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We prove the central limit theorem for the volume and the f -
vector of the Poisson random polytope Πη in a fixed convex polytope
P ⊂ IRd. Here Πη is the convex hull of the intersection of a Poisson
process X of intensity η with P .

1. Introduction and main results. Let K ⊂ IRd be a convex set of
volume one. Assume X = X(η) is a Poisson point process in IRd of intensity
η. The intersection of K with X(η) consists of uniformly distributed ran-
dom points X1, . . . , XN (where N is a random variable). Define the Poisson
polytope Πη, as the convex hull [X1, . . . , XN ] = [K ∩X(η)].

Studying properties of random convex hulls is a classical subject in stochas-
tic geometry and dates back until 1864. Due to the geometric nature of the
available methods, for more then one hundred years investigations mainly
concentrated on the expectation of functionals of random convex hulls such
as volume or number of vertices, see e.g. the survey of Weil and Wieacker
[24].

First distributional results were only proved twenty years ago. In 1988
Groeneboom [14] obtained the central limit theorem, CLT for short, for the
number of vertices of the Poisson polytope, when the convex body K is
the planar disc. And in 1994 a CLT for the area of a random polygon in
the planar disc was proved by Hsing [16]. Recently this was generalized to
arbitrary dimensions by Reitzner [19], who established a CLT for V (Πη), the
volume of the Poisson polytope, and for f`(Πη), the number of `-dimensional
faces of the Poisson polytope, when the body K ⊂ IRd has smooth boundary.

The situation seems to be much more involved when the underlying convex
set is a polytope P . In the planar case, when P is a convex polygon, a CLT
for the number of vertices f0(Πη) was proved by Groeneboom [14], and a
CLT for the area of Πη by Cabo and Groeneboom [12], but it seems that
the stated variances are incorrect (see the discussion in Buchta [11]).

The main result of the present paper is the central limit theorem for the
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2 BÁRÁNY AND REITZNER

Poisson polytope Πη for all dimensions d ≥ 2, when the mother body is a
polytope in IRd.

Theorem 1.1 There is function ε(η), tending to zero as η →∞, such that
for every polytope P ⊂ IRd, of volume one,

sup
x∈IR

∣∣∣∣∣∣
IP


V (Πη)− IEV (Πη)√

VarV (Πη)
≤ x


− Φ(x)

∣∣∣∣∣∣
≤ c(P )ε(η),

and for all ` = 0, . . . , d− 1

sup
x∈IR

∣∣∣∣∣∣
IP


f`(Πη)− IEf`(Πη)√

Var f`(Πη)
≤ x


− Φ(x)

∣∣∣∣∣∣
≤ c(P )ε(η),

where c(P ) is a constant depending only on P .

Remark. It will turn out that the error term in Theorem 1.1 is

ε(η) = (ln η)−
d−1
2

+o(1).

The constant c(P ) depends on the dimension and a power of F (P ), the num-
ber of flags of the polytope P . A flag is a sequence of faces F0, F1, . . . , Fd−1

of P such that, for all i, dimFi = i and Fi ⊂ Fi+1.

The Poisson polytope Πη is closely related to the random polytope Pn

defined in the following way: Fix n ∈ IN and choose n random points
X1, . . . , Xn independently and uniformly from K. The random polytope Pn

is just the convex hull of these points: Pn = [X1, . . . , Xn]. Clearly, Pn equals
in distribution the Poisson polytope Πη given that the (Poisson distributed)
number of points of X ∩K is precisely n.

Starting with Rényi and Sulanke [17] in 1963, there have been many
results concerning various properties of Pn as n → ∞. For instance, the
asymptotic behaviour of the expectation of the volume V (Pn), and of the
number, f`(Pn), of `-dimensional faces of Pn (` = 0, . . . , d − 1) have been
determined as n → ∞, see [24] for an extensive survey, and also [4], [5],
and [18] for more recent results. These results on Pn imply immediately
analogous results for the Poisson polytope Πη. For the sake of completeness
we state here the results concerning the expected volume and number of
faces.

Theorem 1.2 Assume P is a polytope of volume one. Then

1− IEV (Πη) =
F (P )

(d + 1)d−1(d− 1)!
η−1 lnd−1 η (1 + o(1)),
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POISSON POLYTOPES 3

IEf`(Πη) = c(d, `)F (P ) lnd−1 η (1 + o(1)),

where c(d, `) > 0 is a constant depending on d and `.

Somewhat surprisingly, the value of these expectations is not needed for the
proof of our main theorems.

The proof of Theorem 1.1 is not simple. It uses a combination of ideas from
probability theory and convex geometry. Section 3 contains a short sketch
of this proof. First we have to introduce some notation and background,
and more importantly, the economic cap covering theorem that will be used
repeatedly. This is the content of the next section.

2. Notation and background. The unit sphere is Sd−1. As usual,
hK(u) denotes the support function of K in direction u ∈ Sd−1:

hK(u) = max{u · x : x ∈ K}.
A cap C of K is the intersection of K with a closed halfspace. This

halfspace can be written as {x ∈ IRd |u ·x ≥ hK(u)− t} with u ∈ Sd−1. Thus

C = K ∩ {x ∈ IRd |u · x ≥ hK(u)− t}.
The bounding hyperplane of C is the one with equation u · x = hK(u) − t.
We define, for λ > 0, Cλ by

Cλ = K ∩ {x ∈ IRd |u · x ≥ hK(u)− λt}.
An important role throughout plays the function v : K → IR defined as

v(z) = min{V (K ∩H) : H is a halfspace and z ∈ H}.
The floating body with parameter t is just the level set K(v ≥ t) = {z ∈
K : v(z) ≥ t}, which is clearly convex. The wet part is K(v ≤ t), that is,
where v is at most t. The name comes from the 3-dimensional picture when
K is a container containing t units of water.

The minimal cap of z ∈ K is a cap C(z) = CK(z) containing z such that
v(z) = V (C(z)). It need not be unique. The centre of the cap C = K ∩{x ∈
IRd : u · x ≥ hK(u)− t} is a point x ∈ ∂K with u · x = hK(u). The centre,
again, need not be unique, but this will cause no harm. Assuming that x is
the centre of C, observe that for λ ≥ 1,

Cλ ⊂ x + λ(C − x)

and thus V (Cλ) ≤ λdV (C) always holds. Also, λ
dV (C) ≤ V (Cλ) holds as

long as λt is smaller than the width of K in direction u. The proof is simple:
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4 BÁRÁNY AND REITZNER

let L be the section that has maximal (d−1)-dimensional volume among all
sections of the form

K ∩ {x ∈ IRd : u · x ≥ hK(u)− τ} when τ ∈ [0, t].

Then V (C) ≤ tVd−1(L). Here Vd−1 stands for (d − 1)-dimensional volume.
On the other hand, the double cone with base L and apices x and a point
in K ∩ {x ∈ IRd : u · x = hK(u)− λt} is contained in Cλ and its volume is
at least λt

d Vd−1(L). So λ
dV (C) ≤ λt

d Vd−1(L) ≤ V(Cλ) which is the inequality
we wanted to prove.

Analogously for 0 < µ < 1 we have µdV (C) ≤ V (Cµ) ≤ dµV (C). For
the proof define D = Cµ and λ = 1/µ > 1. Then D is a cap of K and
Dλ = C. The inequalities 1

dλV (D) ≤ V (Dλ) ≤ λdV (D) translate directly to
µdV (C) ≤ V (Cµ) ≤ dµV (C). These inequalities will be used often. We call
them the trivial volume estimates:

λ

d
V (C) ≤ V (Cλ) ≤ λdV (C) for λ ≥ 1,

µdV (C) ≤ V (Cµ) ≤ dµV (C) for 0 ≤ µ ≤ 1

where the left hand side of the first inequality only holds for Cλ 6= K and
the right hand side of the second inequality only for C 6= K. The Macbeath
region, or M -region, for short, with centre z and factor λ > 0 is

M(z, λ) = MK(z, λ) = z + λ[(K − z) ∩ (z −K)].

The M -region with λ = 1 is just the intersection of K and K reflected with
respect to z. Thus M(z, 1) is convex and centrally symmetric with centre
z, and M(z, λ) is a homothetic copy of M(z, 1) with centre z and factor of
homothety λ. We define the function u : K → IR by

u(z) = V (M(z, 1)).

These definitions are from [13], [8], and [3]. The following results come
from the same sources. We will use them extensively. We assume K ⊂ IRd

is a convex body of volume one. Set

s0 = (2d)−2d.(2.1)

Lemma 2.1 If M(x, 1
2) ∩M(y, 1

2) 6= ∅, then M(x, 1) ⊂ M(y, 5).

Lemma 2.2 If C is a cap and z ∈ C and λ > 0, then K ∩M(z, λ) ⊂ Cλ+1.

Lemma 2.3 If the cap C is contained in the M -region M(z, µ), and λ > 0,
then Cλ ⊂ M(z, λµ).
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POISSON POLYTOPES 5

Lemma 2.4 If the bounding hyperplane of a cap C is tangent to K(v ≥ s),
then s ≤ V (C) ≤ ds.

Let K(v = s) = ∂K(v ≥ s). Assume s ≤ s0 and choose a maximal system
of points Z = {z1, . . . , zm} on K(v = s) having pairwise disjoint Macbeath
regions M(zi,

1
2). Such a system will be called saturated. Note that Z (and

even m) is not defined uniquely. However, for each K and s we fix a saturated
system Z. We write Z(s) and m(s) = |Z(s)| when we want to emphasize that
our fixed saturated system comes from the level set K(v = s). Evidently,
V (C(zi)) = s. Set

K ′
i(s) = M(zi,

1
2
) ∩ C(zi) and Ki(s) = C6(zi).

Note that Ki(s) is a cap of K and so for λ > 0 the set Kλ
i (s) = C6λ(zi) is

another cap of K.
The sets K ′

i(s) and Ki(s) for i = 1, . . . , m(s) form what is called an
economic cap covering in the paper of Bárány and Larman [8]. The following
result, the economic cap covering theorem, comes from Theorem 6 in [8] and
Theorem 7 in [3].

Theorem 2.5 For all s ∈ (0, s0] and for all convex bodies K ⊂ IRd with
V (K) = 1 we have

(i)
⋃m(s)

1 K ′
i(s) ⊂ K(v ≤ s) ⊂ ⋃m(s)

1 Ki(s),
(ii) s ≤ V (Ki(s)) ≤ 6ds, i = 1, . . . , m(s),
(iii) (6d)−ds ≤ V (K ′

i(s)) ≤ 2−ds, i = 1, . . . ,m(s),
(iv) every C with V (C) ≤ s is contained in M(zi, 15d) ⊂ K3d

i (s) for some
i.

The sets K ′
i(s) are pairwise disjoint, all of them have volume ≥ (6d)−ds,

and are all contained in K(v ≤ s). This gives an upper bound for m(s).
Similarly, the sets Ki(s) cover K(v ≤ s), all of them have volume ≤ 6ds.
This gives a lower bound for m(s). These simple arguments will be used
repeatedly, and we call them the usual volume arguments. Summarizing, we
have

1
6ds

V (K(v ≤ s)) ≤ m(s) ≤ 1
(6d)−ds

V (K(v ≤ s))(2.2)

for s ≤ s0.
The economic cap covering theorem has the following direct consequence.

Claim 2.6 For s ≤ s0 and λ > 1

K(v ≤ λs) ⊂
⋃

K3d2λ
i (s).
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6 BÁRÁNY AND REITZNER

Proof. It is clear that K(v ≤ λs) is contained in the union of all caps C
with V (C) = λs. Let C be a cap with V (C) = λs. The trivial volume esti-
mates show that the cap C1/(dλ) has volume at most s and thus is contained
in some set M(zi, 15d). Then by Lemma 2.3, C is contained in M(zi, 15d2λ)
which is, by Lemma 2.2, a subset of C15d2λ+1(zi) ⊂ (C6(zi))3d2λ = K3d2λ

i (s).
2

When P is a polytope of volume V (P ), the volume of the wet part P (v ≤
s) was determined by Schütt [21], and by Bárány and Buchta [6]. As s → 0

V (P (v ≤ sV (P )))
V (P )

=
F (P )
d!dd−1

s lnd−1
(

1
s

)
(1 + o(1)).

Later we need an estimate for m(s) and V (P (v ≤ s)), depending on P
only via F (P ). Such an estimate follows from results in Bárány [3], see also
[4], formula (4).

Theorem 2.7 If P ⊂ IRd is a polytope with V (P ) > 0, then

c(d)s lnd−1
(

1
s

)
≤ V (P (v ≤ sV (P )))

V (P )
≤ c(d)F (P )s lnd−1

(
1
s

)

and
c(d) lnd−1

(
1
s

)
≤ m(sV (P )) ≤ c(d)F (P ) lnd−1

(
1
s

)
.

for s ≤ s0, where c(d), c(d) > 0 are constants depending on d.

The second estimate concerning the number of caps, m(s), follows from
(2.2).

3. Plan of proof. This section explains the basic steps of the proof of
Theorem 1.1.

Step 1. Our proof relies on a precise description of the boundary of a
convex polytope. The essential ingredients are good bounds on how many
sets K ′

i(s) meet a given cap C of P , and on the size of the set visible from
z within P (v ≤ T ). This is done in Section 4.

Step 2. In what follows α, β are positive constants, to be specified later,
that depend only on dimension. Also, we use llnx as a shorthand for ln(lnx).
Define

T = Tη =
α lln η

η
and s = sη =

1
η lnβ η

.(3.1)
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POISSON POLYTOPES 7

We wish to show that, with high probability, Πη is sandwiched between
P (v ≥ T ) and P (v ≥ s), that is,

P (v ≥ T ) ⊂ Πη ⊂ P (v ≥ s).

(For technical reasons we will have to replace T by the slightly larger T ∗ =
d6dT .) A convenient way to do so is to define a certain event A, which
implies sandwiching, and whose complement, A, has very small probability,
namely, IP(A) ¿ F (P ) ln−4d2

η. This will be achieved in Section 5.

The basic tool for proving our main result is a central limit theorem
with weakly dependent random variables. Such an approach has already
been used in geometric probability by Avram and Bertsimas [1] who also
suggested its use in the study of random convex hulls. For the CLT we are
going to use the weak dependence of random variables is given by the so-
called dependency graph which is defined as follows: Let ζi, i ∈ V, be a
finite collection of random variables. The graph G = (V, E) is said to be a
dependency graph for ζi if for any pair of disjoint sets W1,W2 ⊂ V such
that no edge in E goes between W1 and W2, the sets of random variables
{ζi : i ∈ W1} and {ζi : i ∈ W2} are independent. The following central
limit theorem with weak dependence is due to Rinott [20]. A slightly weaker
version (that would also do here) had been proved earlier by Baldi and
Rinott [2].

Theorem 3.1 (Rinott) Let ζi, i ∈ V, be random variables having a depen-
dency graph G = (V, E). Set ζ =

∑
i∈V ζi and σ2(ζ) = Var ζ. Denote the

maximal degree of G by D and suppose that |ζi − IEζi| ≤ M almost surely.
Then, for every x

∣∣∣∣IP
(

ζ − IEζ√
Var ζ

≤ x

)
− Φ(x)

∣∣∣∣ ≤
1√
2π

DM

σ(ζ)
+ 16

|V| 12 D
3
2 M2

σ2(ζ)
+ 10

|V|D2M3

σ3(ζ)
.

When using this theorem one has to define the dependency graph and
prove the necessary properties. Also, we need a lower bound on Var ζ (see
Theorem 3.3 below) which comes from the companion paper [9].

Step 3. Define a graph G whose vertex set V is {1, 2, . . . ,m(T )} where
m(T ) is the size of the fixed saturated system of points on P (v = T ) as
explained just before the cap covering theorem. The corresponding cap cov-
ering K1(T ), . . . , Km(T )(T ) is indexed by the vertices of G. Two vertices
i, j ∈ V form an edge of G if the caps Ki(T ) and Kj(T ) are “close to each
other”, in a well-defined sense. This definition is crucial, and will be ex-
plained in Sections 6 and 7. Also, it will be shown that the maximal degree
of G is ¿ F (P )6 lln 6(d−1)η.
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8 BÁRÁNY AND REITZNER

Step 4. Assume that the event A holds which, as mentioned above, im-
plies ‘sandwiching’. Define the random variables ζi, i ∈ V and check that G
is indeed a dependency graph. The cases of ζ = V (Πη) and ζ = f`(Πη) have
to be handled somewhat differently. Next we check that the conditions of
Rinott’s theorem hold. This will be done in Section 7. This proves the CLT
for ζ given A.

Step 5. Remove the conditioning on A. This is simpler for ζ = V (Πη),
as it is bounded, while ζ = f`(Πη) is not. Section 8 is devoted to this task.
The CLT for ζ follows from the CLT for ζ|A via the following transference
lemma from [10], which has been used in an implicit form in [19] and in [23],
and perhaps elsewhere as well.

Lemma 3.2 Let ξη and ξ′η be two series of random variables with means µη

and µ′η, variances σ2
η and σ′2η, respectively. Assume that there are functions

ε1(η), ε2(η), ε3(η), ε4(η), all tending to zero as η tends to infinity such that

(i) |µ′η − µη| ≤ ε1(η)ση.
(ii) |σ′2η − σ2

η| ≤ ε2(η)σ2
η.

(iii) For every x, |IP(ξ′η ≤ x)− IP(ξη ≤ x)| ≤ ε3(η).
(iv) For every x, ∣∣∣∣∣IP

(ξ′η − µ′η
σ′η

≤ x
)
− Φ(x)

∣∣∣∣∣ ≤ ε4(η).

Then there is a positive constant c such that for every x,
∣∣∣∣∣IP

(ξη − µη

ση
≤ x

)
− Φ(x)

∣∣∣∣∣ ≤ c
4∑

i=1

εi(η).

The transference lemma asserts that if ξ′η satisfies the CLT (the fourth
condition) and ξη is sufficiently close to ξ′η in distribution (the first three
conditions), then ξη also satisfies the CLT.

Remark. In [10] the transference lemma is stated with σ′η and σ′2η on
the right hand side of conditions (i) and (ii). It is easy to see that the
present conditions imply the ones with σ′η: (ii) shows that σ′2η/σ2

η tends
to 1 as n → ∞. Thus σ2

η < 2σ′2η for large enough n. Then (ii) implies
|σ′2η − σ2

η| ≤ 2ε2(η)σ′2η, and similarly, (i) implies |µ′η − µη| ≤
√

2ε1(η)σ′η.

To apply the central limit theorem and the transference lemma we need
a lower bound on Var ζ. In the companion paper [9] we prove a lower bound
for general convex bodies in terms of the volume of the floating body: The-
orem 3.1 in [9] says that the variance of V (Πη) is bounded from below by
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POISSON POLYTOPES 9

η−1V (K(v ≤ η−1)), and Var f`(Πη) is bounded by ηV (K(v ≤ η−1)). Using
Theorem 2.7 this gives the following.

Theorem 3.3 Assume P is a polytope of volume one. Then

F (P )η−2 lnd−1 η ¿ VarV (Πη),

F (P ) lnd−1 η ¿ Var f`(Πη).

Here we use Vinogradov’s À notation, that is, we write f(η) À g(η) if
there is a constant c > 0, independent of η, such that cf(η) > |g(η)| for
all η ≥ η0. The constants c and η0 may, and usually do, depend on the
dimension, but not on K.

The main achievements of this paper, besides the central limit theorems,
are the precise sandwiching of Πη, the novel definition of the dependency
graph, and the proof that its maximal degree is bounded by a power of
lln η. The latter is based on structural properties of the wet part P (v ≤ t)
for polytopes.

4. On the boundary structure of convex polytopes. In this sec-
tion we state some facts about the boundary structure of the polytope P
and its floating body. All proofs of this section, except for those of Claim 4.6
and Lemma 4.7 which are given here, are postponed to Section 9.

So the polytope P is fixed, its volume is 1. We need to consider two
parameters T, s which have already been defined in (3.1). But this is not
important for the time being, we only assume that 2s ≤ T , say.

Let z ∈ P be a point with v(z) ≤ T and write [x, z] for the closed segment
joining z and a point x. The following definition is crucial, and was used by
Vu [22] as well. Set

S(z, T ) = {x ∈ P : [x, z] ∩ P (v ≥ T ) = ∅}.
This is the set of points that are visible from z within P (v < T ). We are
interested in the size of S(z, T ).

We again use the notation g(s) ¿ f(s) if |g(s)| < cf(s) for all 0 < s ≤
t0 with constants c and t0 depending on the dimension, but not on the
underlying convex set.

Lemma 4.1 If 0 < v(z) ≤ 1
2 , 2v(z) ≤ T then

V (S(z, T )) ¿ F (P )T lnd−1
(

T

v(z)

)
.
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10 BÁRÁNY AND REITZNER

Note that since S(z, T ) ⊂ P (v ≤ T ), Theorem 2.7 immediately implies the
inequality V (S(z, T )) ¿ F (P ) T lnd−1(1/T ). The improvement from 1/T to
T/v(z) is significant in the range we are interested in.

Consider the economic cap covering from Theorem 2.5 for P (v ≤ s),
s ≤ s0, where s0 is defined in (2.1). The caps Ki(s) come from a saturated
system Z(s) = {z1, . . . , zm(s)} ⊂ P (v = s) which is fixed together with P
and s as we agreed just before the cap covering theorem. We want to know
how many zi ∈ Z(s) can be contained in a fixed cap C of volume T .

Lemma 4.2 Assume C is a cap of P of volume T . Then for 0 < s ≤ s0,
2s ≤ T we have

|Z(s) ∩ C| ¿ F (P ) lnd−1
(

T

s

)
.

Consider next the economic cap covering theorem for P (v ≤ T ). The
saturated system Y (T ) = {y1, . . . , ym(T )} on P (v = T ) is again fixed, and
so are the corresponding covering caps Kj(T ). (We use the notation Y (T ),
yj(T ) and m(T ) in order to avoid confusion with Z(s), zi(s) and m(s).) We
will need a bound on the number of those yj ∈ Y (T ) for which Kλ

j (T )
contains a fixed z ∈ P (v = s). Here λ is a constant that depends only on d.

Lemma 4.3 Let λ ≥ 1 be a constant depending only on d. Assume 0 ≤
2s ≤ T ≤ (6λ)−ds0. If z ∈ P (v = s) then

∣∣∣{yj ∈ Y (T ) : z ∈ Kλ
j (T )}

∣∣∣ ¿ F (P ) lnd−1
(

T

s

)
.

The constant in ¿ depends on λ and thus again only on the dimension.
We will also need a bound on the number of points zj ∈ Z(s) that are

contained in S(z, T ) when z ∈ P (v = s).

Lemma 4.4 Assume z ∈ P (v = s) and 0 < s ≤ s0, 2s ≤ T . Then

|Z(s) ∩ S(z, T )| ¿ F (P ) lnd−1
(

T

s

)
.

The following fact will be needed in the sandwiching step and concerns
convex hulls of random points in K ′

i(T ), the small sets in the cap covering
theorem. Set T ∗ = d6dT , T ≤ s0. Choose in each K ′

i(T ) a point xi arbitrarily.

Claim 4.5 Under the above conditions

P (v ≥ T ∗) ⊂ [x1, . . . , xm(T )].
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POISSON POLYTOPES 11

We mention in passing that the caps Kγ
i (T ) cover P (v ≤ T ∗), where

γ = 3d36d:

P (v ≤ T ∗) ⊂
m(T )⋃

1

Kγ
i (T ).(4.1)

This follows directly from Claim 2.6.
The system Z(s) = {z1, . . . , zm(s)} on P (v = s) is saturated, so for each

a ∈ P (v = s) there is a zi with M(zi,
1
2) ∩M(a, 1

2) 6= ∅. For each a we fix
such a zi and denote it by z(a).

Claim 4.6 If a cap C contains the point a ∈ P (v = s), then M(z(a), 1) ⊂
C6.

Proof. This is very simple. As z(a) satisfies M(z(a), 1
2)∩M(a, 1

2) 6= ∅ by
definition, Lemma 2.1 and Lemma 2.2 imply that

M(z(a), 1) = P ∩M(z(a), 1) ⊂ P ∩M(a, 5) ⊂ C6.

2

The following lemma helps to bound the maximal degree of the depen-
dency graph.

Lemma 4.7 Assume a, b ∈ P (v = s) and the segment [a, b] is disjoint from
P (v ≥ T ). Then the segment [z(a), z(b)] is disjoint from P (v ≥ T ∗).

Proof. Both [a, b] and P (v ≥ T ) are convex so they can be separated
by a hyperplane since they are disjoint. This hyperplane cuts off a cap, say
C, from K containing [a, b] and disjoint from P (v ≥ T ). So V (C) ≤ dT
by Lemma 2.4. Further, Claim 4.6 implies z(a), z(b) ∈ C6. Consequently,
[z(a), z(b)] ⊂ C6, and V (C6) ≤ d6dT = T ∗ follows from the trivial volume
estimate. 2

5. Sandwiching Πη. Recall that the Poisson polytope, Πη, is the con-
vex hull of X ∩ P where X = X(η) is a Poisson point process of intensity
η. We are going to use the well known fact that with high probability the
boundary of Πη is contained in a small strip close to the boundary of P .
Results of this type have been proved in [7] and in [22]. Here we need a
slightly different, perhaps more refined estimate.

We make (3.1) more precise and set

T = Tη = α
lln η

η
, with α = (6d)d(4d2 + d− 1).
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12 BÁRÁNY AND REITZNER

In the following we assume that η ≥ η0 where η0 is chosen such that T ≤ s0

with s0 defined in (2.1). Let Y (T ) be the fixed saturated point set {y1, . . . ,
ym(T )} on P (v = T ) according to Theorem 2.5. We get an economic cap cov-
ering with caps Kj(T ) and half Macbeath-regions K ′

j(T ), j = 1, . . . , m(T ).
For simpler writing set Kj = Kj(T ), K ′

j = K ′
j(T ) and mη = m(T ).

Let A′ be the event that each K ′
j contains at least one point of X, the

Poisson point process with intensity η. Since the number of points in K ′
j

is Poisson distributed with parameter ηV (K ′
j), it follows from the fact that

(6d)−dT ≤ V (K ′
j) ≤ 2−dT , that

IP(K ′
j ∩X) = ∅) = e−ηV (K′

j) ≤ e−(6d)−dηT .

Let A′ denote the complement of the event A′. By Theorem 2.7, mη ¿
F (P ) lnd−1 η, so by Boole’s inequality

IP(A′) ≤ mηe
−(6d)−dηT ¿ F (P )(ln η)−(6d)−dα+d−1 = F (P ) ln−4d2

η(5.1)

follows from the choice of α.
We mention for later reference that

IP(K ′
j ∩X = ∅) ≥ e−2−dηT = ln−2−dα η ≥ ln−(3d)d+2

η.(5.2)

Now Claim 4.5 and (5.1) show that, with high probability, Πη contains
the floating body P (v ≥ T ∗). (Recall that T ∗ = d6dT .)

IP(Πη does not contain P (v ≥ T ∗)) ≤ IP(A′) ¿ F (P ) ln−4d2
η.

This is the first half of sandwiching. For the second half we make the
definition of sn in (3.1) more precise and set

s = sη =
1

η lnβ η
, where β = 4d2 + d− 1.

We claim that with high probability P (v ≤ s) contains no point of X.
Indeed, ηV (P (v ≤ s)) ¿ F (P )(ln η)−β+d−1 by Theorem 2.7, and we get

IP(X ∩ P (v ≤ s) 6= ∅) = 1− e−ηV (P (v≤s)) ¿ F (P ) ln−4d2
η.(5.3)

What we just proved is that Πη is sandwiched between P (v ≥ s) and
P (v ≥ T ∗) with high probability:

1− IP
(
P (v ≥ T ∗) ⊂ Πη ⊂ P (v ≥ s)

)
¿ F (P ) ln−4d2

η.
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POISSON POLYTOPES 13

The proof of the CLT for V (Πη) could go via conditioning on A′. For
f`(Πη) we need a stronger condition, to be called A, which will work for
V (Πη) as well. Set

γ = 3d36d.

For j = 1, . . . ,mη let Sj = Sj(T ) be pairwise internally disjoint closed sets
with

⋃
Sj = P , K ′

j ⊂ Sj , and Sj ∩P (v ≤ T ∗) ⊂ Kγ
j . (Recall from Claim 2.6

that the sets Kγ
j cover P (v ≤ T ∗).) Set S′j = S′j(T ) = Sj ∩ P (v ≤ T ∗).

S′j
K′

j

P (v≥s)

P (v≤T ∗)

Kj

Kγ
j

Figure 1: Definition of S′j

Before defining A, observe that the expected number of points of X lying
in S′j is ηV (S′j). Trivial volume estimates show that

(6d)−dα lln η ≤ ηV (K ′
j) ≤ ηV (S′j) ≤ ηV (Kγ

j ) ≤ (6γ)dα lln η.(5.4)

Define A to be the event that each K ′
j contains at least one point, P (v ≤ s)

contains no point, and each S′j contains at most 3(6γ)dα lln η points of X,
(j = 1, . . . ,mη). The following two claims are essential for our proof. We
collect the properties of Πη given the event A, and estimate the probability
of A.

Claim 5.1 Given A we have P (v ≥ T ∗) ⊂ Πη ⊂ P (v ≥ s) and |P (v ≤ T ∗) ∩X|
¿ F (P ) lnd−1 η lln η.

imsart-aop ver. 2007/12/10 file: poi-pol2.tex date: December 2, 2009



14 BÁRÁNY AND REITZNER

Proof. This follows immediately from the definition of A and from the
estimate on the volume of P (v ≤ T ∗). 2

Claim 5.2 ln−(3d)d+2
η ¿ IP(A) ¿ F (P ) ln−4d2

η.

Proof. The lower bound follows from IP(A) ≥ IP(K ′
1(T )∩X = ∅) and from

(5.2). For the upper bound recall formulae (5.1) and (5.3): In (5.1) we showed
that K ′

j∩X = ∅ for some j has probability¿ F (P ) ln−4d2
η. Inequality (5.3)

shows that X ∩ P (v ≤ s) 6= ∅ with probability ¿ F (P ) ln−4d2
η.

So we only have to estimate the probability that, for some j, the set S′j
contains more than 3(6γ)dα lln η ≥ ηV (S′j) points. Let N denote a Poisson
random variable with parameter p. Then (see, e.g., [19])

IP(N ≥ 3p) ≤ 3
3− e

e−p.

This inequality implies, by setting p = ηV (S′j), that the probability that S′j
contains more than 3(6γ)dα lln η ≥ 3p points from X is bounded from above
by

3
3− e

e−p ≤ 3
3− e

exp
(
−(6d)−dα lln η

)
¿ ln−(4d2+d−1) η.

Combining this with the bound mη ¿ F (P ) lnd−1 η from Theorem 2.7 fin-
ishes the proof. 2

Set
U = Uη =

ln η

η
and U∗ = d6dU.

Since we are assuming V (P ) = 1, Theorem 2.7 tells us that

b1
lnd η

η
≤ V (P (v ≤ U∗)) ≤ b2F (P )

lnd η

η

with positive constants b1, b2 depending only on d. Let B be the event that
P (v ≥ U∗) ⊂ Πη and that P (v ≤ U∗) contains at most 3b2F (P ) lnd η points
from X. The following estimate will be useful in Section 8. Its proof is similar
to the ones above, actually even simpler (no need to worry about α) and is
therefore left to the reader.

Lemma 5.3 IP(B) ¿ F (P )η−3d.

2
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POISSON POLYTOPES 15

6. The dependency graph. It is high time to define the dependency
graph G = (V, E). The values of s, T, T ∗ have been given in the previous
section. The sets Ki = Ki(T ) and K ′

i = K ′
i(T ) come from the cap covering

theorem. The vertex set, V, of the dependency graph is just {1, . . . , mη}.
Define the set Li as the union of all S′k such that there are points

a ∈ S′i ∩ P (v ≥ s), b ∈ S′k ∩ P (v ≥ s)(6.1)
with [a, b] disjoint from P (v ≥ T ∗).

Note that S′i ⊂ Li for all i. Also, S′k ⊂ Li holds if and only if S′i ⊂ Lk. Now
distinct vertices i, j ∈ V form an edge in G if Li and Lj contain at least one
set S′k in common,

ij ∈ E ⇔ ∃k ∈ {1, . . . , mη} : S′k ⊂ Li ∩ Lj(6.2)

That this defines a dependency graph for the suitably chosen random
variables is proved later, in Lemma 7.1. The main result of this section is
an upper bound on the maximal degree D in G.

Some preparation is needed. We need a bound on the number of sets
S′k ⊂ Li.

Lemma 6.1 |{k : S′k ⊂ Li}| ¿ F (P )3( lln η)3(d−1).

Proof. We show first that if S′k ⊂ Li, then there are also points

a′ ∈ Kγ
i ∩ P (v = s), b′ ∈ Kγ

k ∩ P (v = s)(6.3)
with [a′, b′] disjoint from P (v ≥ T ∗).

To simplify notation we write C ′ = C ∩ P (v ≥ s) when C is a cap of P .
Clearly, C ′ is a cap of P (v ≥ s). We are going to use the fact that if two
caps of a convex body have a point in common, then they have a point in
common from the boundary of the convex set as well.

Since the segment [a, b] is disjoint from P (v ≥ T ∗), there is a cap C, also
disjoint from P (v ≥ T ∗), such that [a, b] ⊂ C ′. Now

a ∈ C ′ ∩Kγ
i
′, b ∈ C ′ ∩Kγ

k
′.

Every one of the two sets above is a nonempty intersection of two caps of
P (v ≥ s). So each has a point, a′ and b′ respectively, on the boundary of
P (v ≥ s) which is P (v = s). As the segment [a′, b′] ⊂ C, it is disjoint from
P (v ≥ T ∗) which proves (6.3).

Recall that a saturated system Z(s) = {z1, . . . , zm(s)} has been chosen
in P (v = s). Also, for each x ∈ P (v = s) we fixed a point z(x) ∈ Z(s) so
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16 BÁRÁNY AND REITZNER

that M(x, 1
2) ∩M(z(x), 1

2) 6= ∅. We have points a′, b′ ∈ P (v = s) satisfying
(6.3). Claim 4.6 shows the existence of points z(a′), z(b′) ∈ Z(s) such that
z(a′) ∈ K6γ

i , z(b′) ∈ K6γ
j , and by Lemma 4.7 the segment [z(a′), z(b′)] is

disjoint from P (v ≥ T o) where T o = d6dT ∗.
We bound the number of sets S′k in Li in three steps. In view of Lemma

4.2, with C = K6γ
i , we have

|Z(s) ∩K6γ
i | ¿ F (P ) lnd−1

(
V (K6γ

i )
s

)
¿ F (P ) lln d−1η

where the upper bound for V (K6γ
i ) comes from (5.4). This is an upper bound

on how many z(a′) ∈ K6γ
i can there be, given that the segment [z(a′), z(b′)]

starts at K6γ
i .

In the second step we estimate, for a fixed z(a′), the number of z(b′) ∈
Z(s) such that [z(a′), z(b′)] is disjoint from P (v ≥ T o). All such z(b′) lie in
S(z(a′), T o). So by Lemma 4.4, the number of such z(b′) is

¿ F (P ) lnd−1
(

T o

s

)
¿ F (P ) lln d−1η.

In the third step we estimate the number of K6γ
j that contain a fixed

z(b′) ∈ Z(s). Lemma 4.3 implies, with λ = 6γ, that this number is

¿ F (P ) lnd−1
(

T

s

)
¿ F (P ) lln d−1η.

This argument shows that for a set S′i there are at most¿ F (P )3 lln 3(d−1)η
sets S′k which can be connected by some segment [a′, b′]. Since every set
S′k ⊂ Li is connected to S′i by some segment, the number of sets S′k in Li is
¿ F (P )3 lln 3(d−1)η. 2

Here comes the upper bound on the maximal degree D.

Theorem 6.2 D ¿ F (P )6( lln η)6(d−1).

Proof. By (6.2) we have ij ∈ E if Li ∩ Lj contains some set S′k. Clearly,
if S′k ⊂ Lj then by the definition (6.1) also S′j ⊂ Lk. Thus ij ∈ E if there is
some k such that S′k ⊂ Li, S′j ⊂ Lk which gives

D ≤ max
i

∑

k: S′
k
⊂Li

|{j : S′j ⊂ Lk}|.

Combined with Lemma 6.1 this gives the bound on the degree of G. 2

Thus the graph G has been defined, its maximal degree has been bounded.
In the next section we define the random variables ζi and show that G is a
dependency graph.
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POISSON POLYTOPES 17

7. The central limit theorem under condition A. Proof of the
CLT for V (Πη)|A. We introduce mη random variables ζj in the following
way. For simpler notation we keep writing K ′

j for K ′
j(T ), Kj for Kj(T ), Sj

for Sj(T ), and S′j for S′j(T ). Define ζj as the missed volume in the set Sj ,

ζj = V (Sj)− V (Sj ∩Πη).

and ζ as the missed volume in the polytope P ,

ζ =
mη∑

j=1

ζj = V (P )− V (Πη) = 1− V (Πη).

In order to prove the CLT for V (Πη)|A we simply check the conditions of
Rinott’s theorem. We start with the weak independence condition.

Lemma 7.1 Given disjoint subsets W1,W2 of V with no edge between them,
the random variables {ζi : i ∈ W1} are independent of the random variables
{ζj : j ∈ W2} under the conditional distribution of X given that A holds.

Proof. Under condition A the boundary of Πη lies in P (s < v ≤ T ∗) and
thus ζj = V (S′j) − V (S′j ∩ Πη). The intersection S′i ∩ Πη is determined by
the facets ((d− 1)-dimensional faces) of Πη intersecting S′i. These facets are
determined by their vertices. Thus all vertices that may determine a facet
that intersects S′i are contained in Li. In other words, S′i ∩ Πη is the same
as the intersection of S′i with the convex hull of X ∩ Li.

Set now Lk =
⋃

i∈Wk
Li for k = 1, 2. By definition L1 and L2 are unions of

sets S′k and have disjoint interiors. Given A, the ζi, i ∈ W1, are determined
by L1 ∩X and the ζi, i ∈ W2, are determined by L2 ∩X. Since L1 ∩X is
independent of L2 ∩X, conditional on A and otherwise, the claim follows.
2

We have to check two more conditions of Rinott’s theorem.

Claim 7.2 Under condition A, M = max ‖ζj‖∞ ¿ ( lln η)/η.

Proof. This is very simple: ζj ≤ V (S′j) ¿ T ¿ ( lln η)/η. 2

Claim 7.3 For ln η À F (P )1/d2
we have Var (V (Πη)|A) À F (P )η−2 lnd−1 η.

This claim is an easy corollary of Theorem 3.3 and (8.6) from the next
section.

Bounds on |V|, D, ζj and Var ζ = Var (V (Πη)|A) have been established.
Rinott’s theorem can be applied. For ln η À F (P )1/d2

, the dominating error
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18 BÁRÁNY AND REITZNER

term is
|V|D2M3

Var (V (Πη)|A)
3
2

¿ F (P )11.5 ( lln η)12d−9

(ln η)
d−1
2

,

as a simple computation shows. If ln η equals F (P )1/d2
the right hand side

is already À 1 which proves that this error term is valid for all η. 2

Proof of the CLT for f`(Πη)|A. The dependency graph remains the same.
The random variables ζi are to be defined, just like in [19], the following way.
Let F be an `-dimensional face of Πη having f0(Si, F ) vertices in Si, and set

ζi =
1

` + 1

∑

all F

f0(Si, F ).

Since with probability one no point from X lies in two Sj , and each face F
is a simplex with probability one, the sum of the ζi is equal to f`(Πη) almost
surely. The analogue of Lemma 7.1 for the new variables ζi is proved the
same way.

We need to bound max ‖ζi‖∞ from above and, also, Var ζ = Var f`(Πη)
from below.

Claim 7.4 For ln η À F (P )1/d we have Var (f`(Πη)|A) À F (P ) lnd−1 η.

Again, this follows from Theorem 3.3 and (8.8) in the next section.

Claim 7.5 M = max ‖ζi‖∞ ¿ F (P )3d( lln η)3d2
.

Proof. (Similar to the one in Reitzner [19].) Condition A ensures that
all vertices of Πη lie in P (s < v ≤ T ∗). As we have seen in the proof of
Lemma 7.1, each face F intersecting S′i has all of its vertices in Li: if x ∈ S′i
and y ∈ S′j are vertices of F , then y ∈ Li. Under condition A, S′j contains
¿ lln η points from X. Thus the number of vertices contributing to ζi is
¿ F (P )3( lln η)(3d−2) by Lemma 6.1.

The number of `-faces (actually, all subsets of size ` + 1) on this many
vertices is ¿ (F (P )3( lln η)(3d−2))`+1. Each such `-face contributes at most
one to the value of ζi. Consequently,

ζi ¿ (F (P )3( lln η)(3d−2))`+1 ¿ F (P )3d( lln η)d(3d−2)

since ` + 1 ≤ d. 2

All condition of Rinott’s theorem have been established. The dominating
error term is again the third one and we get the CLT for f`(Πη)|A with error
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POISSON POLYTOPES 19

term
|V|D2M3

Var (f`(Πη)|A)
3
2

¿ F (P )15d ( lln η)15d2

(ln η)
d−1
2

,

as a simple and generous computation shows. 2

8. Removing the conditioning. We are going to use the transference
Lemma 3.2:

Lemma 8.1 The random variables ξη = V (Πη) and ξ′η = V (Πη)|A satisfy
the conditions of Lemma 3.2 with

∑
εi(η) ¿ F (P )11.5 ln−

d−1
2

+o(1) η.

Lemma 8.2 The random variables ξη = f`(Πη) and ξ′η = f`(Πη)|A satisfy
the conditions of Lemma 3.2 with

∑
εi(η) ¿ F (P )15d ln−

d−1
2

+o(1) η.

In both cases, the fourth condition of the transference lemma has been
proved in the previous section with ε4 ¿ F (P )11.5 ln−(d−1)/2+o(1) η for the
case of volume and with ε4 ¿ F (P )15d ln−(d−1)/2+o(1) η for the number of
faces. So our main theorem for Πη follows once the first three conditions
of the transference lemma have been checked for the volume and for the
number of faces. We will make use of a simple claim:

Claim 8.3 If ζ is a non-negative random variable and A is an event, then

|IE(ζ)− IE(ζ|A)| ≤
(
IE(ζ|A) + IE(ζ|A)

)
IP(A).

Proof. It is clear that IE(ζ) = IE(ζ|A)IP(A) + IE(ζ|A)IP(A). Replacing
IP(A) by 1− IP(A) here gives

IE(ζ)− IE(ζ|A) =
(
−IE(ζ|A) + IE(ζ|A)

)
IP(A),

and the claim follows. 2

Proof of Lemma 8.1. We need some preparations. We use Claim 8.3
with ζ = 1 − V (Πη). We estimate first IE(ζk|A) for k = 1, 2, the first two
moments of ζ|A. (We will have to do a lot of similar estimations later.) Note
that 0 ≤ ζk ≤ 1.
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20 BÁRÁNY AND REITZNER

This is where we use the last paragraph of Section 5. Recall that B
denotes the event that P (v ≥ U∗) ⊂ Πη and P (v ≤ U∗) contains at
most 3b2F (P ) lnd η points from X. Here U = (ln η)/η and U∗ = d6dU .
Lemma 5.3 says that IP(B) ¿ F (P )η−3d. Let I(B) denote the indicator
function of the event B. Observe that ζkI(B) ≤ V (P (v ≤ U∗))k. Moreover,
V (P (v ≤ U∗)) ¿ F (P )(ln η)d/η by Theorem 2.7. So we have

IE(ζk|A) = IE(ζk(1− I(B))|A) + IE(ζkI(B)|A)
≤ IE((1− I(B))|A) + V (P (v ≤ U∗))k

¿ IP(B|A) +

(
F (P )

lnd η

η

)k

¿
(

F (P )
lnd η

η

)k

.(8.1)

Here we used the estimate

IP(B|A) ≤ IP(B)
IP(A)

¿ F (P )η−3d

(ln η)−(3d)d+2 ¿ F (P )η−3d+1(8.2)

where the lower bound for IP(A) comes from Claim 5.2.
As for IE(ζk|A), Claim 5.1 tells us that

IE(ζk|A) ≤ V (P (v ≤ T ∗))k ¿
(

F (P )
lnd η

η

)k

.

Thus we get, using Claim 8.3

|IE(ζk|A)− IE(ζk)| ¿
(

F (P )
lnd η

η

)k

IP(A).(8.3)

We check condition (ii) first. Since Var (V (Πη)) = Var (1− ζ) = Var (ζ) =
IE(ζ2)− (IE(ζ))2 and similarly for Var (V (Πη)|A), the target is to estimate

|(IE(ζ2|A)−(IE(ζ|A))2)− (IE(ζ2)− (IE(ζ))2)|
≤ |IE(ζ2|A)− IE(ζ2)|+ |(IE(ζ|A))2 − (IE(ζ))2|.(8.4)

The first term in the last line is bounded in (8.3) with k = 2. For the second
we have

|(IE(ζ|A))2 − (IE(ζ))2| = |IE(ζ|A) + IE(ζ)| · |IE(ζ|A)− IE(ζ)|

¿ F (P )
lnd η

η
|IE(ζ|A)− IE(ζ)| ¿

(
F (P )

lnd η

η

)2

IP(A),(8.5)
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where (8.3) and (8.1) have been applied with k = 1. We need now the lower
bound Var (V (Πη)) À F (P )η−2 lnd−1 η from Theorem 3.3. Combining this
lower bound, formulae (8.3), (8.4), (8.5), and Claim 5.2 yield

|Var (V (Πη)|A) − Var (V (Πη))| ¿
(

F (P )
lnd η

η

)2

IP(A)

¿ F (P )2
lnd+1 η

ln4d2
η

Var (V (Πη)).(8.6)

This shows that condition (ii) of Lemma 8.1 is satisfied with ε2(η) ¿
F (P )2 ln−4d2+d+1 η. This and Theorem 3.3 also proves immediately Claim 7.3,
that is, Var (V (Πη)|A) À F (P )η−2 lnd−1 η when ln4d2−d−1 η À F (P )2.

Finally (8.3) with k = 1 gives

|IE(V (Πη)|A) − IE(V (Πη)| = |IE(ζ|A)− IE(ζ)| ¿ F (P )
lnd η

η
IP(A)

¿ F (P )2
lnd η

η ln4d2
η
¿ F (P )

3
2

ln
d+1
2 η

ln4d2
η

√
Var (V (Πη)).

Thus condition (i) is also satisfied with ε1(η) ¿ F (P )
3
2 ln−4d2+(d+1)/2 η.

Condition (iii) is the simplest to check: Set ζ = I(V (Πη)) ≤ x) and apply
Claim 8.3. Then

|IE(ζ|A)− IE(ζ)| = |IP(V (Πη)) ≤ x|A)− IP(V (Πη)) ≤ x)|
≤ 2IP(A) ¿ F (P ) ln−4d2

η.

and thus (iii) holds with ε3(η) ¿ F (P ) ln−4d2
η. 2

Proof of Lemma 8.2. This proof is similar to the previous one and we
only point out the main differences. Set ζ = f`(Πη). We want to estimate,
for k = 1, 2,

IE(ζk|A) = IE(ζk(1− I(B))|A) + IE(ζkI(B)|A)(8.7)

Note that, given B, Πη can have at most F (P ) lnd η vertices, implying that
ζkI(B) ¿ (F (P ) lnd η)k(`+1) which is an upper bound for the second term
in (8.7). The first term needs extra care since the random variable ζ is not
bounded. Let N be a random variable which is Poisson distributed with
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22 BÁRÁNY AND REITZNER

mean η, and write Em for the event N = m. Of course, ζ ≤ m`+1 ≤ md

under condition Em. Thus

IE(ζk(1 − I(B))|A) =
∞∑

m=0

IE(ζk(1− I(B))|AEm)IP(Em)

≤
∑

0≤m<3η

IE(ζk(1− I(B))|AEm)IP(Em)

+
∑

3η≤m

IE(ζk(1− I(B))|A Em)IP(Em)

≤
∑

0≤m<3η

(3η)kdIE((1− I(B))|AEm)IP(Em)

+
∑

3η≤m

mkdIE((1− I(B))|AEm)IP(Em)

¿ (3η)kd
∑

0≤m<3η

IP(B|AEm)IP(Em) +
∑

3η≤m

mkdIP(Em)

¿ (3η)kdIP(B|A ) +
∑

3η≤m

mkdIP(Em) ¿ F (P )η−d+1

where we used (8.2), and the routine estimation of
∑∞

3η mkdIP(Em) is omit-
ted. Using this and Claim 5.1 for IE(ζk|A) yields for k = 1, 2

IE(ζk|A), IE(ζk|A) ¿ (F (P ) lnd η)k(`+1) ≤ F (P )kd lnkd2
η.

We need again Claim 8.3 and the lower bound from Theorem 3.3 to show
that

|Var (ζ|A)−Var (ζ)| ¿ F (P )2d ln−2d2−d+1 η Var (ζ).(8.8)

So condition (ii) is satisfied. It also follows that Var (ζ|A) À F (P ) lnd−1 η
for ln η À F (P )1/d, which is Claim 7.4 from the previous section.

Checking condition (i) goes the same way and condition (iii) is straight-
forward. 2

9. Proofs of the auxiliary lemmas. In this section we assume that
P is a fixed polytope in IRd whose volume is one. We prove first the following
claim, where β = 2ed3 +1 (a β which is different from the one in Section 5).

Claim 9.1 For all T and for all z ∈ P satisfying 0 < v(z) < 1
2 , v(z) ≤ T ,

we have
S(z, T ) ⊂ CβT/v(z)(z).

Proof: Set s = v(z). Let C(z) = {x ∈ IRd |u · x ≥ hP (u) − hz} be the
minimal cap of z ∈ P , and denote by Hh the hyperplane {x ∈ IRd |u · x =
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hP (u)−h}. Then H0 touches the boundary of P in a centre of the cap, Hhz

is the bounding hyperplane of C(z), and thus z ∈ Hhz . Write Qz = P ∩Hhz .
The following simple geometric arguments show that for every h ∈ [0, hz],
we have

Vd−1(P ∩Hh) ≤ 2dVd−1(Qz)(9.1)

if s ≤ 1
2 , where Vd−1(·) stands for (d − 1)-dimensional volume. Indeed, the

Brunn-Minkowski inequality shows that for some hmax the volume of the
sections P ∩ Hh is first increasing for h ∈ [0, hmax] and then decreasing
for h ∈ [hmax, w]. Here w denotes the width of P in direction u. Thus if
hz ∈ [0, hmax], equation (9.1) is immediate (with 2d replaced by 1). And if
hz > hmax we have to show that Vd−1(P ∩Hhmax) ≤ 2dVd−1(Qz). Clearly

1
d
wVd−1(P ∩Hhmax) ≤ 1.

Since we assume hz > hmax here, Vd−1(P ∩Hh) is decreasing for h ∈ [hz, w]
and we also have

(w − hz)Vd−1(Qz) ≥ 1− s ≥ 1
2
.

Combining this gives

Vd−1(P ∩Hhmax) ≤
d

w
≤ d

w − hz
≤ 2dVd−1(Qz)

which is (9.1). It follows that

s ≤ 2d hzVd−1(Qz).

Clearly the set S(z, T ) is the union of caps C ⊂ P (v ≤ T ) such that
z ∈ C. Let C be such a cap. Then V (C) ≤ dT by Lemma 2.4. If C contains
a point of Hh, then

V (C) ≥ 1
d

(h− hz)Vd−1(C ∩Qz).

As is well-known (see for instance [13]), z ∈ C is the centre of gravity of Qz.
Then a result of Grünbaum [15] says that Vd−1(C ∩Qz) ≥ 1

eVd−1(Qz). Thus

1
2ed2

s(h− hz)
hz

≤ 1
ed

(h− hz)Vd−1(Qz) ≤ V (C) ≤ dT.

Hence the distance between an arbitrary point of S(z, T ) and H0 is at most
h = T

s 2ed3hz + hz ≤ (2ed3 + 1)T
s hz, which shows that, indeed, S(z, T ) ⊂

CβT/s(z). 2
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24 BÁRÁNY AND REITZNER

Proof of Lemma 4.1. Set again v(z) = s, then the condition is 0 < s ≤
1
2 , 2s ≤ T . Choose β as in Claim 9.1. Let C(z) be the minimal cap of z and
set C∗ = CβT/s(z), V ∗ = V (C∗), and note that C∗ is a polytope. By trivial
volume estimates V ∗ ≤ (βT/s)dV (C(z)) = (βT )d/sd−1. Assume first that
C∗ = P and thus 1/T ≤ βd(T/s)d−1. Then since S(z, T ) ⊂ P (v ≤ T ) we
have

V (S(z, T )) ¿ F (P )T lnd−1
(

1
T

)

for T ≤ s0 by Theorem 2.7, which gives

V (S(z, T )) ¿ F (P )T lnd−1
(

T

s

)
.

for any T with 2s ≤ T . For C∗ 6= P trivial volume estimates show that
V (C∗) ≥ (βT/ds)V (C(z)) = (β/d)T . Claim 9.1 shows that

S(z, T ) ⊂ P (vP ≤ T ) ∩ C∗ ⊂ C∗(vC∗ ≤ T ),

where we wrote vC∗ to emphasize that the underlying convex set now is C∗.
By Theorem 2.7 there is a constant s0 such that for T ≤ s0V

∗

V (S(z, T )) ≤ V (C∗(vC∗ ≤ T )) ¿ F (C∗)T lnd−1
(

V ∗

T

)

≤ F (P )T lnd−1
(

V ∗

T

)
.

Here we used the fact that F (C∗) ≤ F (P ) which can be proved quite easily
(we omit the proof). In the remaining case s0V

∗ ≤ T ≤ (d/β)V ∗ we have

V (C∗(vC∗ ≤ T )) ≤ V ∗ ≤ s−1
0 T ¿ F (P )T lnd−1

(
V ∗

T

)
.

The lemma follows since V ∗/T ≤ βd(T/s)d−1. 2

Proof of Lemma 4.2. Assume zi ∈ Z(s)∩C. Then by Lemma 2.2 M(zi, 1) ⊂
C2. Thus for s ≤ s0 the set K ′

i(s) = M(zi,
1
2) ∩ C(zi) lies in P (v ≤ s) ∩ C2.

The sets K ′
i(s), i = 1, . . . , m(s), are pairwise disjoint, so the usual volume

argument applies:

|Z(s) ∩ C| ¿ V (P (v ≤ s) ∩ C2)
s

as V (K ′
i(s)) À s. Further, P (v ≤ s)∩C2 ⊂ C2(vC2 ≤ s), whose volume can

be estimated the same way as in the previous proof. Theorem 2.7 gives

V (C2(vC2 ≤ s)) ¿ F (C2)s lnd−1

(
V (C2)

s

)
¿ F (P )s lnd−1

(
T

s

)
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for s ≤ s0V (C2), since F (C2) ¿ F (P ). And for s0V (C2) ≤ s ≤ s0 the
lemma follows from the fact that V (C2(vC2 ≤ s)) ≤ V (C2) and s ≤ 2T . 2

Proof of Lemma 4.3. Since V (Kλ
j (T )) ≤ λdV (Kj(T )) ≤ (6λ)dT , each

yj ∈ Y (T ) with z ∈ Kλ
j (T ) is contained in S(z, (6λ)dT ). It is also clear

that M(yj ,
1
2) ∩ C(yj) lies in S(z, (6λ)dT ), once yj ∈ Y (T ). Thus the usual

volume argument applies, with the upper bound on V (S(z, (6λ)dT )) coming
from Lemma 4.1. 2

Proof of Lemma 4.4. Let C(z) be the minimal cap of z. Claim 9.1 shows
that S(z, T ) is contained in the cap C := CβT/s(z) with volume V (C) ≤
(βT )d/sd−1. Then Lemma 4.2 applies and gives

|Z(s) ∩ S(z, T )| ≤ |Z(s) ∩ C| ¿ F (P ) lnd−1 V (C)
s

¿ F (P ) lnd−1
(

T

s

)

for s ≤ s0, 2s ≤ V (C), since V (C)/s ¿ (T/s)d. The inequality 2s ≤ V (C)
follows from the trivial volume estimate if C 6= P and from s ≤ s0 if C = P .

2

Proof of Claim 4.5. Clearly it suffices to show that each cap C whose
bounding hyperplane touches P (v ≥ T ∗) contains at least one point xi. If
this is not the case then there is a cap C whose bounding hyperplane touches
P (v ≥ T ∗) with no xi ∈ C and thus no M(yi,

1
2) ⊂ C either.

We claim now that C
1
3 is disjoint from all Macbeath regions M(yi,

1
2).

Assume, for simpler notation, that u · x = h with h > 0 is the equation of
the bounding hyperplane of C, and u ·x = 0 is the supporting hyperplane of
P and C. If u · yi = g, then M(yi, 1) lies between hyperplanes u ·x = 2g and
u · x = 0. Thus M(yi,

1
2) lies between hyperplanes u · x = 3

2g and u · x = 1
2g.

Here 3
2g > h holds since otherwise M(yi,

1
2) ⊂ C. Then g > 2

3h implying
that u · x = 1

3h is a separating hyperplane between M(yi,
1
2) and C

1
3 . This

proves the claim.
By trivial volume estimates V (C

1
6 ) is at least dT . Let x0 be the point

in C
1
6 where v(x) takes its maximal value on C

1
6 . By Lemma 2.4 V (C

1
6 ) ≤

dv(x0), and so v(x0) ≥ T . This shows the existence of a point z ∈ P (v =
T ) ∩ C

1
6 . But then M(z, 1

2) ⊂ C
1
3 is disjoint from all M(yi,

1
2) which is

impossible since Y (T ) = {y1, . . . , ym(T )} is a saturated system.
2
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[7] Bárány, I., Dalla, L.: Few points to generate a random polytope. Mathematika 44,
325–331 (1997)
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