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Abstract

A random polytope is the convex hull of uniformly distributed random
points in a convex body K. A general lower bound on the variance of
the volume and f -vector of random polytopes is proved. Also an upper
bound in the case when K is a polytope is given. For polytopes, as for
smooth convex bodies, the upper and lower bounds are of the same order
of magnitude. The results imply a law of large numbers for the volume
and f -vector of random polytopes when K is a polytope.

1 The main results

Let K ⊂ IRd be a convex set of volume one. Assume x1, . . . , xn is a random
sample of n independent, uniform points from K. The random polytope Kn is
just the convex hull of these points: Kn = [x1, . . . , xn]. It is one of the classical
problems in stochastic geometry to investigate the asymptotic behaviour of Kn,
see, e.g., the book of Kendall and Moran [14], and the recent book on stochastic
geometry of Schneider and Weil [20]. Starting with Rényi and Sulanke [16]
in 1963, there have been many results concerning the expectation of various
functionals of Kn. For instance, the expectation of the volume V (Kn), and of
the number, f`(Kn), of `-dimensional faces of Kn (` = 0, . . . , d − 1) have been
determined, see [23] for an extensive survey, and also [7] for more recent results.

Yet determining the variance is in general still an open problem. For smooth
convex bodies this has been solved, up to order of magnitude, by Reitzner [17]
and [19], extending an earlier upper bound, for the case of the unit ball, by Küfer
[15] (and some other sporadic results in dimension 2). Recently Schreiber and
Yukich [21] have determined the precise asymptotic behaviour of the variance
of f0(Kn) when K is the unit ball, a significant breakthrough.

On the other hand for convex polytopes much less is known, and it seems that
the situation there is much more delicate. In this case we denote the underlying
polytope by P instead of K and the random polytope by Pn. In the planar
case, variances and central limit theorems for f0(Pn) and V (Pn) were proved
by Groeneboom [12], and Cabo and Groeneboom [9], but it seems that the
stated variances are incorrect (see the discussion in Buchta [8]). In this paper
we determine the order of magnitude of the variance of the volume and the
number of `-dimensional faces of the random polytope when the mother body
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P is a polytope in IRd. Let F (P ) denote the number of flags of P . A flag is
a sequence of faces F0, F1, . . . , Fd−1 of P such that, for all i, dim Fi = i and
Fi ⊂ Fi+1.

Theorem 1.1. Assume P is a polytope of volume one. Let Pn be the random
polytope inscribed in P . Then

VarV (Pn) ¿ F (P )3n−2(log n)d−1,

Varf`(Pn) ¿ F (P )3(log n)d−1.

Here (and throughout the paper) we use Vinogradov’s ¿ notation, that is,
we write f(n) ¿ g(n) if there are constants C > 0 and n0, independent of n,
such that |f(n)| < Cg(n) for all n ≥ n0. The constants C and n0 may, and
usually do, depend on the dimension, but not on the convex polytope P or on
the convex body K. Most likely, in both bounds the coefficient F (P )3 can be
replaced by F (P ).

From Theorem 1.1 we deduce a law of large numbers for the random variables
V (Pn) and f`(Pn). It is known by work of Bárány and Buchta [3] and Reitzner
[18], that for P a polytope of volume one

1− IEV (Pn) =
F (P )

(d + 1)d−1(d− 1)!
n−1(log n)d−1 (1 + o(1)),

IEf`(Pn) = c(d, `)F (P )(log n)d−1 (1 + o(1)),

where c(d, `) > 0 is a constant depending on d and `. Chebyshev’s inequality,
the above stated expectations and Theorem 1.1 immediately gives the following
Corollary.

Corollary 1.2. Assume P is a polytope of volume one. Let Pn be the random
polytope inscribed in P . Then

(1− V (Pn)) n(log n)−(d−1) → F (P )
(d + 1)d−1(d− 1)!

,

f`(Pn) (log n)−(d−1) → c(d, `)F (P )

in probability as n →∞.

It can be observed that the estimates for the variance in Theorem 1.1 and
the corresponding results for smooth convex sets in [17] are closely related to
the so-called floating body of K. To explain what the floating body is we first
define the function v : K → IR via

v(z) = min{V (K ∩H) : H is a halfspace and z ∈ H}.

The floating body with parameter t is just the level set K(v ≥ t) = {z ∈ K :
v(z) ≥ t}, which is clearly convex. The wet part is K(v ≤ t), that is, where
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v is at most t. The name comes from the 3-dimensional picture when K is a
container containing t units of water.

The volume of the wet part V (K(v ≤ t)) is known when K is a smooth
convex body and when it is a polytope. The case of polytopes is the main object
of interest in this paper. It follows from results of Affentranger, Wieacker [1]
and Bárány, Buchta [3], that for a polytope P ⊂ IRd of volume one, and for
small enough t > 0

V (P (v ≤ t)) =
1

(d + 1)d−1(d− 1)!
F (P ) t(log 1/t)d−1(1 + o(1)). (1.1)

Comparing Theorem 1.1 with (1.1) leads us to conjecture that for general
convex bodies K ⊂ IRd the variance VarV (Kn) is - up to constants - always
of order n−1V (K(v ≤ n−1)), and the variance Varf`(Kn) is always of order
nV (K(v ≤ n−1)).

The second main result of this paper confirms this conjecture partially. We
prove lower bounds for the variance of the random variables V (Kn) and f`(Kn)
for general convex sets K.

Theorem 1.3. Assume K is a convex body of volume one. Then

n−1V (K(v ≤ n−1)) ¿ VarV (Kn)
nV (K(v ≤ n−1)) ¿ Varf`(Kn).

Thus for a polytope P in IRd of unit volume we have

F (P )n−2(log n)d−1 ¿ VarV (Pn) ¿ F (P )3n−2(log n)d−1,

F (P )(log n)d−1 ¿ Varf`(Pn) ¿ F (P )3(log n)d−1.

In Section 2 a second well-known notion of a random polytope, the Poisson
polytope Πn is introduced, and analogous lower bounds on the corresponding
variances are stated there. In Sections 4 and 5 we give the detailed proof of the
above results concerning the variance of the volume of Kn, resp. Pn. In section
6 we sketch the proofs for the variance for f`(Kn), resp. f`(Pn). Auxiliary
definitions and results are given in Section 3.

Further distributional aspects of the volume and the number of faces will be
discussed in a forthcoming paper [6], where we prove a central limit theorem for
the volume and the f -vector of the Poisson random polytope Πn (the definition
is given in Section 2).

Both the upper and lower bounds on the variances in question build on the
methods developed by Reitzner in [17] and [19] for smooth convex bodies. The
main novelty in this paper is twofold. The first is the extension of the technique
to give lower bound for general convex bodies (Theorem 1.3). This is achieved
by using methods of convex geometry which was inspired by the philosophy of
the cap covering theorem, see Theorem 3.2 below. The second main novelty
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is the upper bound on the variance for polytopes. The proof is based on the
Efron-Stein jackknife inequality plus the cap covering theorem applied to convex
polytopes. This application uses a subtle estimate of the volume of the visible
part of P (v ≤ t), see Lemma 3.3 for details. Similar methods are used in [6]
for the proof of the central limit theorem. Actually, the results of [6] and of
this paper were reached simultaneously. We decided to separate the material
by publishing the results in two (almost) self-contained papers in order to make
them both shorter and also more accessible for the imaginary reader.

2 Poisson polytopes

As it turns out it is often more convenient, and perhaps more natural, to work
with Poisson polytopes, see e.g. [6], [9], [12], [19]. To define the Poisson polytope
Πn inscribed in a convex body K, one first considers a Poisson point process
X(n) in IRd of intensity n and let Πn be just [K ∩X(n)], the convex hull of the
points lying in K. This is the same as choosing first a random number N which
is Poisson distributed with mean n, and then choosing N random, uniform
independent points x1, . . . , xN from K and let Πn be the random polytope
KN = [x1, . . . , xN ].

As expected, the random polytope Kn and the Poisson polytope Πn are very
close to each other. The following result is a lower bound on the variances of
these random variables and is analogous to Theorem 1.3.

Theorem 2.1. If K ⊂ IRd is a convex body of volume one, then

n−1V (K(v ≤ n−1)) ¿ VarV (Πn),
nV (K(v ≤ n−1)) ¿ Varf`(Πn)

The proof of this result is almost identical to that of Theorem 1.3. It will
be given in the end of Section 4. We mention further that the upper bounds
of Theorem 1.1 are valid for VarV (Πn) and Varf`(Πn) as well. We omit the
straightforward proof.

3 Notation and background

To avoid some trivial complications we assume that the dimension d is at least
2. The unit sphere is Sd−1. As usual, hK(u) denotes the support function of K
in direction u ∈ Sd−1:

hK(u) = max{u · x : x ∈ K}.

A cap C of K is the intersection of K with a closed halfspace. This halfspace
can be written as {x ∈ IRd |u · x ≥ hK(u)− τ} with u ∈ Sd−1. Thus

C = K ∩ {x ∈ IRd |u · x ≥ hK(u)− τ}.
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The bounding hyperplane of C is the one with equation u · x = hK(u)− τ . We
define, for λ > 0, Cλ by

Cλ = K ∩ {x ∈ IRd |u · x ≥ hK(u)− λτ}.

The centre of the cap C = K ∩ {x ∈ IRd : u · x ≥ hK(u)− τ} is a point x ∈ ∂K
with u ·x = hK(u). The centre need not be unique, but this will cause no harm.
Assuming that x is the centre of C, observe that for λ ≥ 1, Cλ ⊂ x + λ(C − x)
implying that

V (Cλ) ≤ λdV (C) holds for λ ≥ 1. (3.1)

Recall that the function v : K → IR has been defined by

v(z) = min{V (K ∩H) : H is a halfspace and z ∈ H}.

The minimal cap of z ∈ K is a cap C(z) = CK(z) containing z such that
v(z) = V (C(z)). Again, it need not be unique.

The Macbeath region, or M -region, for short, with centre z and factor λ > 0
is

M(z, λ) = MK(z, λ) = z + λ[(K − z) ∩ (z −K)].

The M -region with λ = 1 is just the intersection of K and K reflected with
respect to z. Thus M(z, 1) is convex and centrally symmetric with centre z, and
M(z, λ) is a homothetic copy of M(z, 1) with centre z and factor of homothety
λ.

This definition is from [11], cf [5] as well. The following result is from [2].
We assume K ⊂ IRd is a convex body of volume one. Set

t0 = (16d)−2d. (3.2)

Lemma 3.1. Assume t ≤ t0. If the bounding hyperplane of a cap C is tangent
to K(v ≥ t), then t ≤ V (C) ≤ dt.

Let K(v = t) = ∂K(v ≥ t). Assume t ≤ t0 and choose a maximal system of
points Z = {z1, . . . , zm} on K(v = t) having pairwise disjoint Macbeath regions
M(zi,

1
2 ). Such a system will be called saturated. Note that Z (and even m) is

not defined uniquely. However, for each K (of volume one) and t (with t ≤ t0)
we fix a saturated system Z. We write Z(t) and m(t) = |Z(t)| when we want to
emphasize that our fixed saturated system comes from the level set K(v = t).
Evidently, V (C(zi)) = t. Set

K ′
i(t) = M(zi,

1
2
) ∩ C(zi) and Ki(t) = C16(zi),

where, of course, C16(zi) is just (C(zi))λ with λ = 16.
The sets K ′

i(t) and Ki(t) for i = 1, . . . ,m(t) form an economic cap covering
in the following result, the so called economic cap covering theorem, that comes
from Theorem 6 in [5] and Theorem 7 in [2].
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Theorem 3.2. Suppose t ∈ (0, t0], K ⊂ IRd is a convex body of volume one,
and Z = {z1, . . . , zm} is a saturated system on K(v = t). Then, with Ki(t) and
K ′

i(t) as defined above, the following holds

(i)
⋃m(t)

1 K ′
i(t) ⊂ K(v ≤ t) ⊂ ⋃m(t)

1 Ki(t),

(ii) t ≤ V (Ki(t)) ≤ 16dt, for i = 1, . . . , m(t),

(iii) (6d)−dt ≤ V (K ′
i(t)) ≤ 2−dt, i = 1, . . . , m(t),

(iv) every C with V (C) ≤ t is contained in Ki(t) for some i.

The sets K ′
i(t) are pairwise disjoint, all of them have volume ≥ (6d)−dt, and

are all contained in K(v ≤ t). This gives an upper bound for m(t). Similarly,
the sets Ki(t) cover K(v ≤ t), all of them have volume ≤ 16dt. This gives a
lower bound for m(t). Summarizing, we have

1
16dt

V (K(v ≤ t)) ≤ m(t) ≤ (6d)d

t
V (K(v ≤ t)) (3.3)

for t ≤ t0. We will often use this in the form V (K(v ≤ t))/t ¿ m(t) ¿ V (K(v ≤
t))/t. So the inequality f(t) ¿ g(t) means that there are constants t0 and C
such that |f(t)| ≤ Cg(t) for all t ∈ (0, t0).

We need one more auxiliary result which follows from Lemma 4.1 of the
companion paper [6].

Lemma 3.3. Assume P ⊂ IRd is a polytope of volume one, z ∈ P with 0 <
2v(z) ≤ t ≤ (16d)−d. Let z1, . . . , zm (where m = m(t)) be a saturated system
on P (v = t) and let Ki(t) be the caps from the cap covering theorem. Then the
number of caps Ki(t) containing z is at most

¿ F (P )
(

log
t

v(z)

)d−1

.

Here (and in the proof to come) the constant implied by ¿ depends only
on d (and does not depend on v(z)). Note that the total number of caps,
m(t) ¿ V (P (v ≤ t))/t ¿ F (P ) logd−1 1/t which is smaller than the bound
given in the lemma when 1/t < t/v(z), that is, when v(z) < t2.

Proof. The set of points in P (v ≤ T ) visible from z is, by definition,

S(z, T ) = {x ∈ P : [x, z] ∩ P (v ≥ T ) = ∅}.
Lemma 4.1 from [6] gives an upper bound on the volume of S(z, T ). Namely,
assuming 0 < v(z) < 1/2 and 2v(z) ≤ T ,

V (S(z, T )) ¿ F (P ) T logd−1

(
T

v(z)

)
.

In our case V (Ki(t)) ≤ 16dt := T . Thus z ∈ Ki(t) implies zi ∈ S(z, T ). Then
the set K ′

i(t), which is half of the M -region M(zi, 1/2) cut off from M(zi, 1/2)
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by the hyperplane tangent to P (v ≥ t) at zi, lies in S(z, T ). As the M -regions
M(zi, 1/2) are pairwise disjoint, and each has volume À t, the number of caps
Ki(t) containing z is at most

¿ V (S(z, T ))/t ¿ F (P )
T

t
logd−1

(
T

v(z)

)
¿ F (P ) logd−1

(
t

v(z)

)
.

This finishes the proof. 2

4 Lower bounds

Proof of Theorem 1.3 for VarV (Pn).
We start with some geometric preparations. Let y ∈ K(v = t), and denote

by H(y) the bounding hyperplane of the minimal cap of y. Then y ∈ H(y)
and, as is well known, y is the center of gravity of K ∩ H(y). According to
a classical result of Fritz John, the convex body K ∩H(y) (in the hyperplane
H(y)) is sandwiched between two concentric and homothetic ellipsoids with
ratio of homothety d − 1. We need a strengthening of this result where the
common center of the ellipsoids coincides with the center of gravity, y, of the
convex body K ∩H(y). This is given by a recent result of Kannan, Lovász, and
Simonovits, Theorem 4.1 in [13]: there is an ellipsoid E ⊂ H(y) centered in y
such that

y +
1

d− 1
(E − y) ⊂ K ∩H(y) ⊂ E.

We choose a simplex [x1, . . . , xd] ⊂ y + 1
2(d−1) (E − y) of maximal (d − 1)-

dimensional volume. The center of gravity of this simplex is clearly y. Let x
be a boundary point of this simplex. We have y + 2d2(x − y) /∈ E and thus
y + 2d2(x − y) is not contained in K. Denote by y0 the centre of the minimal
cap C(y). Then the halfline y0 + λ(y + 2d2(x− y)− y0), λ ≥ 0, starting from y0

meets H(y) when λ = 1 in a point not contained in K, and thus is also outside
K for all λ > 1. Put x0 = y + 1

2(3d2−1) (y0 − y). The halfline x0 + µ(x − x0)
(µ ≥ 0) meets the line y0 + λ(y + 2d2(x − y) − y0) at λ = µ/(2d2) = 3/2, and
thus {x0 +µ(x−x0) : µ ≥ 0}∩ (K \C1.5(y)) is empty for all x on the boundary
of [x1, . . . , xd]. We just proved the following claim.

Claim 4.1. Suppose x0, . . . , xd are chosen as above and set 4(y) = [x0, . . . , xd].
Then the simplex 4(y) is contained in M(y, 1

2 ) ∩ C(y). If for some x ∈ K the
segment [x, x0] is disjoint from [x1, . . . , xd], then x ∈ C1.5(y).

Further observe that the volume of the simplex 4 = [x0, . . . , xd] is precisely
of order t (bounded independently of y, x0, . . . , xd). Given δ > 0, let4i be small
homothetic (and uniquely determined) copies of 4, with center of homothety
xi (i = 0, 1, . . . , d) such that V (4i) = δt. By Claim 4.1 and by continuity the
following strengthening of the last sentence of Claim 4.1 holds.

Claim 4.2. There is a small δ > 0, depending only on d and independent of K,
y, and 4 such that, with V (4i) = δt, the conditions zi ∈ 4i (i = 0, 1, . . . , d),
z ∈ K, and [z, z0] ∩ [z1, . . . , zd] = ∅ imply z ∈ C2(y).
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The following observation is important as it connects the geometry of the
simplices 4i with the variation in question. For fixed zi ∈ 4i, i = 1, . . . , d, and
for randomly and uniformly chosen Z ∈ 40,

VarV ([Z, z1, . . . , zd]) À t2. (4.1)

The proof is elementary: the function V ([Z, z1, . . . , zd]) is affine equivariant and
homogeneous of the same degree as V (4). Thus VarV ([Z, z1, . . . , zd]) equals
V (4)2 times the variance occurring if 4 is the regular simplex of volume one.

As the last step of the geometric preparations we choose a saturated system
Y (t) = {y1, . . . , ymm} from K(v = t). For each yj we construct the sim-
plices 4i(yj). For each j and for fixed zi ∈ 4i(yj) (i = 1, . . . , d) we have
VarZV ([Z, z1, . . . , zd]) À t2 where Z varies uniformly in 40(yj). Also, inequal-
ity (3.3) implies that

m = m(t) À 1
t
V (K(v ≤ t)). (4.2)

After these preparations we can now start proving the lower bound on the
variance. Set t = 1/n in the previous construction and consider the set Y =
{y1, . . . , ym} ⊂ K(v = 1/n) and the simplices4i(yj). Let Xn = {x1, . . . , xn} be
the random sample of n uniform independent points from K. For j ∈ {1, . . . , m}
let Aj be the event that exactly one point of Xn is contained in each set 4i(yj)
and no other point of Xn is in C2(yj). Although the event Aj occurs only
with small probability, we will show that this probability is bounded away from
zero independently of n. Thus Aj will occur regularly, a fixed percentage of
the configurations 4i(yj) will satisfy Aj . This will in turn imply that a fixed
percentage of the variance is determined by the variance given Aj . Using as
a lower bound for VarV (Pn) only this conditional variance, the bound in (4.1)
will suffice to produce the requested estimate.

Recall that V (4i(yj)) = δ/n and V (C2(yj)) ≤ 2dV (C(yj)) = 2d/n follows
from (3.1). Thus

IP(Aj) ≥
(

n

d + 1

)(
δ

n

)d+1 (
1− 2d

n

)n−d−1

À 1. (4.3)

By (4.2)

IE




m∑

j=1

I(Aj)


 =

m∑

j=1

IP(Aj) À m À nV (K(v ≤ n−1)). (4.4)

Assume next that Aj holds, and let Zj , z1, . . . , zd, resp., be the points from
Xn contained in 40(yj),41(yj), . . . ,4d(yj). Write H for the halfspace which
contains Zj and whose bounding hyperplane contains z1, . . . , zd. Now Claim 4.2
and condition Aj imply that

Pn ∩H = [Zj , z1, . . . , zd]. (4.5)
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which means that, under Aj and conditioning on the points z1, . . . , zd, Pn ∩H
depends only on Zj and Pn \ H is independent of Zj . Further, since the sets
4(yj) are disjoint, Zj and Zi are independent for i 6= j if I(Ai) = I(Aj) = 1.

Define H to be the σ-algebra that keeps track of everything except the
locations of the points Xi in 40(yj) for which Aj occurs. More formally, let J
denote the set of indices for which Aj occurs. Then H is the σ-algebra generated
by J and

{X1, . . . , Xn} ∩
( ⋃

j∈J
40(yj)

)c

.

We decompose the variance by conditioning on H:

VarV (Pn) = IEVar(V (Pn) |H) + Var IE(V (Pn)|H)
≥ IEVar(V (Pn) |H)

Write P ∗ for the convex hull of the points from Xn ∩K fixed by condition
H. Observe now that, under condition H,

V (Pn)|H =
∑

I(Aj)=1

V ([Zj , z1, . . . , zd]) + V (P ∗). (4.6)

Here in the summation the random variables are independent and the last term
is constant. This implies that

Var(V (Pn) |H) =
∑

I(Aj)=1

VarZj V (Pn)

where the variance is taken with respect to the random variable Zj ∈ 40(yj),
and we sum over all j = 1, . . . , m with I(Aj) = 1. Combining this with (4.1)
and with (4.4) implies

VarV (Pn) À IE


 ∑

I(Aj)=1

n−2


 À n−2IE




m∑

j=1

I(Aj)




À n−1V
(
P (v ≤ n−1)

)

which is the first part of Theorem 1.3. 2

Remark. Note that in (4.6) we made use of the fact that 4i(yk)∩4j(yh) =
∅ unless k = h and i = j. This follows because system y1, . . . , ym is saturated
and so the M-regions M(yk, 1/2) are pairwise disjoint.

Proof of Theorem 2.1 for VarV (Πn). The previous proof works with the
only change that this time for the estimate IP(Aj) À 1 one has to use the Poisson
distribution: IP(|4i(yj) ∩X(n)| = 1) = nV (4i(yj)) exp{−nV (4i(yj))} = δe−δ

and the probability that C2(yj) contains no further point of X(n) is bounded
from below by exp{−nV (C2(yj)}. 2
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5 Proof of Theorem 1.1 for V (Pn)

The beginning of this proof works for all convex bodies. We start with a general
convex body K of volume one, and change it to a polytope P when we have to.

Let Tn be the event that the floating body K(v ≥ (c log n)/n) is contained
in Kn. Here c = cd is a large constant to be specified soon. We write T c

n for
the complement of Tn. The main result of [4] says that there is a constant
δ > 0 depending only on d such that T c

n occurs with probability n−δc. For an
alternative statement (and proof) see Van Vu’s paper [22]

We use the jackknife inequality of Efron and Stein [10], which implies, in the
form given by Reitzner [17], that

VarV (Kn) ≤ (n + 1) · IE(V (Kn+1)− V (Kn))2

= (n + 1) · IE[(V (Kn+1)− V (Kn))21(Tn)]
+ (n + 1) · IE[(V (Kn+1)− V (Kn))21(T c

n)].

The second term here is very small if the constant c is chosen large enough
because (V (Kn+1) − V (Kn))2 ≤ V (Kn+1)2 ≤ V (K)2 which is a constant de-
pending only on K, and IE(1(T c

n)) ≤ n−δc. We choose c = cd so large that the
second term is smaller n−3, say.

So we need to estimate the first term only. We use, quite naturally, a coupling
argument since Kn+1 is just the convex hull of Kn and xn+1, the last point from
the random sample consisting of n + 1 points from K. For simpler notation we
write y for xn+1. Let F be the collection of those facets F of Kn for which y is
not on the same side of the hyperplane affF as Kn. Clearly F = ∅ if y ∈ Kn.
We write [n] for the set {1, . . . , n}. The difference Kn+1 \ Kn is the union of
(internally disjoint) simplices [F, y] with F ∈ F . For a d-subset I of [n] let FI

denote the convex hull of {xi : i ∈ I}. Then, with
∑

I denoting summation over
all d-element subsets of [n],

V (Kn+1) − V (Kn) =
∑

F∈F
V ([F, y])

=
∑

I

1{FI ∈ F}V ([FI , y]) ≤
∑

I

1{FI ∈ F}V (FI),

where V (FI) denotes the volume of the cap C(FI) containing y which is cut
off by the hyperplane affFI . (This is well defined if FI ∈ F , and irrelevant
otherwise.) Now

(V (Kn+1)− V (Kn))2 ≤
∑

I

∑

J

1{FI ∈ F}V (FI)1{FJ ∈ F}V (FJ)

By symmetry we can assume V (FI) ≥ V (FJ) (and a factor 2 appears). When
integrating, we can assume, again by symmetry, that I = [d], I ∩ J = [k] for
some k ∈ {0, 1, . . . , d} and J = [k] ∪ {d + 1, . . . , 2d − k}. Write F = FI and
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G = FJ with these I and J . So we have

IE((V (Kn+1) − V (Kn))21(Tn)) ≤ 2
d∑

k=0

(
n

d

)(
d

k

)(
n− d

d− k

) ∫

K

. . .

∫

K

1{F ∈ F} ×

× V (F )1{G ∈ F}V (G)1{V (F ) ≥ V (G)}1{Tn}dx1 . . . dxndy.

Let Σk denote the above integral for a fixed k without the factor 2
(
n
d

)(
d
k

)(
n−d
d−k

)
.

Since F ∈ F , the variables x2d−k+1, . . . , xn all lie in the complement of C(F ),
their total contribution is at most (1 − V (F ))n−(2d−k). Note that 1{F ∈ F}
and 1{G ∈ F} imply y ∈ C(F ) ∩ C(G). So we have

Σk ≤
∫

K

. . .

∫

K

(1− V (F ))n−2d+k
V (F )V (G)1{y ∈ C(F ) ∩ C(G)} ×

×1{V (G) ≤ V (F ) ≤ c log n

n
}dx1 . . . dx2d−kdy,

where the condition Tn has been replaced by V (F ) ≤ c log n
n .

We estimate this 2d − k + 1-fold integral using the cap covering technique,
which is based on Theorem 3.2. Let Mf = {Cf

1 , . . . , Cf
m(2−f )

} denote the set

of caps from the cap covering for K(v ≤ 2−f ), (f is an integer) that is, Cf
i =

Ki(2−f ). We assume that f ≥ f0 where f0 is defined by 2−f0 = (c log n)/n.
Now we associate with every point x1, . . . , x2d−k, y in the domain of integration
two caps Cf

i and Cg
j as follows. By condition (iv) of the cap covering theorem

there is a largest positive integer f ≥ f0 such that C(F ) is contained in some
cap Cf

i ∈Mf , and, further, there is a largest positive integer g such that C(G)
is contained in a cap Cg

j ∈ Mg. Here g ≥ f since V (G) ≤ V (F ). We integrate
on these two caps in the sense that variables xk+1, . . . , xd all lie in Cf

i so we
integrate by them on Cf

i , variables xd+1, . . . , x2d−k all lie in Cg
i so we integrate

by them on Cg
j and the remaining variables x1, . . . , xk, y lie in Cf

i ∩Cg
j and we

integrate by them on Cf
i ∩ Cg

j . Then we sum these integrals for all Cf
i ∈ Mf

and Cg
j ∈Mg, and then for all g ≥ f ≥ f0.

Integrating on the associated caps is going to be simple. Note first that
V (F ) ≥ 2−(f+1) because of the maximality of f , and so (1 − V (F ))n−2d+k ≤
(1 − 2−f−1)n−2d+k. Integrating with respect to the variables x1, . . . , xk, y on
Cf

i ∩ Cg
j gives at most V (Cf

i ∩ Cg
j )k+1, and integrating with respect to the

variables xk+1, . . . , xd on Cf
i gives ¿ (2−f )d−k+1, the extra 1 in the exponent

comes from the factor V (F ) ≤ V (Cf
i ). Similarly integrating with respect to

the variables xd+1, . . . , x2d−k on Cf
i gives ¿ (2−g)d−k+1, the extra 1 in the

exponent is due to V (G) ≤ V (Cg
j ). All in all, for a fixed pair Cf

i , Cg
j , the above

integral can be bounded as

¿ (
1− 2−f−1

)n−2d+1
(2−f )d−k+1(2−g)d−k+1V (Cf

i ∩ Cg
j )k+1. (5.1)

Thus for fixed f and g the integral with all caps Cf
i ∈ Mf , Cg

j ∈ Mg is

11



bounded by
(
1− 2−f−1

)n−2d+1
(2−f )d−k+1(2−g)d−k+1

∑

Cf
i ∈Mf , Cg

j ∈Mg

V (Cf
i ∩ Cg

j )k+1.

We bound the sum in the last line using the cap covering theorem again.
Let z ∈ Cf

i ∩ Cg
j be the point where the function v(.) takes its maximal value

on Cf
i ∩Cg

j . Now Cf
i ∩Cg

j is convex and disjoint from K(v > v(z)) which is also
convex. So they can be separated by a hyperplane. This hyperplane cuts off
a small cap off K, whose volume is at most dv(z) by Lemma 3.1. Thus, again
by (iv) of the cap covering theorem, there is a maximal integer h such that this
cap is contained in some Ch

` ∈Mh. Of course h ≥ g, and also, Cf
i ∩ Cg

j ⊂ Ch
` .

We have to estimate next how many pairs Cf
i , Cg

j go with the same cap
Ch

` ∈ Mh. This is easy when K is smooth because then every point z ∈ K is
contained in ¿ 1 caps from the cap covering Mh.

This is the point where we need to use the fact that the mother body is
a polytope P . We use Lemma 3.3 saying that the point z is contained in
¿ F (P )(log T/v(z))d−1 caps from a cap covering with parameter T . This bound
gives ¿ F (P )(h−f)d−1 for the number of caps Cf

i containing z provided h > f ,
and ¿ F (P )(h− g)d−1 for the number of caps Cg

j containing z provided h > g.
A little extra care is to be exercised when h = g (or h = f). In that case,

by (iv) of the cap covering theorem, each cap of volume ≤ 2−g is contained in
some cap of Mg−1. It is clear that each cap in Mg−1 contains ¿ 1 caps from
Mg. By Lemma 3.3 the point z is contained in ¿ F (P )(log 2−(g−1)/v(z))d−1 ¿
F (P )(h− (g− 1))d−1 caps from Mg−1, and then it is contained in ¿ F (P )(1+
h−g)d−1 caps from Mg. Similarly, if h = f , then z is contained in ¿ F (P )(1+
h− f)d−1 caps from Mf .

Thus the number of pairs Cf
i , Cg

j with z ∈ Cf
i ∩ Cg

j is ¿ F (P )2(1 + h −
f)d−1(1 + h − g)d−1 even if h = g or h = f . This is also an upper bound, for
fixed Ch

` ∈Mh, on the number of pairs Cf
i , Cg

j with Cf
i ∩ Cg

j ⊂ Ch
` .

We use these estimates when the pair f, g is fixed:
∑

Cf
i ∈Mf , Cg

j ∈Mg

V (Cf
i ∩ Cg

j )k+1

¿
∑

h≥g

∑

Ch
` ∈Mh

F (P )2(1 + h− f)d−1(1 + h− g)d−1(2−h)k+1

¿
∑

h≥g

F (P )2(1 + h− f)d−1(1 + h− g)d−1(2−h)k+1|Mh|

¿
∑

h≥g

F (P )3(1 + h− f)d−1(1 + h− g)d−1(2−h)k+1hd−1.

Here |Mh| ¿ F (P )(log 2h)d−1 ¿ F (P )hd−1 follows from (1.1) and (3.3).
The rest of the proof is a straightforward estimation of the infinite sums that

come up. It is not hard to see that the last sum is dominated by its first term
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for instance by checking that the ratio of the (h + 1)st and hth terms is smaller
than 0.9, say. This gives that

∑

Cf
i ∈Mf , Cg

j ∈Mg

V (Cf
i ∩ Cg

j )k+1

¿ F (P )3(1 + g − f)d−1(2−g)k+1gd−1.

Then comes summation for all g ≥ f . We see again that the corresponding sum
is dominated by its first term, and so
∑

g≥f

(2−g)d−k+1F (P )3(1 + g − f)d−1(2−g)k+1gd−1 ¿ F (P )3(2−f )d+2fd−1.

Here the factor (2−g)d−k+1 comes from (5.1). So we have, finally,

Σk ¿ F (P )3
∑

f≥f0

(1− 2−f−1)n−2d+k(2−f )2d−k+3fd−1.

Define here f1 by 2−f1 = 1/n. We split the last sum into two parts: the first
one with f ≥ f1 and second one with f1 > f ≥ f0. In the first sum the factor
(1−2−f−1)n−2d+k ≤ 1, and without this factor it is dominated by its first term,
again:

∑

f≥f1

(1− 2−f−1)n−2d+k(2−f )2d−k+3fd−1 ¿ n−2d+k−3(log n)d−1.

In the second sum we define f = bf1c− s. Then f1 is almost precisely log2 n
and s runs from 0 to log2(c log n). With this notation we have

f1∑

f0

(1− 2−f−1)n−2d+k(2−f )2d−k+3fd−1

¿
log2(c log n)∑

s=0

exp
{
−n− 2d + k

2n
2s

}(
2s

n

)2d−k+3

(log2 n− s)d−1

¿ (log n)d−1

n2d−k+3

log2(c log n)∑
s=0

exp{−2s−1}2(2d+3)s

(
log n− s

log n

)d−1

¿ (log n)d−1

n2d−k+3

∞∑
s=0

exp{−2s−1}2(2d+3)s ¿ (log n)d−1

n2d−k+3
,

because the sum in the last line is bounded by a constant depending only on d.
We have shown now that Σk ¿ F (P )3 (log n)d−1

n2d−k+3 . Then

d∑

k=0

2
(

n

d

)(
d

k

)(
n− d

d− k

)
Σk ¿ F (P )3

(log n)d−1

n3
.
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This proves Theorem 1.1 2

To end this section we offer a geometric conjecture that would imply, up to
order of magnitude, the same upper bound for VarV (Kn)) and Varf`(Kn) as
the lower bound in Theorem 1.3 for all convex bodies of volume one.

Conjecture. For every d ≥ 2 there are numbers T0 > 0 and q > 1 such
that for all convex bodies K ⊂ IRd of volume one, and for all T ∈ (0, T0], and
for all t ∈ (0, qT ] the following holds. Let D1, . . . , Dm(T ), resp. C1, . . . , Cm(t)

be the covering caps for K(v ≤ T ) and K(v ≤ t) from Theorem 3.2. Then

m(T )∑

i=1

V (K(v ≤ t) ∩Di) ¿
m(T )∑

i=1

m(t)∑

j=1

V (Cj ∩Di) ¿
m(T )∑

i=1

V (K(v ≤ t) ∩Di).

The lower bound here follows from V (K(v ≤ t) ∩Di) ¿
∑m(t)

1 V (Cj ∩Di)
(valid for all i) which is a simple consequence of the cap covering theorem. So
the question is the upper bound. The simpler conjecture

∑m(t)
1 V (Cj ∩Di) ¿

V (K(v ≤ t) ∩ Di) is true in dimension 2 (details will appear elsewhere), but
fails in dimension 3 and higher.

Here is a quick sketch how the conjecture would imply the upper bound
for the variance of V (Kn) for general convex bodies. The proof is the same as
above up to (5.1) with the sole exception that this time Mf is the cap covering
with parameter t = q−f , and, of course, f0 is defined by q−f0 = c log n

n . We sum
first for fixed f and fixed g the terms

(q−g)d−k+1
∑

Cf
i ∈Mf

∑

Cg
j ∈Mg

V (Cf
i ∩ Cg

j )k+1

≤ (q−g)d+1
∑

Cf
i ∈Mf

∑

Cg
j ∈Mg

V (Cf
i ∩ Cg

j )

¿ (q−g)d+1
∑

Cf
i ∈Mf

V (K(v ≤ q−g) ∩ Cf
i )

where the last inequality is implied by the Conjecture. Summing this for all
g ≥ f is easy because the first term dominates the sum, and we have

Σk ¿
∑

f≥f0

(
1− q−f

)n−2d+k
(q−f )2d−k+2

∑

Cf
i ∈Mf

V (K(v ≤ q−f ) ∩ Cf
i )

¿
∑

f≥f0

(
1− q−f

)n−2d+k
(q−f )2d−k+2V (K(v ≤ q−f )).

Splitting the last sum into two parts at f1 with q−f1 = 1/n shows, the same way
as above, that Σk ¿ n−2d+k−2V (K(v ≤ n−1)). This implies that VarV (Kn) ¿
n−1V (K(v ≤ n−1)), as promised.
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6 Sketch of proof for f`(Kn).

For the proof of second part of Theorem 1.3 we use exactly the same method
with one exception: instead of choosing one random point Z in40(yj) we choose
two random points Z1, Z2. Observe that [Z1, Z2, z1, . . . , zd] can either be a sim-
plex or can have both points Z1, Z2 as vertices and thus f`([Z1, Z2, z1, . . . , zd])
attains at least two distinct values with positive probability. The essential
change is that now

VarZ1,Z2f`([Z1, Z2, z1, . . . , zd]) À 1

for all ` = 0, . . . , d − 1. For j ∈ {1, . . . ,m} let Aj be the event that exactly
two random points, from the random sample {x1, . . . , xn}, are contained in the
simplex 40(yj) and one in each 4i(yj), i = 1, . . . , d, and no further random
point is contained in C2(yj). Then, the same way as before, IP(Aj) À 1, and
analogously we obtain

Varf`(Pn) À nV

(
P

(
v ≤ 1

n

))
.

The proof of Theorem 2.1 for Varf`(Πn) uses the above argument. Here
IP(Aj) À 1 follows the same way as in the proof of Theorem 2.1 for VarV (Πn).

For the proof of the remaining part of Theorem 1.1 we use again the Efron-
Stein jackknife inequality in the form

Varf`(Kn) ≤ (n + 1) · IE (f`(Kn+1)− f`(Kn))2 .

In the same way as previously it suffices to give an upper bound on the expec-
tation IE (f`(Kn+1)− f`(Kn))2 1{Tn} where Tn is the same event as before.

We use again a coupling argument, and the same notation y = xn+1 and F
for the facets of Kn disappearing with the appearance of y. Nothing changes
if y ∈ Kn, but if y /∈ Kn, then some new `-dimensional faces are created, and
some old `-dimensional faces disappear. It is not hard to see, using the fact that
Kn is simplicial, that |f`(Kn+1)− f`(Kn)| ¿ |F|. So we are to estimate

IE(|F|21(Tn)) = IE(
∑

I

1{FI ∈ F})21{Tn},

where the summation is taken over all d-element subsets of [n] and FI is the
convex hull of {xi : i ∈ I}. Again, the square in this expectation can be written
as (∑

I

1{FI ∈ F}
) (∑

J

1{FJ ∈ F}
)

.

We let k run from 0 to d and separate the terms here with |I ∩ J | = k. By
symmetry I can be taken to be {1, . . . , d}, J to be {1, . . . , k, d + 1, . . . , 2d− k},
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and setting F = FI and G = FJ with this I, J we get

IE(|F|21(Tn)) =
d∑

k=0

(
n

d

)(
d

k

)(
n− d

d− k

)
IE1{F ∈ F}1{G ∈ F}1{Tn}.

Denote the last expectation by Σ∗k and write C(F ) resp., C(G) for the minimal
caps containing F and G, and V (F ), V (G) for their volume. Then we have,
using the symmetry of F and G the same way as before, that

Σ∗k = IE1{F ∈ F}1{G ∈ F}1{Tn}
≤ 2IE1{F ∈ F}1{G ∈ F}1{V (G) ≤ V (F ) ≤ c log n

n
}

≤ 2
∫

K

. . .

∫

K

(1− V (F ))n−2d+k 1{y ∈ C(F ) ∩ C(G)} ×

× 1{V (G) ≤ V (F ) ≤ c log n

n
}dx1 . . . , dx2d−kdy.

This is the same as the formula for Σk in the previous proof, only the factor
V (F )V (G) is missing here. The remaining arguments are the same as before
and we get

Σ∗k ¿ F (P )3
(log n)d−1

n2d−k+1
.

This finishes the proof for Varf`(Pn). 2
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