = 1
4
− 3t2, t ∈ [−1

6
, 1

6
].

The actual boundary of ΓW 2 consists of four arcs, and each of them is congruent
with γ.

Using this representation in the planar case, and (8) and the Stirling formula in
the higher dimensional case, we obtain

LEMMA 3.1 Let P be an o–symmetric parallelotope in Rn.

(i) If n = 2 then A(ΓP ) = 5
27
· A(P ) and A(Γ2P ) = π

12
· A(P ).

(ii) If n ≥ 3 then V (ΓP )
1
n ≤ V (Γ2P )

1
n <

√
eπ
12
· 1√

n
· V (P )

1
n .

4 Shaking in the plane

The proof of the Theorems uses “desymmetrization” of a planar convex body C.
Let l be a line in R2, and choose a half plane l+ bounded by l. For any line l̃,
perpendicular to l and intersecting C, translate the intersection along l̃ so that the
segment lands in l+ and one endpoint lies in l. The union of the translated segments
is a planar convex body C ′, which satisfies A(C ′) = A(C). Usually it is obvious
which half plane determined by l we need, and we simply speak about shaking with
respect to l. This process, named shaking (“Schüttelung”) was developed by W.
Blaschke. One may think about the Blaschke shaking as the dual of the Steiner
symmetrization, when each segment is translated so that the midpoint lands in l.

Now let l̃ be a line containing o. We say that the planar convex body C is more
symmetric than C ′ in the direction of l̃ if the conditions 1. and 2. below hold for
any pair of lines l1 and l2 parallel to l̃:

1. lj ∩ C and lj ∩ C ′ have the same length, j = 1, 2;

2. Assume that lj ∩C is a segment and lj 6= l̃, j = 1, 2, and denote the midpoint
of lj ∩C and lj ∩C ′ by mj and m′j, respectively, j = 1, 2. If linm1 and linm′1
intersects l2 in p and p′, respectively, then d(p,m2) ≤ d(p′,m′2).

The next observation is used in several related arguments, and a proof is included
for the sake of completeness.

PROPOSITION 4.1 Let l̃ be a line containing o, and let C1, C2 and C ′1, C ′2 be
planar convex bodies such that C1 and C2 are more symmetric than C ′1 and C ′2,
respectively, in the direction of l̃. Then∫

C1

∫
C2

A([o, x, y]) dxdy ≤
∫
C′1

∫
C′2

A([o, x, y]) dxdy,

6



and equality holds if and only if d(p,m2) = d(p′,m′2) holds for any pair l1 and l2 in
the condition 2. above.

Proof: The proposition follows from the following claim: Assume that σ1 and σ2

are parallel and not collinear segments such that their midpoints are contained in
the line l through o. If σ1 is moved parallel to σ2 and away from l then∫

σ1

∫
σ2

A([o, x, y]) dxdy strictly increases. (9)

Since the problem is invariant under affine transformations which do not change
the direction of σ1, we may assume that l is actually the perpendicular bisector of σ2.
As σ1 moves, the change of the integral is caused by the endpoints of σ1. Therefore
it is enough to verify that if y − z is parallel to σ2 and z is closer to l than y then∫

σ2

A([o, x, y]) dx >

∫
σ2

A([o, x, z]) dx. (10)

Assume that w moves away from l along a line l0 perpendicular to l, and l0 avoids
o and σ2. Set up a coordinate system such that l is the first axis, and consider the
points x = (a, b) and x′ = (a,−b) of σ2, and w = (s, t), which satisfy

2 · A([o, x, w]) + 2 · A([o, x′, w]) = |at− sb|+ |at+ sb| =
{

2|sb| if |at| ≤ |sb|
2|at| if |at| ≥ |sb|.

The condition on w yields that |t| increases as w is moving, and hence

A([o, x, w]) + A([o, x′, w]) increases. (11)

We deduce the weak form of (10), allowing the equality sign. On the other hand,
if x is so close to l that |at| > |sb| then A([o, x, w]) + A([o, x′, w]) strictly increases,
which in turn finally yields (10). 2

Similarly, we have

PROPOSITION 4.2 We use the notation and conditions of Proposition 4.1. We
have ∫

C1

∫
C2

A([o, x, y])2 dxdy ≤
∫
C′1

∫
C′2

A([o, x, y])2 dxdy,

and equality holds if and only if d(p,m2) = d(p′,m′2) for any pair l1 and l2.
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Proof: We use the same idea and notation as for the proof of Proposition 4.1. In
particular, it is sufficient to prove that if w moves away from l parallel to aff{x, x′}
then

A([o, x, w])2 + A([o, x′, w])2 strictly increases. (12)

Since |t| increases, and

4 · A([o, x, w])2 + 4 · A([o, x′, w])2 = (at− sb)2 + (at+ sb)2 = 2 · a2t2 + 2 · s2b2,

we conclude (12). 2

Observe that Proposition 4.1 and Proposition 4.2 combined with the Steiner
symmetrization yield (2) and its analogue for the ellipsoid of inertia in the planar
case. Actually, the higher dimensional cases can be also handled using the Steiner
symmetrization.

5 The extremal property of the parallelogram

We present the proof only for Theorem 1.1, the proof of Theorem 2.1 is completely
analogous (one uses Proposition 4.2 instead of Proposition 4.1).

Let C be an o–symmetric convex body in R2. If E is the ellipse with maximal
area contained in C (the so–called Löwner ellipse) then (see K. Ball [1] or R. Gardner
[9]) C ⊂

√
2E. Transforming E into the unit circular disc B, we may assume that

B ⊂ C ⊂
√

2B.

Therefore the Blaschke selection theorem yields the existence of an o–symmetric
planar convex body K which maximizes A(ΓC)/A(C) among all o–symmetric planar
convex bodies. We prove that K is a parallelogram.

Let z ∈ ∂K, and assume that the line l through z is tangent to one of the arcs
of ∂K meeting at z. Denote the half plane determined by linz and containing this
arc by z+, and the tangent line to the arc ∂K ∩ z+ at −z by l̃.

We claim that either

the line through w parallel to z supports K where [z, w] = l ∩K ∩ z+,

or the line through w̃ parallel to z supports K where [−z, w̃] = l̃ ∩K ∩ z+.
(13)

Set K+ = K ∩ z+. Then A([o, x, y]) = A([o, x,−y]) yields that∫
K

∫
K

A([0, x, y]) dxdy = 4 ·
∫
K+

∫
K+

A([0, x, y]) dxdy,

and hence we concentrate on K+.

8



We may assume that l is perpendicular to linz. Let [x, x̃] and [y, ỹ0] be sections
of K+ by lines parallel with z such that x and y are the endpoints closer to l, and
x is closer to linz than y (x 6= z). Since K is convex, [y, ỹ0] lies between the parallel
lines aff{x, z} and aff{x̃,−z}.

Shake down K+ to l. The role of l and l̃ is actually symmetric because o is the
midpoint of [z,−z]. We deduce by Proposition 4.1 that A(ΓK) is not decreased by
the shaking.

Assume that l ∩K ∩ z+ = [z, w], and l̃ ∩K ∩ z+ = [−z, w̃] (possibly say w = z).
The only case when A(ΓK) is not increased by shaking is if for any pair x and y
as above, either y lies in aff{x, z} or ỹ lies in aff{x̃,−z}. Therefore there exists no
section [y, ỹ] ∈ K+ whose projection into l (into l̃) lands outside of [z, w] (outside
of [−z, w̃]), which in turn yields the claim (13).

We deduce by (13) that there exists a segment [v, w] in ∂K. We may assume that
this segment is maximal, and denote by u its midpoint. Now if z is an interior point
of [u,w] then (13) yields the line through −v parallel with z, which is a supporting
line of K. It follows by continuity that aff{−v, w} is also a supporting line of K,
and hence K is a parallelogram.

6 The extremal property of the triangle

We present the proof only for Theorem 1.3, the proof of Theorem 2.3 is completely
analogous.

Let C be any planar convex body containing o. If E is the o–symmetric ellipse
such that x+E is the ellipse with maximal area contained in C then C ⊂ x+2E (see
K. Ball [1] or R.J. Gardner [9]). We may assume that E = B by affine invariance.
Therefore the Blaschke selection theorem yields again the existence of a K which
maximizes A(ΓC)/A(C) and o ∈ K.

First we consider a special case. Recall that the positive hull pos {x, y} of two
vectors x and y is in general the cone they enclose; more precisely, the set of linear
combinations λx+ µ y with λ, µ ≥ 0.

PROPOSITION 6.1 If C is a planar convex body and o ∈ ∂C then A(ΓC)/A(C)
is maximized by the triangles with o as a vertex.

Proof: We may assume that A(ΓC)/A(C) is maximal under the condition o ∈ ∂C.
Suppose that either C is not a triangle or o is not a vertex.

Let [o, u1] and [o, u2] be the two (possibly degenerate) maximal segments in ∂C
meeting at o. If u1 = u2 (= o) then define l′ as some supporting line at o. If u1 6= u2

then define l′ as the line through o parallel to u2 − u1, which is again a supporting
line. Then there exists a line l̃ intersecting C\[0, u1, u2] and parallel to l′. We deduce
that [x, o] ∩ intC 6= ∅ holds for any x ∈ l̃ ∩ C.
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Shake C down to the line l through o and orthogonal to l̃ (use either half plane
determined by l). If [x, x′], [y, y′] are sections of C parallel to l′ and [x, x′] is closer to
o than [y, y′] then [y, y′] ⊂ pos{x, x′}. We deduce by Proposition 4.1 that A(ΓC ′) ≥
A(ΓC) for the resulting C ′.

Now if [y, y′] = l̃ ∩ C and [x, x′] is a section of C closer to o than [y, y′] then
[y, y′] ⊂ int pos{x, x′}. Therefore A(ΓC ′) > A(ΓC), which contradicts the maximal-
ity of A(ΓC). 2

We need the following technical but useful statement:

PROPOSITION 6.2 If C is a planar convex body and o ∈ C then there exist
points x1, x2 ∈ ∂C and supporting lines l1, l2 at x1, x2, respectively, such that l1 and
l2 are parallel, and o ∈ [x1, x2].

Proof: We may assume by continuity that C is smooth, strictly convex and
o ∈ intC. Orient ∂C. For any x ∈ ∂C, define α(x) as the angle of the half line xo
and the tangent half line at x of the arc of ∂K on the positive side of x. In addition,
x′ denotes the point on ∂C with o ∈ [x, x′].

Let x0 ∈ ∂C. If α(x0) = α(x′0) then we are done. Otherwise, move x from x0 to
x′0 along ∂C in the positive direction. Then α(x)−α(x′) is continuous, and changes
its sign at some x1. Then choosing x2 = x′1, the supporting lines at x1 and x2 are
parallel. 2

Now let K be the planar convex body maximizing A(ΓC)/A(C) under the con-
dition that o ∈ C. We have already discussed the case when o is contained in the
boundary of K, so suppose that o ∈ intK.

Let the points x1, x2 and the supporting lines l1, l2 be given as in Proposition 6.2.
Assume that o is not farther from l2 than from l1. The line aff {x1, x2} divides K
into two halves K+ and K−. Assume that l1 is orthogonal to z = x1−x2, and shake
K down to the line l = l1 − x2 so that the segment [x1, x2] moves to [z, 0]. Denote

by K̃+ (K̃−) the image of K+ (K−).
Choose the points w+ ∈ l (w− ∈ l) on the side of lin y containingK+ (K−) so that

A([o, z, w+]) = A(K+) (A([o, z, w−]) = A(K−)). Now we deduce by Proposition 6.1
that ∫

[o,z,w+]

∫
[o,z,w+]

A([o, x, y]) dxdy >

∫
K+

∫
K+

A([o, x, y]) dxdy, (14)

and the analogous statement holds for [o, z, w−] and K−.
Since K+ and K− lie between l1 and l2, and o is not farther from l2 than from

l1, we deduce by Proposition 4.1 that∫
K̃+

∫
K̃−

A([o, x, y]) dxdy >

∫
K+

∫
K−

A([o, x, y]) dxdy. (15)
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Define u+ and u− so that K̃+ ∩ [0, w+] = [o, u+] and K̃− ∩ [0, w−] = [o, u−].

Observe that if x ∈ K̃− then the line passing through u+ and parallel to x separates
[0, w+, z]\K̃+ from K̃+\[0, w+, z]. On the other hand, the areas of [0, w+, z]\K̃+

and K̃+\[0, w+, z] are the same. It follows that∫
[0,w+,z]

∫
[0,w−,z]

A([o, x, y]) dxdy ≥
∫
K̃+

∫
K̃−

A([o, x, y]) dxdy.

Combining the inequality with (14) and (15) yields that A(Γ[0, w+, w−]) > A(ΓK).
This contradicts the maximality of A(ΓK), and hence K is a triangle, and o is a
vertex.

Finally, we deduce by formula (1) that A(ΓK) = 16
27
· A(K).

7 About the monotonicity of V (ΓC)

First we construct counterexamples to E. Lutwak’s conjecture (4) in certain Rn.
Our argument is based on

PROPOSITION 7.1 Assume that the conjecture (4) holds in Rn+1, n ≥ 2, and
let C ⊂ C ′ be o–symmetric convex bodies in Rn such that L∩C = L∩C ′ for a linear
(n− 1)–plane L in Rn. Then

V (ΓC ′) ≥ V (ΓC).

Proof: Let u1 and u2 be orthogonal unit vectors in Rn+1, and for i = 1, 2, choose
an isomorphism ϕi between Rn and u⊥i such that ϕ1 and ϕ2 coincide on L. In
addition, define the convex body K as the convex hull of ϕ1(C) and ϕ2(C) in Rn+1.

Now the unit vector u = 1√
2
· (u1 + u2) and the linear map ϕ = 1

2
· (ϕ1 + ϕ2)

satisfy that ϕ(C) = u⊥ ∩ K, and the point V (Γ(u⊥ ∩ K)) · u lies on the segment
between V (ΓC) · u1 and V (ΓC) · u2. Set

K ′ = conv(ϕ(C ′) ∪K).

Then the conjecture (4) applied to K ′ yields that V (Γ(u⊥ ∩K ′)) · u lies beyond the
segment connecting V (ΓC) · u1 and V (ΓC) · u2, and hence V (ΓC ′) ≥ V (ΓC). 2

In order to abbreviate the integral formulae appearing in the random simplex
representation for an o–symmetric convex body C in Rn, set

I(C) =

∫
C

· · ·
∫
C

V ([0, x1, . . . , xn]) dx1 . . . dxn,

S(C, z) =

∫
C

· · ·
∫
C

V ([0, y1, . . . , yn−1, z]) dy1 . . . dyn−1.
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Then (1) can be written in the form

I(C) = 2−n · V (C)n · V (ΓC).

If z0 is the center of one facet of the unit cube W n = [−1
2
, 1

2
]n, then

S(W n, z0) =
1

2n
· I(W n−1). (16)

On the other hand, (2) and the Stirling formula yield that

I(W n) > n−
1
2
·n+o(n).

We deduce by n! = nn+o(n) that there exists infinitely many n such that I(W n) >
8
n
· I(W n−1), and hence

S(W n, z0) <
1

16
· I(W n). (17)

Let n satisfy (17). There exists an o–symmetric, strictly convex body C in Rn such
that z0 lies on its boundary, and

S(C, z0) <
1

8
· I(C)

V (C)
. (18)

For ε > 0, define
Cε = conv{±(1 + ε)z0, C}.

Assume that ε > 0 tends to zero. Then Cε\C consists of two components (one at z0

and one at −z0), and the diameter of both of them tends to zero. We deduce that

S(C, z) <
1

4
· I(C)

V (C)

holds for any z ∈ Cε\C. In addition, V (Cε\C) tends to zero, and hence

I(Cε)− I(C) = n ·
∫
Cε\C

S(C, z) dz +O
(
V (Cε\C)2

)
< 2 · n ·

∫
Cε\C

S(C, z) dz.

Combining the last two estimates shows that

I(Cε)− I(C)

V (Cε)− V (C)
< n · I(C)

V (C)
.
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Therefore if ε > 0 is small then

I(Cε)− I(C)

I(C)
<
n · (V (Cε)− V (C))

V (C)
<
V (Cε)

n − V (C)n

V (C)n
,

which in turn yields that

V (ΓCε) < V (ΓC) while C ⊂ Cε. (19)

We conclude by Proposition 7.1,

LEMMA 7.2 There exist infinitely many n such that the conjecture (4) fails in
Rn.

Finally, we discuss the conjecture (4) in R3, which is in turn related to the
monotonicity of the area of the centroid body in the plane. We prove

LEMMA 7.3 Let C and K be o–symmetric convex bodies in R2. If C ⊂ K then
A(ΓC) ≤ A(ΓK), and equality holds if and only if C = K.

Before proving Lemma 7.3, let us consider an o–symmetric convex body M in
R2, and a z ∈ ∂M . Assume that l is a tangent line at z to M , and denote by P the
parallelotope with area A(M) whose two sides are contained in l and −l, and the
other two sides are parallel to z. Then

S(M, z) ≥ S(P, z) =
1

16
· A(M)2. (20)

Now let C and K be o–symmetric convex bodies in R2 such that C is strictly
contained in K. Define Kt = (1 − t)C + tK for 0 ≤ t ≤ 1. Lemma 7.3 follows by
proving that A(ΓKt) is strictly increasing. Since Kt is a linear family, it is sufficient
to prove that

A(ΓKt)− A(ΓK0) > 0 (21)

holds for small t > 0.
Note that (21) can be written in the form

I(Kt)− I(K0)

I(K0)
>
A(Kt)

2 − A(K0)2

A(K0)2
,

where A(Kt) tends to A(K0). Thus if t > 0 is small then (21) is the consequence of
the inequality

I(Kt)− I(K0)

A(Kt)− A(K0)
> 2.5 · I(K0)

A(K0)
. (22)

13



We give a lower bound for the variation of I(Kt) by considering the two cases
when one of the xi’s, i = 1, 2, in the definition of I(Kt) lies in the difference set, and
the other variable is chosen from K0. Therefore

I(Kt)− I(K0) > 2 ·
∫
Kt\K0

S(K0, z) dz,

while I(K0) ≤ 5
4·27
· A(K0)3 holds by Theorem 1.1. We deduce by (20) that

I(Kt)− I(K0)

A(Kt)− A(K0)
> 2 ·

∫
Kt\K0

S(K0, z) dz

A(Kt\K0)

≥ 1

8
· A(K0)2 > 2.5 · I(K0)

A(K0)
.

Therefore the inequality (22) follows for small t, which in turn yields Lemma 7.3. 2

We conjecture that (4) holds at least in R3.

Acknowledgment: We wish to thank Endre Makai and the referee for their many
useful comments.

References

[1] K. Ball: An elementary introduction to modern convex geometry. In: Flavors of
convex geometry, ed. S. Levy, Cambridge University Press, Cambridge, 1997.

[2] M. Berger: Convexity. Amer. Math. Monthly, 97 (1990), 650–678.
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