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Abstract

According to a classical theorem of Gruenbaum, if any five of a family of pairwise
disjoint translates of a square has a transversal line (the family satisfies T(5)), then the
whole family has a transversal line (satisfies T). First we show that this result is optimal
in the sense that the ”T(5) implies T” property does not necessarily hold anymore if only
the slightly shrinked versions of the squares are pairwise disjoint. Next we prove the ”T(5)
implies T” property for a family of translates of squares if the interiors are pairwise disjoint
and there exist two translates meeting at a common vertex.
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1 Introduction
A family F of ovals (compact convex sets with non-empty interior) in the Euclidean plane
has the property T if there is a line (transversal) that intersects every member of F . If each
k-element subfamily has a transversal then F has the property T (k).

The history of the study of the conditions under which ”T (k) implies T ” is extensive,
and we refer to Holmsen [8], Jeronimo-Castro, Roldan-Pensado [10] and Holmsen, Wenger
[9] for reviews.

Our interest here is the case k = 5. The main result, due to Tverberg in [15], is that
it is sufficient that the ovals are pairwise disjoint translates. For specific ovals, earlier
verifications of this are due to Danzer [3] in the case of disks, and Grünbaum [5] in the case
of parallelograms.

We note that in [5], Grünbaum conjectured Tverberg’s result and presented an example
(see Example 1.1) that showed that disjointedness is possibly a necessary condition for
translates of a square. With that example in mind, we show that it is not. We note that the
problem is affine invariant; therefore, considering translates of a parallelogram or translates
of a square are equivalent.

For any oval C and k ≥ 3, Grünbaum [5] indicated the problem of determining the
infimum µ(C, k) of µ > 0 such that if the finite family {ci + C} satisfies T (k) and the
translates {ci + µC} do not overlap, then the family {ci + C} has a common transversal.

Here ci + µC and cj + µC do not overlap means that their interiors are disjoint. This
property can be written in the form ‖xi − xj‖DC ≥ 2µ in terms of the norm ‖ · ‖DC with
respect to the difference body DC = 1

2 (C − C) where for p ∈ R2, we have

‖p‖DC = min{λ ≥ 0 : p ∈ λDC}.

In particular, C = DC if C is origin symmetric, ‖ · ‖C is the Euclidean norm if C is a unit
disk, and ‖(x, y)‖C = max{|x|, |y|} if C = [−1, 1]× [−1, 1].

Concerning µ(C, 5), the main result of Tverberg [15] cited above proves that

µ(C, 5) ≤ 1 for any oval C. (1.1)

The main focus of this paper is families of translates of parallelograms. First we recall
Grünbaum’s example at the end of [5] on page 469. We consider a family F of translated
squares Si of edge length 20 with center ci and edges parallel to the coordinates axes for
i = 1, . . . , 6 satisfying T (5) but not T . We assume that (x, y) is the Cartesian coordinate
system in R2.

Example 1.1 (Grünbaum). Let c1 = (−22, 4), c2 = (0, 15), c3 = (12, 11), c4 = (22, 4),
c5 = (12,−11) and c6 = (0,−15).

It is easy to see that there exists a line transversal ti of F\{Si} for i = 1, . . . , 6.
We note the unique choice for t3 is the line with equation y = −x

2 , which is the only
transversal of {S2, S4, S6} with negative slope, and unique choice for t5 is the line with
equation y = x

2 , which is the only transversal of {S1, S2, S6} with positive slope. Thus, F
has no transversal.

In particular, Grünbaum’s Example 1.1 shows that µ(C, 5) ≥ 1
2 if C is a parallelogram.

Our first result improves on this bound.

Theorem 1.2. If C is a parallelogram, then µ(C, 5) = 1.
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It is a natural question whether in Grünbaum’s result in [5], the disjointedness of the
compact parallelograms is necessary, or it is enough to assume that the interiors of the
translates are pairwise disjoint; namely, the translated parallelograms do not overlap.

Conjecture 1.3. If a family F of non-overlapping translates of a parallelogram satisfies
T (5), then F has a common transversal.

Actually, we even conjecture the following stronger statement about translates of a
square by imposing a lower bound on the distance between distinct centers in terms of the
Euclidean distance.

Conjecture 1.4. Let F be a family of n ≥ 6 translates, of a square of side length s, with
the property that the Euclidean distance between distinct centres is at least s. Then T (5)
implies that F has a transversal.

We prove a weaker version of Conjecture 1.3.

Theorem 1.5. If a family F of non-overlapping translates of a parallelogram satisfies
T (5), and there exist two parallelograms in F that intersect in a common vertex, then F
has a common transversal.

Returning to µ(C, 5) for any oval, we verify the following bounds.

Theorem 1.6. For any oval C, we have 2
3 ≤ µ(C, 5) ≤ 1.

We note that the paper Bisztriczky, Böröczky, Heppes [2] verifies that µ(C, 5) = 2/3
if C is an ellipsoid, and Theorem 1.2 proves that µ(C, 5) = 1 if C is a parallelogram.
Therefore the bounds in Theorem 1.6 are optimal.

We recall that according to Santaló [12], if a family of parallelograms with parallel
sides satisfies T (6), then the family has a common transversal. Therefore µ(C, 6) = 0 if C
is a parallelogram.

Concerning notation for Theorem 1.2 and Theorem 1.5, we write h and v to denote the
horizontal and the vertical axis, respectively, for the coordinate system (x, y) in R2, and
write ci = (xi, yi) to denote the centers of the translated squares in the family F . For
different points p, q ∈ R2, their line is denoted by aff{p, q}. For a line ` = {(x, y) : y =
Ax+ B}, we set A = slope ` and write `+ = {(x, y) : y > Ax+ B} and `− = {(x, y) :
y < Ax+B} to denote the open halfplane of points above and below, respectively, `.

2 Proof of Theorem 1.2

We may assume that C is the square [−1, 1]× [−1, 1]. It follows from (1.1) that µ(C, 5) ≤
1, therefore it is sufficient to prove the following statement:

For any ε ∈ (0, 13 ), there exist c1, . . . , c6 ∈ R2 such that c1 + (1 − 2ε)C, . . . , c6 +
(1 − 2ε)C do not overlap, the family F = {S1, . . . , S6} satisfies T (5) for Si = ci + C,
i = 1, . . . , 6, and F has no common transversal.
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We define (see Figure 1)

c1 = (−2, 1− ε)
c2 = (0, 1 + ε)

c3 = (2− ε, 1)

c4 = (4− 4ε, 1− 3ε)

c5 = (2− ε,−1)

c6 = (0,−1− ε).

We also consider some vertices of the Sis:

a = (−1, ε) = c2 + (−1,−1) ∈ S1 ∩ S2

b = (−1,−ε) = c1 + (1,−1) = c6 + (−1, 1) ∈ S1 ∩ S6

u = (1− ε, 0) = c3 + (−1,−1) = c5 + (−1, 1) ∈ S3 ∩ S5

z = (1, ε) = c2 + (1,−1) ∈ S2 ∩ S3

w = (1,−ε) = c6 + (1, 1) ∈ S5 ∩ S6.

For i = 1, . . . , 6, we write

t1 = aff{u, z} = {(x, y) : y = x− 1 + ε},

t2 = aff{u, b} =

{
(x, y) : y =

ε

2− ε
(x− 1 + ε)

}
,

t3 = aff{a,w} = {(x, y) : y = −ε x} ,

t4 = aff{u,w} = {(x, y) : y = −x+ 1− ε},

t5 = aff{b, z} = {(x, y) : y = ε x} ,

t6 = aff{u, a} =

{
(x, y) : y =

−ε
2− ε

(x− 1 + ε)

}
.

We claim that ti, i = 1, . . . , 6, is a line transversal to F\{Si}. We note that

c4 + (−1, 1) ∈ t1 ∩ S4 and c4 + (−1,−1) ∈ t−3 ∩ S4

for any ε > 0, and ε < 1
2 yields that

c4 + (−1,−1) ∈ t−6 ∩ S4,

and hence ti ∩ Sj 6= ∅ for i 6= j easily follows.
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Figure 1: The transversals ti of {S1, . . . , S6}\{Si}

Finally, we observe that S2 ∩ S6 = ∅ and both t3 and t5 are separating and supporting
lines of S2 and S6. Thus if ` is a transversal of {S2, S6}, then

• either ` is parallel to v,

• or slope ` ≤ slope t3 = −ε,

• or slope ` ≥ slope t5 = ε.

In particular, if ` is parallel to v, then ` is disjoint from either S1 or S4.
Let slope ` ≤ slope t3 = −ε, and we distinguish two cases. If slope ` > slope t4 = −1

and ` intersects S6, then ` is disjoint from S3. If slope ` ≤ slope t4 = −1 and ` intersects
S6, then ` is disjoint from S4.

Finally, let slope ` ≥ slope t5 = ε, and we distinguish three cases. If slope ` <
slope t1 = 1 and ` intersects S2, then ` is disjoint from S5. If slope ` > slope t1 = 1 and `
intersects S2, then ` is disjoint from S6. If slope ` = slope t1 = 1 and ` intersects S2 and
S5, then ` = t1, and hence ` is disjoint from S1.

Therefore, F has no transversal, proving µ(C, 5) = 1. �

3 Proof of Theorem 1.5
Let F = {S1, . . . , Sn}, n ≥ 6, be a packing of n translates of the square [−1, 1]× [−1, 1]
such that F satisfies T (5) and two translates intersect in a common vertex. In addition, let
ci = (xi, yi) be the center of Si, i = 1, . . . , n. We may assume that c1 = (−1, 1) and
c2 = (1,−1).
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We say that Sj and Sk are split if |xj−xk| ≥ 2, |yj−yk| ≥ 2 and |xj−xk|+|yj−yk| >
4. It is well known (see Grünbaum [5]) that if F satisfies T (5) and contains a split pair of
squares, then F has a transversal. Accordingly, we assume that

F contains no split pair. (3.1)

Case 1 Sk ∩ (h ∪ v) = ∅ for some k ∈ {3, . . . , n}
We may assume that S3 ∩ (h ∪ v) = ∅ and x3, y3 > 0, and hence x3, y3 > 1. Since S3

is disjoint and is not split from Si, i = 1, 2, we deduce that

1 < x3 < 3 and 1 < y3 < 3. (3.2)

We claim that
Sm ∩ (h ∪ v) 6= ∅ for m ∈ {4, . . . , n}. (3.3)

We suppose that Sm ∩ (h ∪ v) = ∅ for an m ∈ {4, . . . , n}, and hence |xm|, |ym| > 1,
and seek a contradiction. If xm > 0 and ym > 0, then as S3 and Sm do not overlap, (3.2)
yields that either xm ≥ x3 + 2 > 3 or ym ≥ y3 + 2 > 3, thus Sm is split for either S2

or S1, respectively. If xm < 0 and ym < 0, then Sm is split from S3, and if xm > 0 and
ym < 0, then Sm is split from S1; futhermore, if xm < 0 and ym > 0, then Sm is split
from S2. In turn, we conclude (3.3). It follows from (3.3) that possibly after interchanging
h and v, and a reflection to keep S3 in the first quadrant, we may assume that S4 ∩ v 6= ∅
and S5 ∩ v 6= ∅.

If v is a transversal of F , then Theorem 1.5 has been proved. Therefore we may assume
that S6 ∩ v = ∅, and hence S6 ∩ h 6= ∅ by (3.3).

As S6 ∩ v = ∅ and S6 ∩ h 6= ∅, we have |x6| > 1 and |y6| ≤ 1. Since S6 does not
overlap S1, and is not split from either one of S2 and S3, we deduce that

if x6 < 0, then x6 ≤ −3 and −1 < y6 < 1. (3.4)

On the other hand, since S6 does not overlap S2 and S3, and is not split from S1, we deduce
that

if x6 > 0, then x6 ≥ 3 and −1 < y6 ≤ 1. (3.5)

Turning to S4 and S5, we may assume that y4 ≤ y5, and if y4 = y5, then x4 = −1 and
x5 = 1.

Case 1.1 x4 < 0
Since S4 does not overlap S1 and S2, and is not split from S3, we have y4 ≤ −3. Thus

−1 ≤ x4 ≤ 1, (3.4) and (3.5) yield that S4 and S6 are split, contradicting (3.1).

Case 1.2 x4 > 0
Since S4 does not overlap S1, S2 and S3, we have

y4 ≥ 3 and − 1 ≤ x4 ≤ 1, and if y4 = 3, then even x4 ≤ x3 − 2 < 1. (3.6)

Comparing (3.6) to (3.4) and (3.5) shows that S4 and S6 are split, contradicting again (3.1).

Case 2 Sk ∩ (h ∪ v) 6= ∅ for any k ∈ {3, . . . , n}
We may assume that neither h nor v is a transversal of F , thus we may assume that

|y3| > 1 and |x4| > 1. In addition, we may assume that S3 is farthest from h, S4 is farthest
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from v, and S3 is closer to h than S4 to v; or in other words, 1 < y3 ≤ |x4|, y3 ≥ |yi| for
i ≥ 3 and |x4| ≥ |xi| for i ≥ 3. It follows from S3 ∩ v 6= ∅ and S4 ∩ h 6= ∅ that

−1 ≤ x3 ≤ 1 and − 1 ≤ y4 ≤ 1.

Since S3 and S4 are not split, we have y3 ≤ 3 and if y3 = 3, then either c3 = (1, 3) and
c4 = (3, 1), or c3 = (−1, 3) and c4 = (−3, 1). However, if c3 = (−1, 3), then S2 and S3

are split, thus if y3 = 3, then c3 = (1, 3) and c4 = (3, 1).

Case 2.1 y3 = 3, and hence c3 = (1, 3) and c4 = (3, 1)

In this case, the only common transversals of {S1, S2, S3, S4} are `1 = {(x, y) : y =
x} and `2 = {(x, y) : y = 1− x}. Let us assume that `2 is not a transversal of F , thus we
may assume that S5 ∩ `2 = ∅ and `1 is a common transversal of {S1, S2, S3, S4, S5}. In
addition, we may assume that |x5| ≤ |y5|.

As S5 ∩ (h∪ v) 6= ∅, S5 ∩ `1 6= ∅ and S5 ∩ `2 = ∅, we deduce that S5 ⊂ l−2 . Therefore
combining the conditions |x5| ≤ |y5|, S5 ∩ (h ∪ v) 6= ∅, S5 ∩ `1 6= ∅ and S5 does not
overlap S1 and S2 implies that x5 = −1 and −3 ≤ y5 ≤ −1. In particular, S3 and S5 are
split, contradicting (3.1).

Case 2.2 y3 < 3

Since S3 does not overlap S1 and S2, we have x3 = 1 and

x3 = 1 and 1 < y3 < 3. (3.7)

We claim that
y3 − 2 ≤ yi ≤ 1 and |xi| ≥ 3 for i = 4, . . . , n. (3.8)

We suppose that there exists j ∈ {4, . . . , n} with yj < y3 − 2, and seek a contradiction.
As 1 > yj ≥ −|y3| > −3 and Sj does not overlap with S1, S2, S3, we deduce that
|xj | ≥ 3. Therefore yj < y3 − 2 and (3.7) imply that Sj and S3 are split, contradicting
(3.1), and verifying that yi ≥ y3 − 2 for i = 4, . . . , n. For any i = 4, . . . , n, we have
−1 < y3 − 2 ≤ yi ≤ y3 < 3, Si does not overlap S1, S2, S3 and Si ∩ (h ∪ v) 6= ∅,
therefore |xi| ≥ 3 and yi ≤ 1, as in (3.8).

We set `1 = aff{(0, y3−1), (2, 0)} and `2 = aff{(2, y3−1), (0, 0)}, and note that they
are separating and supporting lines of S2 and S3 with slope `1 < 0 and slope `2 > 0. We
may assume that `1 is not a transversal of F , and hence there exists m ∈ {4, . . . , n} such
that `1 ∩ Sm = ∅. In particular, either xm ≥ 3 and Sm ⊂ `+1 , or xm ≤ −3 and Sm ⊂ `−1 .

We observe that if ` is a transversal of S2 and S3 with slope ` < 0, then

{(x, y) ∈ `+1 : x ≥ 2} ⊂ `+ and {(x, y) ∈ `−1 : x ≤ −2} ⊂ `−. (3.9)

We claim that
Si ∩ `2 6= ∅ for i = 1, . . . , n. (3.10)

Let ` be a transversal of S1, S2, S3, Sm, Si, and hence (3.9) yields that slope ` > 0. Since `
is a transversal of S1 and S2, it contains the origin (0, 0). As Si∩h 6= ∅ and `2 has minimal
slope among transversals of S2 and S3, we deduce that Si ∩ `2 6= ∅. In turn, we conclude
from (3.10) that `2 is a transversal of F . �
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4 Proof of Theorem 1.6
For references about Minkowski Geometry and properties of ovals in this section, see
Schneider [13] and Thompson [14]. For an oval C, we say that a polygon P is circum-
scribed around C (inscribed into C) if each side of P touches P (each vertex of P lies on
the boundary ∂P of P ), respectively. We say that a polygon P is an affine regular hexagon
if it is the image of a regular hexagon by a linear transformation. The proof of Theorem 1.6
rests on the following statement.

Proposition 4.1. If C is an origin symmetric oval that is not a parallelogram, then there
exists an affine regular hexagon H circumscribed around C such that no vertex of H lies
in C.

Since the proof of Proposition 4.1 is rather technical and uses ideas very different from
the ones used in the rest of the paper, we present the argument in the Appendix (Section 5).

The following observation due to Tverberg in [15] shows that it is sufficient to consider
origin symmetric ovals in our study.

Lemma 4.2 (Tverberg). For any oval C and x1, . . . , xk ∈ R2, x1 + C, . . . , xk + C has a
transversal if, and only if, x1 + 1

2 (C −C), . . . , xk + 1
2 (C −C) has a parallel transversal.

Proof. We fix a line ` passing through the origin, and search for transversals parallel to
`. Let u be a unit vector orthogonal to `, and let b > a be defined by the property that
` + tu intersects C if, and only if, a ≤ t ≤ b, and hence ` + tu intersects x + 1

2 (C − C)

if, and only if, a−b
2 ≤ t ≤ b−a

2 . We write u · v to denote the scalar product of the
vectors u and v. For an x ∈ R2 and t, s ∈ R, it follows that ` + tu intersects x + C if,
and only if, a + x · u ≤ t ≤ b + x · u; moreover, ` + su intersects x + 1

2 (C − C) if,
and only if, a−b

2 + x · u ≤ s ≤ b−a
2 + x · u, which is in turn equivalent to saying that

`+(s+ a+b
2 )u intersects x+C. We conclude that a line `+su parallel to ` is a transversal

of x1 + 1
2 (C − C), . . . , xk + 1

2 (C − C) if, and only if, `+ (s+ a+b
2 )u is a transversal of

x1 + C, . . . , xk + C.

Proof of Theorem 1.6: It follows from Tverberg [15] (see also (1.1)) that µ(C, 5) ≤ 1 for
any oval C.

Let us turn to the proof of µ(C, 5) ≥ 2
3 for any oval C. Since 1

2 (C − C) is a paral-
lelogram if, and only if, C is a parallelogram, we may assume that C is origin symmetric
according to Lemma 4.2.

If the origin symmetric oval C is a parallelogram, then Theorem 1.2 verifies µ(C, 5) =
1. Therefore we assume that C is an origin symmetric oval that is not a parallelogram, and
hence Proposition 4.1 yields a circumscribed (origin symmetric) affine regular hexagon H
such that no vertex of H is contained in ∂C.

Let H0 = 2
3H , and let H1, . . . ,H6 be the six non-overlapping translates of H0 in a

way such that H0 ∩ Hi is a common side for i = 1, . . . , 6, and H1, . . . ,H6 are situated
around H0 in counterclockwise order. We write ci to denote the center of Hi, and hence
c1 + 2

3 C, . . . , c6 + 2
3 C do not overlap.

Let us consider the family F = {c1 + C, . . . , c6 + C}. We observe that c1 + H, c3 +
H, c5 + H enclose a triangle T135. For i = 1, 3, 5, T135 has a common side with ci + H
which touches ci + C, and let `i be the line containing this side. We observe that `i,
i = 1, 3, 5, touches c1 + C, c3 + C, c5 + C, it is a common transversal to F\{cj + C}
where j ∈ {1, . . . , 6} and |j − i| = 3, and `i ∩ (cj + C) = ∅.
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Similarly, c2 + H, c4 + H, c6 + H enclose a triangle T246. For i = 2, 4, 6, T246 has a
common side with ci +H which touches ci +C, and let `i be the line containing this side.
We observe that `i, i = 2, 4, 6, touches c2 +C, c4 +C, c6 +C, it is a common transversal
to F\{cj + C} where j ∈ {1, . . . , 6} and |j − i| = 3, and `i ∩ (cj + C) = ∅.

So far we have verified that c1+ 2
3 C, . . . , c6+ 2

3 C do not overlap, F satisfies T (5), and
the fact that F has no transversal provided for any transversal ` of c1 +C, c3 +C, c5 +C,
we have

` ∈ {`1, `3, `5}. (4.1)

Since each `i, i = 1, 3, 5, separates two of c1 + C, c3 + C, c5 + C, we may assume that
` is not parallel to `1, `3, `5. In this case, there exists a vertex v of T135 and a line `′

parallel to ` such that `′ passes through v and intersects intT135. We may assume that
{v} = (c1 +H)∩ (c3 +H). As `′ strictly separates (c1 +H)\{v} and (c3 +H)\{v} and
v 6∈ (ci + C) for i = 1, 3, we deduce that `′ strictly separates c1 + C and c3 + C. This
contradicts that ` intersects both c1 +C and c3 +C, and proves (4.1). In turn, we conclude
Theorem 1.6. �

5 Appendix - proof of Proposition 4.1
We prove in fact Proposition 5.1 (the equivalent form of Proposition 4.1 via polarity)
through a series of simple statements Lemma 5.2, Lemma 5.3 and Lemma 5.4.

If C is an oval with o ∈ intC, then its polar is the oval

C∗ = {p ∈ R2 : 〈p, q〉 ≤ 1 ∀q ∈ C}.

We note that (C∗)∗ = C∗, and assuming that C ⊂ K for an oval K, we have K∗ ⊂ C∗.
If C is a polygon, then so is C∗, and there exists a bijective correspondence between the
vertices of P and the sides of P ∗; namely, if v is a vertex of P , then {p ∈ C∗ : 〈p, v〉 = 1}
is the corresponding side of C∗. Since if A is a linear transformation and C is any oval,
then (AC)∗ = A−tC∗ where A−t is the inverse of the transpose of A, we have that P ∗ is
an affine regular hexagon for any affine regular hexagon P centered at the origin, and P ∗

is a parallelogram for any parallelogram P centred at the origin.
Polarity shows that Proposition 4.1 is equivalent to Proposition 5.1.

Proposition 5.1. If C is an origin symmetric oval that is not a parallelogram, then there
exists an affine regular hexagon H inscribed into C such that no side of H lies in ∂C.

Any origin symmetric oval C induces a Minkowski geometry where the length of a
segment [p, q] with endpoints p and q is ‖p − q‖C . For a polygon P , its correponding
Minkowski perimeter MC(P ) is the sum of the lengths of its sides with respect to ‖ · ‖C .
This notion of Minkowski perimeter can be extended to any oval K by approximation
where MC(K1) ≤MC(K2) holds for ovals K1 and K2 satisfying K1 ⊂ K2. The follow-
ing statement is well known, see Lemma 4.1.1 in Thompson [14] or Martini, Swanepoel,
Weiss [11], or Asplund and Grünbaum [1] for related results.

Lemma 5.2. If C is an origin symmetric oval, then for any p ∈ ∂C, there exists an origin
symmetric affine regular hexagon H inscribed into C such that p is a vertex of H .

Actually Lemma 4.1.1 in Thompson [14] states that there exists a q ∈ ∂C in Lemma 5.2
such that q − p ∈ ∂C, and therefore ±p,±q,±(q − p) are vertices of an inscribed affine
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regular hexagon. We observe that if H is an origin symmetric affine regular hexagon in-
scribed into an origin symmetric oval C, then each side of H is of length 1 with respect to
both ‖ · ‖H and ‖ · ‖C . The self-perimeter of any origin symmetric oval is between 6 and 8
according to Golab [4]. For the sake of the reader, we present the simple argument.

Lemma 5.3 (Golab). If C is an origin symmetric oval, then 6 ≤MC(C) ≤ 8.

Remark We have MC(C) = 6 if C is an affine regular hexagon, and MC(C) = 8 if
C is a parallelogram.
Proof Let H be an affine regular hexagon inscribed into C, and let P be a parallelogram
of minimal area containing C. Since the midpoints of P lie in ∂C, we have

6 = MC(H) ≤MC(C) ≤MC(P ) = 8. �.

We note that Golab [4] defined a notion of self perimeter for any (not necessarily cen-
trally symmetric) oval. For this generalized notion of self perimeter, Grünbaum [6] verified
that it is at least 6 (with equality for affine regular hexagons) and at most 9 (with equality
for triangles) for any oval.

Lemma 5.4. If C is an origin symmetric oval that is not a parallellogram, then then there
exists a p ∈ ∂C not lying on any segment contained in ∂C of length longer than 1 with
respect to ‖ · ‖C .

Proof We suppose that ∂C is the union of segments of length longer than 1 with respect
to ‖·‖C , and seek a contradiction. SinceC is origin symmetric, we deduce from Lemma 5.3
that C is a hexagon. Let p1, p2, p3 be vertices of C such that p2 and p3 are neighbors of p1.
Let P be the parallelogram such that ±p1 are opposite vertices and p2 and p3 lie on sides
of P emanating from p1. We may assume that P coincides with [−1, 1]× [−1, 1] in a way
such that p1 = (1, 1), p2 = (1 − t, 1) and p3 = (1, 1 − s) where 0 < s, t < 2. We may
also assume that s ≤ t.

We claim that
s > 1. (5.1)

We suppose that s ≤ 1, and seek a contradiction. Since ‖p3− p1‖C > 1, it follows that the
point q = (0,−s) lies outside of C; therefore, there exists a line ` disjoint from C passing
through q. Since (1, 1 − s) ∈ C and (−1,−1) ∈ C, we deduce that 0 < slope ` < 1, and
hence there exits w = (−1 + r,−1) ∈ ` with 0 < r ≤ s. However −p2 = (−1 + t,−1)
lies on ∂C with t ≥ s, thus w ∈ [−p1,−p2] ⊂ ∂C. This fact contradicts `∩C = ∅, and in
turn proves (5.1).

We deduce from t ≥ s > 1 that (1, 0), (0, 1) ∈ ∂C, and in turn p3 − (−p2) =
(2−t, 2−s) ∈ intC, and hence the length of the side [−p2, p3] ofC is ‖p3−(−p2)‖C < 1.
This contradicts the conditions on C, and completes the proof of Lemma 5.4. �

Proof of Proposition 4.1 In fact, we prove the equivalent Proposition 5.1. Let C be an
origin symmetric oval that is not a parallelogram. It follows from Lemma 5.3, that ∂C
contains at most 8 maximal segments of length at least 1 with respect to ‖ · ‖C .

According to Lemma 5.4, there exists a p ∈ ∂C not lying on any segment contained in
∂C of length longer than 1 with respect to ‖ · ‖C . Possibly varying p, we may also assume
that
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(i) if p is contained in a segment s with s ⊂ ∂C (thus the length of s is at most one), then
p lies in the relative interior of s,

(ii) the line op is not parallel to any segment contained in ∂C of length at least 1 with
respect to ‖ · ‖C .

Let H be an affine regular hexagon inscribed into C such that p is a vertex of H . It follows
that each side of H is of length 1 with respect to ‖ · ‖C . The two sides of H parallel to p
are not contained in ∂C by (ii). If a side s0 of H containing p or −p is part of ∂C then
s0 is a proper subset of the segment s of length at most 1 by (i); and that is a reductio ad
absurdum. This completes the proof that no side of H is a subset of ∂C. �
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