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Abstract

According to a classical theorem of Gruenbaum, if any five of a family of pairwise
disjoint translates of a square has a transversal line (the family satisfies T(5)), then the
whole family has a transversal line (satisfies T). First we show that this result is optimal
in the sense that the ”T(5) implies T property does not necessarily hold anymore if only
the slightly shrinked versions of the squares are pairwise disjoint. Next we prove the "T(5)
implies T” property for a family of translates of squares if the interiors are pairwise disjoint
and there exist two translates meeting at a common vertex.
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1 Introduction

A family F of ovals (compact convex sets with non-empty interior) in the Euclidean plane
has the property 7' if there is a line (transversal) that intersects every member of F. If each
k-element subfamily has a transversal then F has the property T'(k).

The history of the study of the conditions under which ”T'(k) implies T is extensive,
and we refer to Holmsen [8], Jeronimo-Castro, Roldan-Pensado [10] and Holmsen, Wenger
[9] for reviews.

Our interest here is the case £ = 5. The main result, due to Tverberg in [15], is that
it is sufficient that the ovals are pairwise disjoint translates. For specific ovals, earlier
verifications of this are due to Danzer [3] in the case of disks, and Griinbaum [5] in the case
of parallelograms.

We note that in [5], Griinbaum conjectured Tverberg’s result and presented an example
(see Example 1.1) that showed that disjointedness is possibly a necessary condition for
translates of a square. With that example in mind, we show that it is not. We note that the
problem is affine invariant; therefore, considering translates of a parallelogram or translates
of a square are equivalent.

For any oval C and k& > 3, Griinbaum [5] indicated the problem of determining the
infimum p(C, k) of p > 0 such that if the finite family {c¢; + C'} satisfies T'(k) and the
translates {c; + p C'} do not overlap, then the family {¢; + C'} has a common transversal.

Here ¢; + 1 C and ¢; + 1 C do not overlap means that their interiors are disjoint. This
property can be written in the form ||z; — z;||pc > 2 in terms of the norm || - || pc with
respect to the difference body DC = 1(C — C) where for p € R?, we have

|pllpc = min{A > 0: p e ADC}.

In particular, C = DC'if C is origin symmetric, || - || is the Euclidean norm if C is a unit
disk, and ||(z, )|l = max{|z|,|y|} if C = [-1,1] x [-1,1].
Concerning 1(C, 5), the main result of Tverberg [15] cited above proves that

w(C,5) <1 for any oval C. (1.1)

The main focus of this paper is families of translates of parallelograms. First we recall
Griinbaum’s example at the end of [5] on page 469. We consider a family F of translated
squares S; of edge length 20 with center ¢; and edges parallel to the coordinates axes for
i=1,...,6 satisfying T'(5) but not 7. We assume that (x,y) is the Cartesian coordinate
system in R2,

Example 1.1 (Griinbaum). Let ¢c; = (—22,4), ¢z = (0,15), cg = (12,11), c4 = (22,4),
¢ = (12,—11) and ¢ = (0, —15).

It is easy to see that there exists a line transversal ¢; of F\{S;} fori = 1,...,6.
We note the unique choice for Z3 is the line with equation y = —3, which is the only
transversal of {Ss, Sy, Sg} with negative slope, and unique choice for ¢5 is the line with
equation y = %, which is the only transversal of {51, S2, S¢} with positive slope. Thus, F
has no transversal.

In particular, Griinbaum’s Example 1.1 shows that u(C, 5) >
Our first result improves on this bound.

1 if C'is a parallelogram.

Theorem 1.2. [f C is a parallelogram, then 1(C,5) = 1.
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It is a natural question whether in Griinbaum’s result in [5], the disjointedness of the
compact parallelograms is necessary, or it is enough to assume that the interiors of the
translates are pairwise disjoint; namely, the translated parallelograms do not overlap.

Conjecture 1.3. If a family F of non-overlapping translates of a parallelogram satisfies
T(5), then F has a common transversal.

Actually, we even conjecture the following stronger statement about translates of a
square by imposing a lower bound on the distance between distinct centers in terms of the
Euclidean distance.

Conjecture 1.4. Let F be a family of n > 6 translates, of a square of side length s, with
the property that the Euclidean distance between distinct centres is at least s. Then T(5)
implies that F has a transversal.

We prove a weaker version of Conjecture 1.3.

Theorem 1.5. If a family F of non-overlapping translates of a parallelogram satisfies
T(5), and there exist two parallelograms in F that intersect in a common vertex, then F
has a common transversal.

Returning to u(C, 5) for any oval, we verify the following bounds.
Theorem 1.6. For any oval C, we have % < ju(C,5) < 1.

We note that the paper Bisztriczky, Boroczky, Heppes [2] verifies that u(C,5) = 2/3
if C is an ellipsoid, and Theorem 1.2 proves that p(C,5) = 1 if C is a parallelogram.
Therefore the bounds in Theorem 1.6 are optimal.

We recall that according to Santalé [12], if a family of parallelograms with parallel
sides satisfies 7'(6), then the family has a common transversal. Therefore ;(C,6) = 0if C
is a parallelogram.

Concerning notation for Theorem 1.2 and Theorem 1.5, we write h and v to denote the
horizontal and the vertical axis, respectively, for the coordinate system (x,y) in R2, and
write ¢; = (x;,y;) to denote the centers of the translated squares in the family F. For
different points p, ¢ € R?, their line is denoted by aff{p, q}. For aline £ = {(z,y) : y =
Az + B}, we set A = slope £ and write (T = {(x,y) : y > Az + B} and ¢~ = {(z,y) :
y < Az + B} to denote the open halfplane of points above and below, respectively, £.

2 Proof of Theorem 1.2

We may assume that C'is the square [—1, 1] x [—1, 1]. It follows from (1.1) that x(C,5) <
1, therefore it is sufficient to prove the following statement:

For any € € (0, %) there exist ¢y, ...,c6 € R? such that ¢; + (1 — 2¢)C, ..., cs +
(1 — 2¢)C do not overlap, the family F = {S1,..., S} satisfies T'(5) for S; = ¢; + C,
i=1,...,6, and F has no common transversal.
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We define (see Figure 1)

a = (-2,1—¢)

co = (0,1+¢)

cs = (2—¢,1)

cg = (4—4e,1-3e¢)
s = (2—¢,-1)

¢ = (0,—-1—¢)

We also consider some vertices of the S;s:

a = (-le)=co+(-1,-1) €51 NS,
b = (71,78):Cl+(1,71)166+(*1,1)Gslmej
u = (1—6,0)=C3+(—1,—1):C5+(—1,1)ESgﬂS5
z = (1,8)2024‘(1,—1)652“53
w = (1,—¢)=1cs+(1,1) € S5 N Se.
Fori=1,...,6, we write
t1 = aff{u,z} ={(z,y):y=2z—1+¢},
f o= ettty ={@) = @149,
ts = aﬁ‘{avw}:{(mvy):y:_g‘r}v
t4 = aﬂ{u7w} = {(I7y) CYy=—- + 1- 5}7
ts = aff{b,z} ={(z,y):y=cx},
o = aitfua) = {mp)y=5 @149 |

We claim that ¢;,% = 1,...,6, is a line transversal to F\{.S; }. We note that
ca+(—1,1)etyNSyand ey + (—1,—1) € t5 NSy
forany e > 0, and ¢ < 1 yields that
ca+(—1,—-1) € tg NS4,

and hence t; N S; # () for i # j easily follows.
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Figure 1: The transversals ¢; of {S1, ..., S6}\{S:}

Finally, we observe that Sy N Sg = ) and both ¢3 and ¢5 are separating and supporting
lines of Sy and Sg. Thus if £ is a transversal of {Ss, S}, then

e cither / is parallel to v,
e orslopef < slopets = —¢,

e orslopef > slopets = e.

In particular, if ¢ is parallel to v, then / is disjoint from either S or Sj.

Letslope ¢ < slopets = —¢, and we distinguish two cases. If slope ¢ > slopety = —1
and ¢ intersects Sg, then £ is disjoint from S3. If slope £ < slopety, = —1 and ¢ intersects
S, then £ is disjoint from Sy.

Finally, let slope/ > slopets = ¢, and we distinguish three cases. If slopel <
slopet; = 1 and ¢ intersects Sa, then £ is disjoint from Ss. If slope ¢ > slopet; = 1 and ¢
intersects So, then £ is disjoint from Sg. If slope ¢ = slopet; = 1 and / intersects So and
S5, then £ = t1, and hence / is disjoint from .S;.

Therefore, F has no transversal, proving u(C,5) = 1. O

3 Proof of Theorem 1.5

Let F = {S1,...,Sn}, n > 6, be a packing of n translates of the square [—1, 1] x [—1, 1]
such that F satisfies 7'(5) and two translates intersect in a common vertex. In addition, let
¢; = (x4,y;) be the center of S;, ¢ = 1,...,n. We may assume that ¢; = (—1,1) and
Co = (1, —1).
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We say that S; and .Sy, are split if |z; — x| > 2, |y; —yk| > 2 and |zj —xk|+|y; —yu| >
4. Tt is well known (see Griinbaum [5]) that if F satisfies T'(5) and contains a split pair of
squares, then F has a transversal. Accordingly, we assume that

F contains no split pair. 3.D

Casel SN (hUwv) =0 forsomek € {3,...,n}
We may assume that S3 N (hUv) = @) and x5, y3 > 0, and hence x3,y3 > 1. Since S3
is disjoint and is not split from S;, ¢ = 1, 2, we deduce that

1<x3 <3 and 1 <ys <3. 3.2)

We claim that
SN (hUv)#0 form e {4,...,n}. (3.3)

We suppose that S, N (hUwv) = () foran m € {4,...,n}, and hence ||, |ym| > 1,
and seek a contradiction. If x,,, > 0 and y,,, > 0, then as S5 and S,,, do not overlap, (3.2)
yields that either z,,, > x3 + 2 > 3 or y,,, > y3 + 2 > 3, thus S, is split for either S
or Sy, respectively. If z,, < 0 and y,,, < 0, then .S,, is split from S, and if =, > 0 and
Ym < 0, then S, is split from S7; futhermore, if z,,, < 0 and y,,, > 0, then S, is split
from Ss. In turn, we conclude (3.3). It follows from (3.3) that possibly after interchanging
h and v, and a reflection to keep S5 in the first quadrant, we may assume that Sy N v # ()
and S5 Nwv # .

If v is a transversal of F, then Theorem 1.5 has been proved. Therefore we may assume
that S¢ N v = (), and hence Sg N h # () by (3.3).

As SsNv = P and Sg N h # (), we have |zg| > 1 and |yg| < 1. Since Sg does not
overlap S7, and is not split from either one of S; and S3, we deduce that

if xg < 0,then xg < —3and —1 < yg < 1. (3.4)

On the other hand, since S¢ does not overlap S5 and S5, and is not split from S;, we deduce
that
if zg > 0, then x4 > 3 and —1 < yg < 1. 3.5)

Turning to Sy and S5, we may assume that y4 < y5, and if y4 = ys, then x4 = —1 and

1’5:1.

Casel.d 2, <0
Since S, does not overlap S and S5, and is not split from S35, we have y, < —3. Thus
—1 < x4 <1,(3.4)and (3.5) yield that S4 and Sg are split, contradicting (3.1).

Casel.2 4 >0
Since S, does not overlap 57, So and S3, we have

ys>3and —1<z4 <1, andify, =3, thenevenxy <23 —2 < 1. 3.6)

Comparing (3.6) to (3.4) and (3.5) shows that S, and Sg are split, contradicting again (3.1).

Case2 SN (hUwv) # (@ forany k € {3,...,n}
We may assume that neither & nor v is a transversal of F, thus we may assume that
lys| > 1 and |x4| > 1. In addition, we may assume that Ss is farthest from h, Sy is farthest
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from v, and S3 is closer to & than Sy to v; or in other words, 1 < y3 < |z4|, y3 > |y;| for
i > 3 and |xy| > |x;| for i > 3. It follows from S3 N v # () and Sy N h # () that

71§£L‘3§1 and 71§y4§1

Since S3 and Sy are not split, we have y3 < 3 and if y3 = 3, then either ¢5 = (1, 3) and
¢y = (3,1),0res = (—1,3) and ¢4 = (—3,1). However, if ¢ = (-1, 3), then S5 and S
are split, thus if y3 = 3, then ¢z = (1,3) and ¢4 = (3, 1).

Case 2.1 y3 = 3, and hence ¢3 = (1,3) and ¢4 = (3,1)

In this case, the only common transversals of {S1, 52,53, 54} are 1 = {(z,y) : y =
x}and ly = {(x,y) : y = 1 — z}. Let us assume that {5 is not a transversal of F, thus we
may assume that S5 N f2 = () and ¢; is a common transversal of {51, 52,53, S4, S5}. In
addition, we may assume that |x5| < |ys]|.

As SN (hUwv) # 0, S5 Ny # 0 and S5 N ¢y = 0, we deduce that S5 C [ . Therefore
combining the conditions |z5| < |ys], S5 N (R Uwv) # 0, S5 N £ # 0 and S5 does not
overlap S; and Sy implies that z5 = —1 and —3 < y5 < —1. In particular, S5 and S5 are
split, contradicting (3.1).

Case 2.2 y3 < 3
Since S35 does not overlap S7 and .S;, we have z3 = 1 and

rz3=1and 1 <y3 < 3. 3.7

We claim that
ys —2<y; <1 and |z;| >3 fori=4,...,n. (3.8)

We suppose that there exists j € {4,...,n} with y; < y3 — 2, and seek a contradiction.
As 1 > y; > —|ys] > —3 and S; does not overlap with 51, S5, 53, we deduce that
|zj| > 3. Therefore y; < y3 — 2 and (3.7) imply that S; and S; are split, contradicting
(3.1), and verifying that y; > y3 — 2 fori = 4,...,n. Forany ¢« = 4,...,n, we have
-1 <y3—2 <y <y < 3,8; does not overlap Sy, 92,53 and S; N (h Uwv) # 0,
therefore |x;| > 3 and y; < 1, as in (3.8).

We set ¢1 = aff{(0,y3—1),(2,0)} and £5 = aff{(2,y3 —1), (0,0)}, and note that they
are separating and supporting lines of S5 and S3 with slope ¢; < 0 and slope {5 > 0. We
may assume that ¢; is not a transversal of F, and hence there exists m € {4,...,n} such
that ; N S, = 0. In particular, either x,,, > 3 and S,,, C KT, or z,, < —3and S, C {].

We observe that if ¢ is a transversal of Sy and S3 with slope ¢ < 0, then

{(z,y) €] a2 >2} Ccttand {(v,y) €4] 2 < -2} C L. (3.9

We claim that
SiNty #£P fori=1,...,n. (3.10)

Let ¢ be a transversal of S1, Sa, S5, S, S;, and hence (3.9) yields that slope ¢ > 0. Since ¢
is a transversal of S; and Ss, it contains the origin (0, 0). As S;Nh # () and £5 has minimal
slope among transversals of Ss and S5, we deduce that S; N £2 # (). In turn, we conclude
from (3.10) that /5 is a transversal of F. (J
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4 Proof of Theorem 1.6

For references about Minkowski Geometry and properties of ovals in this section, see
Schneider [13] and Thompson [14]. For an oval C, we say that a polygon P is circum-
scribed around C' (inscribed into (') if each side of P touches P (each vertex of P lies on
the boundary 0P of P), respectively. We say that a polygon P is an affine regular hexagon
if it is the image of a regular hexagon by a linear transformation. The proof of Theorem 1.6
rests on the following statement.

Proposition 4.1. If C' is an origin symmetric oval that is not a parallelogram, then there
exists an affine regular hexagon H circumscribed around C' such that no vertex of H lies
inC.

Since the proof of Proposition 4.1 is rather technical and uses ideas very different from
the ones used in the rest of the paper, we present the argument in the Appendix (Section 5).

The following observation due to Tverberg in [15] shows that it is sufficient to consider
origin symmetric ovals in our study.

Lemma 4.2 (Tverberg). For any oval C and 1, ...,z € R%, 2y +C,... 23 + C has a
transversal if, and only if, x1 + (C — C),...,xy + 5(C — C) has a parallel transversal.

Proof. We fix a line ¢ passing through the origin, and search for transversals parallel to
£. Let u be a unit vector orthogonal to ¢, and let b > a be defined by the property that
¢ + tu intersects C if, and only if, a < ¢ < b, and hence £ + tu intersects = + %(C’ - 0)
if, and only if, %b <t < 1’77‘1 We write u - v to denote the scalar product of the
vectors v and v. For an € R? and ¢, s € R, it follows that £ + tu intersects  + C if,
and only if, a + - u < t < b+ x - u; moreover, £ + su intersects x + %(C - C) if,
and only if, “;b +r-ou<s< b_T“ + x - u, which is in turn equivalent to saying that
0+ (s+ “T'H’)u intersects x + C. We conclude that a line £ 4 su parallel to ¢ is a transversal
of 1 + 3(C = O),..., 2 + 3(C — C) if, and only if, £ + (s + “FP)u is a transversal of
r1+C,...,x .+ C. O

Proof of Theorem 1.6: It follows from Tverberg [15] (see also (1.1)) that u(C, 5) < 1 for
any oval C'.

Let us turn to the proof of u(C,5) > 2 for any oval C. Since 3(C' — C) is a paral-
lelogram if, and only if, C' is a parallelogram, we may assume that C' is origin symmetric
according to Lemma 4.2.

If the origin symmetric oval C'is a parallelogram, then Theorem 1.2 verifies u(C, 5) =
1. Therefore we assume that C' is an origin symmetric oval that is not a parallelogram, and
hence Proposition 4.1 yields a circumscribed (origin symmetric) affine regular hexagon H
such that no vertex of H is contained in 9C.

Let Hy = %H , and let Hy, ..., Hg be the six non-overlapping translates of Hy in a
way such that Hy N H; is a common side for ¢ = 1,...,6, and Hy, ..., Hg are situated
around Hj in counterclockwise order. We write ¢; to denote the center of H;, and hence
ca+3C,...,c6+ 2 C donot overlap.

Let us consider the family F = {¢; + C, ..., cs + C}. We observe that ¢; + H, c3 +
H,c5 + H enclose a triangle T335. For ¢ = 1, 3,5, T35 has a common side with ¢; + H
which touches ¢; + C, and let ¢; be the line containing this side. We observe that ¢;,
i = 1,3,5, touches ¢; + C,c3 + C, ¢5 + C, it is a common transversal to F\{c; + C}
where j € {1,...,6} and |j —i| = 3,and ¢; N (¢; + C) = 0.
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Similarly, co + H,cq + H, cg + H enclose a triangle T546. For i = 2,4, 6, T4 has a
common side with ¢; + H which touches ¢; + C, and let ¢; be the line containing this side.
We observe that ¢;, i = 2,4, 6, touches c5 + C, cq + C, cg + C, it is a common transversal
to F\{c; + C} where j € {1,...,6}and |j —i| = 3,and ¢; N (c; + C) = 0.

So far we have verified that c; + % C,...,c6+ % C' do not overlap, F satisfies T'(5), and
the fact that F has no transversal provided for any transversal £ of ¢; + C,c3 + C,c5 + C,
we have

le {51,63,55}. “.1)

Since each ¢;, i = 1,3, 5, separates two of ¢; + C, c3 + C, c5 + C, we may assume that
¢ is not parallel to ¢1,¢3,¢5. In this case, there exists a vertex v of Ti35 and a line ¢’
parallel to £ such that ¢’ passes through v and intersects int T735. We may assume that
{v}=(c1+H)N(c3+ H). As ¢’ strictly separates (c; + H)\{v} and (¢s + H)\{v} and
v & (¢; + C) for i = 1,3, we deduce that ¢’ strictly separates ¢; + C and ¢3 + C. This
contradicts that ¢ intersects both ¢; + C and c3 + C, and proves (4.1). In turn, we conclude
Theorem 1.6. [

S Appendix - proof of Proposition 4.1

We prove in fact Proposition 5.1 (the equivalent form of Proposition 4.1 via polarity)
through a series of simple statements Lemma 5.2, Lemma 5.3 and Lemma 5.4.
If C'is an oval with o € int C, then its polar is the oval

C*={peR’: (pq) <1VqeC}.

We note that (C*)* = C*, and assuming that C C K for an oval K, we have K* C C*.
If C is a polygon, then so is C'*, and there exists a bijective correspondence between the
vertices of P and the sides of P*; namely, if v is a vertex of P, then {p € C* : (p,v) = 1}
is the corresponding side of C*. Since if A is a linear transformation and C' is any oval,
then (AC)* = A~'C* where A™" is the inverse of the transpose of A, we have that P* is
an affine regular hexagon for any affine regular hexagon P centered at the origin, and P*
is a parallelogram for any parallelogram P centred at the origin.
Polarity shows that Proposition 4.1 is equivalent to Proposition 5.1.

Proposition 5.1. If C' is an origin symmetric oval that is not a parallelogram, then there
exists an affine regular hexagon H inscribed into C' such that no side of H lies in OC.

Any origin symmetric oval C' induces a Minkowski geometry where the length of a
segment [p, q] with endpoints p and ¢ is ||p — ¢||c. For a polygon P, its correponding
Minkowski perimeter M (P) is the sum of the lengths of its sides with respect to || - ||
This notion of Minkowski perimeter can be extended to any oval K by approximation
where Mo (K1) < Mc(K>) holds for ovals K and K satisfying K1 C Ks. The follow-
ing statement is well known, see Lemma 4.1.1 in Thompson [14] or Martini, Swanepoel,
Weiss [11], or Asplund and Griinbaum [1] for related results.

Lemma 5.2. If C is an origin symmetric oval, then for any p € OC, there exists an origin
symmetric affine regular hexagon H inscribed into C such that p is a vertex of H.

Actually Lemma 4.1.1 in Thompson [14] states that there exists a ¢ € 0C in Lemma 5.2
such that ¢ — p € 9C, and therefore +p, +q, £(q — p) are vertices of an inscribed affine
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regular hexagon. We observe that if H is an origin symmetric affine regular hexagon in-
scribed into an origin symmetric oval C, then each side of H is of length 1 with respect to
both || - ||z and || - || The self-perimeter of any origin symmetric oval is between 6 and 8
according to Golab [4]. For the sake of the reader, we present the simple argument.

Lemma 5.3 (Golab). If C is an origin symmetric oval, then 6 < M (C) < 8.

Remark We have M (C) = 6 if C is an affine regular hexagon, and M (C) = 8 if
C is a parallelogram.
Proof Let H be an affine regular hexagon inscribed into C, and let P be a parallelogram
of minimal area containing C'. Since the midpoints of P lie in 0C, we have

6= Mc(H) < Mc(C) < Mc(P)=38. 0.

We note that Golab [4] defined a notion of self perimeter for any (not necessarily cen-
trally symmetric) oval. For this generalized notion of self perimeter, Griinbaum [6] verified
that it is at least 6 (with equality for affine regular hexagons) and at most 9 (with equality
for triangles) for any oval.

Lemma 5.4. [f C is an origin symmetric oval that is not a parallellogram, then then there
exists a p € OC not lying on any segment contained in OC' of length longer than 1 with
respect to || - || c.

Proof We suppose that 9C'is the union of segments of length longer than 1 with respect
to ||-||c, and seek a contradiction. Since C'is origin symmetric, we deduce from Lemma 5.3
that C'is a hexagon. Let p1, p2, p3 be vertices of C' such that ps and p3 are neighbors of p; .
Let P be the parallelogram such that £=p; are opposite vertices and p, and p3 lie on sides
of P emanating from p;. We may assume that P coincides with [—1,1] x [—1, 1] in a way
such that p; = (1,1), p2 = (1 —¢,1) and p3 = (1,1 — s) where 0 < s,¢ < 2. We may
also assume that s < ¢.
We claim that
s> 1. 5.1

We suppose that s < 1, and seek a contradiction. Since ||ps — p1||¢ > 1, it follows that the
point ¢ = (0, —s) lies outside of C; therefore, there exists a line ¢ disjoint from C' passing
through ¢. Since (1,1 —s) € C and (—1,—1) € C, we deduce that 0 < slope ¢ < 1, and
hence there exits w = (—1 +r,—1) € £ with 0 < r < s. However —ps = (—1 4+ ¢, —1)
lies on C with ¢t > s, thus w € [—p1, —p2] C IC. This fact contradicts £ N C = (), and in
turn proves (5.1).

We deduce from ¢ > s > 1 that (1,0),(0,1) € 9C, and in turn p3 — (—p2) =
(2—t,2—3) € int C, and hence the length of the side [—p2, p3] of C'is ||ps — (—p2)|lc < 1.
This contradicts the conditions on C', and completes the proof of Lemma 5.4. [J

Proof of Proposition 4.1 In fact, we prove the equivalent Proposition 5.1. Let C' be an
origin symmetric oval that is not a parallelogram. It follows from Lemma 5.3, that 0C
contains at most 8 maximal segments of length at least 1 with respect to || - ||c.

According to Lemma 5.4, there exists a p € 0C not lying on any segment contained in
OC of length longer than 1 with respect to || - ||c. Possibly varying p, we may also assume
that
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(1) if p is contained in a segment s with s C JC' (thus the length of s is at most one), then
p lies in the relative interior of s,

(ii) the line op is not parallel to any segment contained in JC of length at least 1 with
respectto || - [|c.

Let H be an affine regular hexagon inscribed into C such that p is a vertex of H. It follows
that each side of H is of length 1 with respect to || - ||c. The two sides of H parallel to p
are not contained in C' by (ii). If a side sg of H containing p or —p is part of C' then
So 1s a proper subset of the segment s of length at most 1 by (i); and that is a reductio ad
absurdum. This completes the proof that no side of H is a subset of 0C'. [

Acknowledgement The authors gratefully acknowledge the suggestions and comments of
the referees; specifically, the included figure.

References

[1] E. Asplund, B. Griinbaum: On the geometry of Minkowskj planes, Enseign Math (2) (1960),
299-306.

[2] T. Bisztriczky, K. Boroczky, A Heppes: T(5) families of overlapping disks. Acta Math. Hungar.
142 (2014), 31-55.

[3] L. Danzer: Uber ein Problem aus der kombinatorischen Geometrie. Arch. Math., 8 (1957), 347-
351.

[4] S. Golab: Quelques problemes métriques de la géométrie de Minkowski. Travaux de I’ Academie
des Mines a Craeovie 6, (1932), 1-79. (Polish, French summary.)

[5] B. Griinbaum: Convex Bodies: On common transversals. Arch. Math., 9 (1958), 465-469.
[6] B. Griinbaum: Self-circumference of convex sets. Colloq. Math. 13 (1964), 55-57.

[7]1 H. Hadwiger, H. Debrunner and V. Klee: Combinatorial Geometry in the Plane. Holt, Rinehart
and Wilson, New York, 1964.

[8] A. Holmsen: Recent progress on line transversals to families of translated ovals. Contemporary
math. 453, AMS (2008), 283-298.

[9] A.Holmsen, R. Wenger: Helly type theorems and geometric transversals. Handbook of Discrete
and Computational Geometry, CRC, (2017), 91-123.

[10] J. Jeronimo-Castro, - E. Roldan-Pensado: Line transversals to translates of a convex body.
Discrete Comput Geom (2011) 45: 329-339.

[11] H. Martini, K.J. Swanepoel, G. Weiss: The geometry of Minkowski spaces — a survey. Part L.
Expositiones Mathematicae, 19 (2001), 97-142.

[12] L.A. Santal6: Un teorema sobre conjuntos de paralelepipedos de aristas paralelas. Puhl. Inst.
Mat. Univ. Nac. Litoral, 2 (1940) 49-60; 3 (1942), 202-210.

[13] R. Schneider: Convex bodies: the Brunn-Minkowski theory. Cambridge University Press, Cam-
bridge, 2014.

[14] A.C. Thompson: Minkowski geometry. Cambridge University Press, Cambridge, 1996.

[15] H. Tverberg: Proof of Griinbaum’s conjecture on common transversals for translates. Disc.
Comp. Geom., 4 (1989), 181-203.



