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1 The centroid body

Recall that the support function of a compact convex set K is defined as hg(u) =
max;cx{(u, x)}. The support function hg is positive homogeneous and convex, and
any function with these properties is the support function of some compact convex
set (see the illuminating paper of M. Berger [2], or the classic [5] by T. Bonnesen &
W. Fenchel).

Let C' be a convex body in R"™; namely, C is compact convex and the interior
is non—empty. Then there exists some o-symmetric convex body I'C, the so called
centroid body, whose support function is

hre(u) = % /C ((u, )| da.

The name originates from the fact that if C' is o-symmetric then there exists a nice
description of I'C': For any u € S"!, denote by ~(u) the centroid of the convex set
{z € C : (u,xz) > 0}. Then y(u) just parameterizes the boundary of I'C', and u is
actually the exterior unit normal at v(u).

Centroid bodies were introduced by C.M. Petty [13], but in some form they
already appeared in the works of C. Dupin (cf. [8]) and W. Blaschke (¢f. [3]). For
all the basic properties of centroid bodies mentioned in this section, consult the
paper [12] of V.D. Milman & A. Pajor, or the survey article [11] by E. Lutwak, or
Chapter 9 of the book [9] by R.J. Gardner.

If ¢ is linear then the centroid body of ¢(C) is ¢(I'C'). If the origin o € C' then
a characteristic property is that V(I'C') is proportional to the average volume of
simplices in C such that o is one of the vertices. To put this into a more precise form,
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we use the notation [x1,...,Z,] to denote the convex hull of the points 1, ..., Z,.
Then regardless of whether or not o € C', we have

V(e = V(Zg)n/C---/CV([O,xl,...,xn]) duy . dz,. (1)

Denote by &, the volume of the Euclidean unit ball B in R™. The Busemann—
Petty projection inequality states that (cf. C.M. Petty [13])

V(re) > (f”—) V(e), )

where equality holds if and only if C'is an ellipsoid. The equivalent statement for the
average of the volume of the simplices (¢f. H. Busemann [7]) is called the Busemann
random simplex inequality.

Our first goal is to provide a converse of (2) in the planar case. We start with
o—symmetric domains because most of the applications are concerned with them.

THEOREM 1.1 Assume that C is an o-symmetric convex body in R%. Then the
area A(I'C') < 2% - A(C), and equality holds if and only if C is a parallelogram.

Note that if E is an ellipse and P is a parallelogram with the same area then
(see (2) and Lemma 3.1)

A(TP) 5x?
= — =1.0280...
ATE) s~ 00

Therefore the area of the centroid domain is almost completely determined by the
area of C'. This points to one formulation of the so called slicing problem: On one
hand, (2) and the Stirling formula yield that

1 1
> —_ e — .
Vor Vn

Now the slicing problem asks whether there exists an absolute constant ¢ such that

3=
3=

V(IC) V().
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An early formulation baptized the problem (due to J.D. Vaaler, ca. 1980); namely,
is there an absolute constant ¢ such that if C' is o-symmetric then
V(C‘)%1 < - max (C’ﬂ@L)?
fesn—1
The equivalence of the two formulations of the slicing problem is presented in V.
Milman & A. Pajor [12], Section 5. A third formulation is given in Section 2, and
see V.D. Milman & A. Pajor [12], Section 5, or R.J. Gardner [9], Notes to Section
9, for thorough discussion.



CONJECTURE 1.2 Given the volume of an o—symmetric convex body in R,
n > 3, the volume of the centroid body is maximized by the parallelotopes.

Most probably, the parallelotopes are the only extremal bodies. If the conjecture
holds then it yields the existence of the absolute constant ¢ for the slicing problem
(see Lemma 3.1).

Next, let us turn to a conjecture of E. Lutwak (personal communication):

If C is an o—symmetric convex body in R™ then the points (4)
IT(C'N6L)| -0 where 6 € S™, describe the boundary of a convez body.

Here | - | stands for the (n — 1)-dimensional Lebesgue measure. Now the Busemann
intersection inequality (c¢f. H. Busemann [6]) says that if we replace the (n — 1)—
measure of the centroid body of the section with the (n — 1)-measure of the section
then the resulting surface is convex. Therefore the conjecture holds in R?, and
(2) and Theorem 1.1 yield that in R3, the surface of E. Lutwak is convex up to a
constant 1.0280.

On the other hand, we prove that the conjecture (4) fails to hold in R" for
infinitely many n (see Lemma 7.2). We would like to point out the following inter-
esting phenomenon: Let C' and C’ be o-symmetric convex bodies in R™ such that
C C C'. Then for certain n, it may happen that V(I'C') < V(I'C) (see (19)). On
the hand, A(T'C") > A(T'C) in R? (see Lemma 7.3). It would be interesting to know
whether the conjecture (4) holds in R3.

Finally, we discuss convex bodies, which may not be o—symmetric. Given the
the volume of a convex body C in R", it is meaningless to ask for the maximum of
V(I'C') because moving C' to infinity increases V (I'C') beyond any bound. Therefore
we assume that o € C. This condition is also natural from the point of view that
(1) has a geometric meaning in this case.

We consider again only the planar version.

THEOREM 1.3 Let C be a convex body in R?. If o € C then A(TC) < 52+ A(C),

and equality holds if and only if C' is a triangle with o as a vertez.

We conjecture that the analogous statement holds also in higher dimensions.

2 The ellipsoid of inertia

The main reference to this section is the paper V. Milman & A. Pajor [12], and the
basic statements are summarized in R. Gardner [9], Notes to Section 9.



Let C' be a convex body in R". Then the function

is symmetric, bilinear and Be(u,u) > 0 for u # 0. Therefore there exists an o—
symmetric ellipsoid I'sC' whose support function is

hroo(u) = \/ﬁ ‘ /(j(u, )? da.

This ellipsoid is usually called the ellipsoid of inertia, but certain associated homo-
thetic ellipsoids are known as Fenchel ellipsoid (¢f. C.M. Petty [13]), or Legendre
ellipsoid (c¢f. W. Blaschke [4] or V. Milman & A. Pajor [12], Section 1.1). We were
not able to find out, who initiated the investigation of this notion, which definitely
traces back at least to the 19th century physics. The relation to physics is that
the so called Legendre ellipsoid has the same second moment of inertia as C' with
respect to any hyperplane through the origin (¢f. C.M. Petty [13]). Note that the
ellipsoid of inertia is also invariant under linear transformations (see E. Lutwak [10]
for a detailed proof).

According to a classical observation (going back to the 19th century, but can be
found say in W. Blaschke [4], or in C.M. Petty [13])),

V(I5C) _nn\/_\/ / / ([0,z1,...,x0]2) day ... dz,.  (5)

It is also a classical fact that given the volume of C', the volume of I'sC' is
minimized by the ellipsoids (c¢f. W. Blaschke [4]).

Now assume that C is o-symmetric. This restriction is not essential for various
considerations below, but we would like to emphasize the relation to the slicing
problem. The Hélder inequality yields right away that Arc(u) < hr,o(u), and hence

rc cryc. (6)
On the other hand, there exists an absolute constant ¢y > 1 such that
FQC Cco- rc (7)

(see V. Milman & A. Pajor [12], Section 1.4). Now the method of proving Theo-
rem 1.1 also yields

THEOREM 2.1 Assume that C is an o—symmetric convex body in R?. Then the
area A(T'2C) < 5 - A(C), and equality holds if and only if C is a parallelogram.
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We believe

CONJECTURE 2.2 Given the volume of an o—symmetric conver body in R™,
n > 3, the volume of the ellipsoid of inertia is maximized by the parallelotopes.

Most probably, the parallelotopes are again the only extremal bodies. If the
conjecture holds then it solves the the slicing problem (see Lemma 3.1).

For the sake of completeness, we recall yet an other formulation of the slicing
problem due to J. Bourgain ca. 1982 (see also V. Milman & A. Pajor [12], Section
5): Assume that C' is in isotropic position; namely, V(C) = 1 and I'2C' is a ball.
Then the slicing problem asks for an absolute constant c¢; such that if 6 is a unit

vector then
/(0,30)2 dx < 1.
c

Here the left hand side is independent of 6 because of the isotropic position.
In case of possibly not o—symmetric planar convex bodies, the proof of Theo-
rem 1.3 can be easily adopted to the ellipse of inertia:

THEOREM 2.3 Let C be a conver body in R?. Ifo € C then A(TyC) <3
and equality holds if and only if C' is a triangle with o as a vertex.

A(C>7

g

We conjecture that the analogous statement holds also in higher dimensions.

3 The bodies associated to parallelotopes

Let W™ be the unit cube [—5, 5] in R”™. The symmetries of W™ yield that 'y W™ is
a ball, and it follows that the radius is —=. We deduce by (6) that
1 n
VIW?™) <V(I W) = —= | - kp- V(WV"). 8
(W) < V() ( ) VO ®)

Next, we consider the planar case, and even determine the centroid body. For
u = (sina, cosa), a € [—%, I, denote the set of points & € W? satisfying (u,z) > 0
by W(«), and the centroid of W («) by v(«). Since

Y(a) =2- / zdz,
W(a)

some elementary calculations yield that

-t (L 1
a) == —tana - )
" 6 \cos?a’ cos? o
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Therefore the part of the boundary of [''W? parameterized by v is the graph of the
function

f(t):%_3t27 te [_%7%]
The actual boundary of I'W? consists of four arcs, and each of them is congruent

with 7.
Using this representation in the planar case, and (8) and the Stirling formula in
the higher dimensional case, we obtain

LEMMA 3.1 Let P be an o—symmetric parallelotope in R™.
(i) Ifn=2then A(TP)=3--A(P) and A(IyP)=%-A(P).

12

(i) Ifn >3 then V(IP)n < V([yP)w < %,%ﬁ,v(]g)%'

4 Shaking in the plane

The proof of the Theorems uses “desymmetrization” of a planar convex body C.
Let [ be a line in R?, and choose a half plane [T bounded by [. For any line Z,
perpendicular to [ and intersecting C', translate the intersection along [ so that the
segment lands in [T and one endpoint lies in [. The union of the translated segments
is a planar convex body C’, which satisfies A(C") = A(C). Usually it is obvious
which half plane determined by [ we need, and we simply speak about shaking with
respect to [. This process, named shaking (“Schiittelung”) was developed by W.
Blaschke. One may think about the Blaschke shaking as the dual of the Steiner
symmetrization, when each segment is translated so that the midpoint lands in /.

Now let [ be a line containing o. We say that the planar convex body C' is more
symmetric than C' in the direction of [ if the conditions 1. and 2. below hold for
any pair of lines [; and [, parallel to l:

1. [; N C and I; N C" have the same length, j = 1,2;
2. Assume that [; N C is a segment and [; # l, 7 =1,2, and denote the midpoint

of [; N C and [; N C" by m; and m];, respectively, j = 1,2. If linm, and linm)
intersects Iy in p and p’, respectively, then d(p, ma) < d(p/, m}).

The next observation is used in several related arguments, and a proof is included
for the sake of completeness.

PROPOSITION 4.1 Let [ be a line containing o, and let Cy, Cy and 1, CY be
planar convex bodies such that Cy and Cy are more symmetric than C| and Cs,
respectively, in the direction of l. Then

L[ Ao azay < | | / Aoyl dad
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and equality holds if and only if d(p, ma) = d(p',m}) holds for any pair l; and Iy in
the condition 2. abowve.

Proof: The proposition follows from the following claim: Assume that o; and oy
are parallel and not collinear segments such that their midpoints are contained in
the line [ through o. If o is moved parallel to o, and away from [ then

/ / A(lo, z,y]) dedy strictly increases. (9)

Since the problem is invariant under affine transformations which do not change
the direction of o, we may assume that [ is actually the perpendicular bisector of os.
As o1 moves, the change of the integral is caused by the endpoints of ;. Therefore
it is enough to verify that if y — z is parallel to o9 and z is closer to [ than y then

/A([o,m,y])dx>/ A([o, x, z]) dz. (10)

Assume that w moves away from [ along a line [y perpendicular to [, and [y avoids
o and ogy. Set up a coordinate system such that [ is the first axis, and consider the
points = (a,b) and 2’ = (a, —b) of o9, and w = (s,t), which satisfy

/ _ [ 2lsb| if at| < |sD]
2- A(fo,z,w]) +2 - A([o, 2", w]) = |at — sb| + |at + sb| = { dlat] if |at| > |sb].
The condition on w yields that |¢| increases as w is moving, and hence

A([o, z,w]) + A([o, ', w])  increases. (11)

We deduce the weak form of (10), allowing the equality sign. On the other hand,
if x is so close to [ that |at| > |sb| then A([o, z,w]) + A([o, ', w]) strictly increases,
which in turn finally yields (10). O

Similarly, we have

PROPOSITION 4.2 We use the notation and conditions of Proposition 4.1. We
have

/ Allo, 2, y))? dady < / Allo, , y))? dudy,
c JCy 17/ Cy

and equality holds if and only if d(p,ms) = d(p',mb) for any pair l; and ls.



Proof: We use the same idea and notation as for the proof of Proposition 4.1. In
particular, it is sufficient to prove that if w moves away from [ parallel to aff{x, 2’}
then

A([o, z,w])* + A([o,2’,w])*  strictly increases. (12)

Since |t| increases, and
4 - Ao, z,w])* + 4 - A([o, 2',w])* = (at — sb)* + (at + sb)* = 2 a*t* + 2 - s*V?,
we conclude (12). 0

Observe that Proposition 4.1 and Proposition 4.2 combined with the Steiner
symmetrization yield (2) and its analogue for the ellipsoid of inertia in the planar
case. Actually, the higher dimensional cases can be also handled using the Steiner
symmetrization.

5 The extremal property of the parallelogram

We present the proof only for Theorem 1.1, the proof of Theorem 2.1 is completely
analogous (one uses Proposition 4.2 instead of Proposition 4.1).

Let C be an o-symmetric convex body in R?. If E is the ellipse with maximal
area contained in C' (the so—called Lowner ellipse) then (see K. Ball [1] or R. Gardner
[9]) C € V2 E. Transforming E into the unit circular disc B, we may assume that

BcCCcCV2B.

Therefore the Blaschke selection theorem yields the existence of an o—symmetric
planar convex body K which maximizes A(I'C')/A(C) among all o-symmetric planar
convex bodies. We prove that K is a parallelogram.

Let z € OK, and assume that the line [ through z is tangent to one of the arcs
of 0K meeting at z. Denote the half plane determined by linz and containing this
arc by 2T, and the tangent line to the arc K Nz at —z by L.

We claim that either

the line through w parallel to z supports K where [z,w] =1N K N z7,

or the line through W parallel to z supports K where [—z, 4] =N K N z". (13)

Set K = KNzt Then A([o,z,y]) = A([o, z, —y]) yields that

// ([0, z,9]) dxdy—él/ / ([0, z,y]) dzdy,
K+ JK+

and hence we concentrate on K.



We may assume that [ is perpendicular to linz. Let [z, Z] and [y, go] be sections
of Kt by lines parallel with z such that z and y are the endpoints closer to [, and
x is closer to linz than y (z # 2). Since K is convex, [y, o] lies between the parallel
lines aff{z, 2} and aff{z, —z}. 3

Shake down KT to [. The role of [ and [ is actually symmetric because o is the
midpoint of [z, —z]. We deduce by Proposition 4.1 that A(T'K) is not decreased by
the shaking.

Assume that [N K Nzt = [z,w], and [N K Nzt = [—z, @] (possibly say w = z).
The only case when A(TI'K) is not increased by shaking is if for any pair x and y
as above, either y lies in aff{z, z} or § lies in aff{Z, —z}. Therefore there exists no
section [y, §] € KT whose projection into [ (into ) lands outside of [z, w] (outside
of [—z,w]), which in turn yields the claim (13).

We deduce by (13) that there exists a segment [v, w] in K. We may assume that
this segment is maximal, and denote by w its midpoint. Now if z is an interior point
of [u,w] then (13) yields the line through —v parallel with z, which is a supporting
line of K. It follows by continuity that aff{—v,w} is also a supporting line of K,
and hence K is a parallelogram.

6 The extremal property of the triangle

We present the proof only for Theorem 1.3, the proof of Theorem 2.3 is completely
analogous.

Let C' be any planar convex body containing o. If E is the o—symmetric ellipse
such that x+ E is the ellipse with maximal area contained in C' then C' C x+2FE (see
K. Ball [1] or R.J. Gardner [9]). We may assume that E' = B by affine invariance.
Therefore the Blaschke selection theorem yields again the existence of a K which
maximizes A(I'C)/A(C) and o € K.

First we consider a special case. Recall that the positive hull pos{z,y} of two
vectors x and y is in general the cone they enclose; more precisely, the set of linear
combinations Ax + py with A\, u > 0.

PROPOSITION 6.1 If C is a planar convez body and o € OC then A(I'C)/A(C)
15 mazximized by the triangles with o as a vertex.

Proof: We may assume that A(I'C')/A(C) is maximal under the condition o € 0C.
Suppose that either C' is not a triangle or o is not a vertex.

Let [0,u;] and [0, us] be the two (possibly degenerate) maximal segments in 9C
meeting at o. If u; = uy (= 0) then define I’ as some supporting line at o. If u; # usy
then define I’ as the line through o parallel to us — u;, which is again a supporting
line. Then there exists a line [ intersecting C'\ [0, %y, u] and parallel to /. We deduce
that [z, 0] NintC # @ holds for any z € [N C.
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Shake C' down to the line [ through o and orthogonal to [ (use either half plane
determined by ). If [x, 2], [y, y'] are sections of C parallel to I’ and [z, 2'] is closer to
o than [y, /] then [y, 3] C pos{z,2’'}. We deduce by Proposition 4.1 that A(T'C") >
A(T'C) for the resulting C".

Now if [y,4/] = [N C and [z,2/] is a section of C' closer to o than [y,y/] then
ly,y'] C intpos{z,z'}. Therefore A(I'C") > A(I'C'), which contradicts the maximal-
ity of A(T'C). O

We need the following technical but useful statement:

PROPOSITION 6.2 If C is a planar conver body and o € C' then there exist
points x1,To € OC and supporting lines ly,ls at x1, x5, respectively, such that Iy and
ly are parallel, and o € [x1, xs).

Proof: = We may assume by continuity that C' is smooth, strictly convex and
o € int C. Orient OC. For any x € 9C, define o(z) as the angle of the half line zo
and the tangent half line at x of the arc of 0K on the positive side of z. In addition,
«’ denotes the point on 0C with o € [z, 2'].

Let zy € 0C. If a(xy) = a(xy) then we are done. Otherwise, move x from xg to
xy, along OC in the positive direction. Then «a(z) — a(z’) is continuous, and changes
its sign at some x;. Then choosing o = z, the supporting lines at z; and z, are
parallel. O

Now let K be the planar convex body maximizing A(I'C')/A(C) under the con-
dition that o € C. We have already discussed the case when o is contained in the
boundary of K, so suppose that o € int K.

Let the points x1, x5 and the supporting lines [y, ls be given as in Proposition 6.2.
Assume that o is not farther from Iy than from ;. The line aff {zq, 25} divides K
into two halves K+ and K~. Assume that [, is orthogonal to z = 21 — x5, and shake
K down to the line [ = [; — x5 so that the segment [z, x2] moves to [z,0]. Denote
by KT (K~) the image of KT (K7).

Choose the points w; € | (w_ € 1) on the side of lin y containing K (K ) so that
Ao, z,wy]) = A(K™T) (A([o, z,w_]) = A(K~)). Now we deduce by Proposition 6.1

that
/ / ([0, z,y]) dzdy >/ / [0, z,y]) dzdy, (14)
[0,z,w4] [ozw+] K+t JK+

and the analogous statement holds for [0, z,w_] and K.
Since K and K~ lie between [; and [y, and o is not farther from [, than from
ly, we deduce by Proposition 4.1 that

/}H/ (lo. 2,y ddey>/ /A([o,a:,y])dxdy. (15)
10



Define u; and u_ so that K+ N [0,w.] = [o,u;] and K~ N[0,w_] = [o,u_].
Observe that if z € K~ then the line passing through u, and parallel to = separates
[0, wy, 2)\KT from KT\[0,w,,z]. On the other hand, the arcas of [0,w,,2]\K T
and KT\[0,wy, 2] are the same. It follows that

[ | Alowghdsdy= [ [ Alo.syl)dsay
[0,w4,z] J[0,w_,z] Kt JEK-

Combining the inequality with (14) and (15) yields that A(I'[0, wy,w_]) > A(I'K).
This contradicts the maximality of A(T'K), and hence K is a triangle, and o is a
vertex.

Finally, we deduce by formula (1) that A(P'K) = 32 - A(K).

7 About the monotonicity of V(I'C)

First we construct counterexamples to E. Lutwak’s conjecture (4) in certain R™.
Our argument is based on

PROPOSITION 7.1 Assume that the conjecture (4) holds in R"™ n > 2 and
let C' C C" be o—symmetric convex bodies in R™ such that LNC = LNC" for a linear
(n — 1)-plane L in R™. Then

V(re') > v(ro).

Proof: Let u; and uy be orthogonal unit vectors in R**!, and for i = 1, 2, choose
an isomorphism ¢; between R™ and uj such that ¢; and ¢, coincide on L. In
addition, define the convex body K as the convex hull of ¢;(C) and 3(C) in R™*

Now the unit vector v = \/Li - (w1 + up) and the linear map ¢ = 1 - (¢1 + ¢2)
satisfy that ¢(C) = u* N K, and the point V(I'(ut N K)) - u lies on the segment

between V(I'C) - u; and V(I'C) - uy. Set
K' = conv(p(C") U K).

Then the conjecture (4) applied to K’ yields that V(I'(ut N K”)) - u lies beyond the
segment connecting V(I'C') - u; and V(I'C) - uy, and hence V(I'C’) > V(I'C). 4

In order to abbreviate the integral formulae appearing in the random simplex
representation for an o-symmetric convex body C' in R", set

[y - /Cn-/CV([O,xl,...,xn]) doy ... day,
S(C,z) = /C---/CV([O,yl,...,yn_l,z]) dys - dyn+.
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Then (1) can be written in the form
I(C)=2""-V(C)"-V(I'C).

If 2, is the center of one facet of the unit cube W" = [—%, %]”, then

S(W™, 2) = % I, (16)

On the other hand, (2) and the Stirling formula yield that

I(W™) > pzmteln),
We deduce by n! = n"t°™ that there exists infinitely many n such that I(W") >
8. I(Wn1), and hence

SOW™, 2) < % I, (17)

Let n satisfy (17). There exists an o-symmetric, strictly convex body C' in R™ such
that zp lies on its boundary, and

S(O, Zo) <z == (18)

| =
~
a

For € > 0, define
C. = conv{=£(1 + €)zo, C}.

Assume that € > 0 tends to zero. Then C.\C consists of two components (one at z,
and one at —zp), and the diameter of both of them tends to zero. We deduce that

S(C,z) < = ——=
holds for any z € C.\C'. In addition, V(C.\C') tends to zero, and hence
I(C)—I(C) = n- / S(C,z)dz+ O (V(C\C)?)
c.\C
< 2-n- S(C,z)dz.

C\C

Combining the last two estimates shows that




Therefore if € > 0 is small then

I(C.) —I(C) _n- (V(C.) —V(C)) _VI(C)" —V(C)"
1(C) V() v

which in turn yields that
V(IC.) < V(I'C)  while CcC.. (19)
We conclude by Proposition 7.1,

LEMMA 7.2 There ezist infinitely many n such that the conjecture (4) fails in
R™.

Finally, we discuss the conjecture (4) in R3, which is in turn related to the
monotonicity of the area of the centroid body in the plane. We prove

LEMMA 7.3 Let C and K be o—symmetric convexr bodies in R%. If C C K then
A(I'C) < A(T'K), and equality holds if and only if C = K.

Before proving Lemma 7.3, let us consider an o-symmetric convex body M in
R2, and a z € M. Assume that [ is a tangent line at z to M, and denote by P the
parallelotope with area A(M) whose two sides are contained in [ and —I, and the
other two sides are parallel to z. Then

S(M,2) > S(P,2) = % CA(M)?. (20)

Now let C' and K be o-symmetric convex bodies in R? such that C is strictly
contained in K. Define K; = (1 —t)C' +t K for 0 <t < 1. Lemma 7.3 follows by
proving that A(I'K}) is strictly increasing. Since K is a linear family, it is sufficient

to prove that
A(TK;) — A(TKy) >0 (21)

holds for small ¢ > 0.
Note that (21) can be written in the form

I(K;) — I(Ky) - A(K)? — A(K)?
I(Ko) A(Ko)? ’

where A(K;) tends to A(Kj). Thus if ¢ > 0 is small then (21) is the consequence of
the inequality

1K) — 1(Ko) 1(Ko)
ARy — ARy~ 2% ARy (22)
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We give a lower bound for the variation of I(K;) by considering the two cases
when one of the x;’s, i = 1,2, in the definition of I(K}) lies in the difference set, and
the other variable is chosen from K. Therefore

I(Ky) —1(Kp) >2- / S(Ko, z)dz,
Ki\Ko

while I(Ky) < 3= - A(Kj)? holds by Theorem 1.1. We deduce by (20) that

1K) — 1(K) S, S(Ko, 2) dz
A(K) - AKo) = A(K\K)

[\)

I(Ko)
A(Ko)

> - A(Ky)? > 25-

1
8
Therefore the inequality (22) follows for small ¢, which in turn yields Lemma 7.3.

We conjecture that (4) holds at least in R3.

Acknowledgment: We wish to thank Endre Makai and the referee for their many
useful comments.
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