Packing cones and their negatives in space

Imre Bárány*
Rényi Institute of Mathematics Hungarian Academy of Sciences POBox 127, 1364 Budapest, Hungary e-mail: barany@math-inst.hu and Department of Mathematics University College London Gower Street, London WC1E 6BT England
Jiří Matoušek
Department of Applied Mathematics and Institute of Theoretical Computer Science (ITI) Charles University
Malostranské nám. 25, 11800 Praha 1
Czech Republic
e-mail: matousek@kam.mff.cuni.cz

May 6, 2006

Abstract

Let C be a cone in \mathbf{R}^{3} whose base B is a planar convex body in a horizontal plane π and whose tip is a point $v \notin \pi$. Let \mathcal{C} be a packing formed by translates of C and $-C$ in \mathbf{R}^{3}. We exhibit an explicit constant $c>0$ such that the density of any such \mathcal{C} is is smaller than $1-c$, answering a question of Wlodek Kuperberg.

1 Introduction and main result

Let C be a cone, over a planar convex set B, in \mathbf{R}^{3} and let \mathcal{C} be a packing consisting of translates of C and $-C$ (no rotations allowed). Kuperberg [5] proved several years ago that the density $\delta(\mathcal{C})$ of \mathcal{C} is less than one (for the reader's convenience, we outline a short proof at the end of this section). This immediately implies the existence of a constant $c>0$ such that $\delta(\mathcal{C}) \leq 1-c$ for every C and every packing \mathcal{C} of translates of C and $-C$. Indeed, if $\sup _{C, \mathcal{C}} \delta(\mathcal{C})=$ 1 , then one can choose a convergent subsequence of the cones such that the limiting cone tiles the space. But then the density of the corresponding packing is 1 .

This argument cannot give any explicit value for c. That is why Kuperberg [5] raised the following problem: Find an explicit constant $c>0$ such that for every cone C, every packing by translates of C and $-C$ has density less than $1-c$. The aim of this paper is to give such an explicit constant.

[^0]Here a cone C is simply the convex hull of the base B and the tip v, where B is a convex compact set of nonzero area lying in a two-dimensional plane π, and $v \notin \pi$ is a point in \mathbf{R}^{3}.

Theorem 1.1 There is an explicit constant $c>0$ such that for every cone $C \subset \mathbf{R}^{3}$, every packing by translates of C and $-C$ has density smaller than $1-c$.

Remarks. Our proof actually works for larger class of packings, with the same constant c. Namely, let \mathcal{F} be the family of all cones in \mathbf{R}^{3} with tips at $(0,0,1)$ or at $(0,0,-1)$ and with bases B in the plane $z=0$ such that B contains the horizontal unit disk centered at the origin and is contained in the concentric disk of radius 2 . Let \mathcal{C} be a packing of translates of cones in \mathcal{F}. Then the density of \mathcal{C} is at most $1-c$. For this remark we are indebted to Wlodek Kuperberg.

Our method gives an extremely small value for c. (We haven't tried to optimize the constants in the proofs.) It is very easy to see that if the base B tiles the plane, then there exists a packing \mathcal{C} by translates of C and $-C$ whose density is $2 / 3$. The best construction we know of is more than hundred years old and is due to Minkowski [6]. It is a lattice packing by translates of an octahedron with density $18 / 19$, showing that the constant in Theorem 1.1 satisfies $c \leq 1 / 19$. Betke and Henk [1] proved that no lattice packing of octahedra can have a larger density.

Sketch of a proof of $\boldsymbol{\delta}(\mathcal{C})<\mathbf{1}$. We assume that \mathcal{C} is a packing of translates of C and $-C$, and we show that $\delta(\mathcal{C})<1$, the result of Kuperberg. This, of course, is weaker than Theorem 1.1, but the proof is simple.

For contradiction we assume $\delta(\mathcal{C})=1$ and let \mathcal{C}_{n} be a packing by translates of C and $-C$ such that $\delta\left(\mathcal{C}_{n}\right)$ tends to one. Let Q be a large cube. Then there are translated copies Q_{n} of Q such that, as n goes to infinity,

$$
\sum_{C^{*} \in \mathcal{C}_{n}} \operatorname{Vol}\left(C^{*} \cap Q_{n}\right) \rightarrow \operatorname{Vol} Q
$$

Translate Q_{n} to Q together with the $C^{*} \in \mathcal{C}_{n}$ that intersect Q_{n}. We get finite packings by translates of C and $-C$ that cover Q almost perfectly. One can choose a convergent subsequence of these packings, and the limiting packing \mathcal{C}^{*} tiles Q. Then C is a polytope. Let C^{*} be a cone in \mathcal{C}^{*} which is close to the center of Q, and let T be a triangular facet of C^{*} adjacent to the tip. Every point p in the relative interior of T is covered (besides C^{*}) by another cone $C(p) \in \mathcal{C}^{*}$. Further, C^{*} and $C(p)$ are separated by the plane aff (T). Now if $C(p)$ is a translate of C, then $C(p) \cap \operatorname{aff}(T)$ is a vertex or an edge of $C(p)$. This implies that the translates of C in \mathcal{C}^{*} can only cover a small portion (of measure zero) of T. For the rest of the points $p \in T, C(p)$ is a translate of $-C$. Consequently, p is covered by $-T$. But that is impossible: a triangle T cannot be covered by internally disjoint translates of $-T$.

Remark. There are several beautiful open questions about the density of packings of cones in $\mathbf{R}^{d}, d \geq 3$, some of them are very natural and look hard. We refer the interested reader to the forthcoming paper by András Bezdek and

Figure 1: Illustration to Fact 2.2.

Wlodek Kuperberg [3] with the hope that it will be written up and published soon. Some information on these problems can also be found in Bezdek [2].

2 Preparations

In this section we introduce notation and terminology, and state auxiliary lemmas needed in the proof.

We assume that the base B of the cone C lies in the horizontal plane π containing the origin 0 . For a real number x we let $\pi(x)$ be the plane parallel to π at distance $|x|$ from $\pi=\pi(0)$, where $\pi(x)$ lies below π for $x>0$ and above π for $x<0$. This is opposite (!) to the usual convention for the position of the coordinate system, but we find our "reverse" convention more convenient in this paper.

Let $D \subset \pi$ be the unit disk centered at the origin. Since our problem is invariant under nondegenerate linear transformations, we can assume that B is sandwiched between $\frac{1}{2} D$ and D, that is, $\frac{1}{2} D \subset B \subset D$ (by Löwner's theorem [4]). Similarly, we may assume that the tip v of C is above the origin and at distance one from it (so it lies in $\pi(-1)$). The sandwiching implies easily the following two facts, whose elementary proofs are omitted.

Fact 2.1 For every point p on the boundary of $B \subset \pi$, the angle between π and the line connecting p and v is between 45 and 60 degrees.

Fact 2.2 For every p on the boundary of $B \subset \pi$, there is a wedge K in the plane π with apex at p and of angle 60 degrees such that $K \cap\left(p+\frac{1}{2} D\right)$ is contained in B; see Fig. 1.

Let C^{*} be a translated copy of C. We write $v\left(C^{*}\right)$ for its tip, $B\left(C^{*}\right)$ for its base, and we let $a\left(C^{*}\right)$ be the vertical coordinate of the base; that is, $B\left(C^{*}\right)$ lies in the plane $\pi\left(a\left(C^{*}\right)\right)$. So $a\left(C^{*}\right) \in[0,1]$ if and only if C^{*} intersects π. For a translate C_{i} of C we simply write a_{i}, B_{i}, v_{i} instead of $a\left(C_{i}\right), B\left(C_{i}\right), v\left(C_{i}\right)$.

We write $\operatorname{dist}\left(S_{1}, S_{2}\right)$ for the Euclidean distance between sets $S_{1}, S_{2} \subset \mathbf{R}^{3}$. Of course, the distance between S_{1} and S_{2} is the infimum of dist (x, y) with the infimum taken over all $x \in S_{1}$ and $y \in S_{2}$.

We need three simple lemmas for the proof of the main theorem.

Figure 2: The avoidance lemma.

Figure 3: Illustration to the special cylinder lemma.

Lemma 2.3 (Avoidance lemma) Let C_{1} and C_{2} be disjoint translates of C, both intersecting π, and let $0 \leq a_{2} \leq a_{1} \leq 1$; see Fig. 2. Then

$$
\operatorname{dist}\left(\pi \cap C_{1}, \pi \cap C_{2}\right) \geq a_{2} .
$$

For the next lemma and for the rest of the paper we set $r_{0}=\frac{1}{12}$.
Lemma 2.4 (Local boundedness lemma) Let $r D$ be the disk in π of radius r centered at 0 , where $r \in\left(0, r_{0}\right]$, and let \mathcal{C}^{+}be a packing of translates of C (no $-C$ allowed here). Then $r D$ intersects at most one cone from \mathcal{C}^{+}with $a\left(C^{*}\right) \geq 2 r$ and at most 6 cones with $a\left(C^{*}\right)<2 r$.

For $0 \leq h_{2}<h_{1}$ we let $\operatorname{Cyl}\left(r, h_{1}, h_{2}\right)$ denote the vertical cylinder of radius r with axis passing through 0 and bounded from above by the plane $\pi\left(h_{2}\right)$ and from below by $\pi\left(h_{1}\right)$. Let C_{0} denote the translate of C whose tip is at the origin.

Lemma 2.5 (Special cylinder lemma) Let α be a sufficiently small positive real number, and let $\beta \in(0, \alpha)$. For every $R \in\left(0, r_{0}\right]$, and for every packing \mathcal{C}^{+}of translates of C with $C_{0} \in \mathcal{C}^{+}$there is an r with

$$
\left(\frac{2 \beta}{2+\alpha}\right)^{6} R \leq r \leq R
$$

such that C_{0} is the only cone of \mathcal{C}^{+}intersecting the interior of $\operatorname{Cyl}(r, \alpha r, \beta r)$; see Fig. 3.

We are going to use these lemmas in the proof of the main theorem. Their proofs will be given in Section 5 .

3 One more lemma and proof of the main theorem

We assume that $r \in\left(0, r_{0}\right], \alpha>0$, and $\beta \in(0, \alpha / 2]$ have been fixed. Let Z be the cylinder $\operatorname{Cyl}(r, \alpha r, \beta r)$ and let T be its axis, that is, the segment of the vertical line through 0 between the planes $\pi(\alpha r)$ and $\pi(\beta r)$. We also set $\gamma=\alpha-\beta$ and $\eta=\alpha^{2}$.

Lemma 3.1 (Main lemma) Let \mathcal{C}^{+}be a packing of translates of C in which each element is disjoint from T. Then

$$
\operatorname{Vol}\left(Z \backslash \bigcup \mathcal{C}^{+}\right) \geq \eta \operatorname{Vol} Z
$$

The proof is given in the next section. We are actually going to use the lemma for the translates of $-C$ in the given packing of C and $-C$.
Proof of Theorem 1.1. We specify the parameters now, but we work with their numerical values only later. So let $\alpha=\frac{1}{384 \pi}$, and $\beta=\gamma=\alpha / 2$. We choose $R=r_{0}=\frac{1}{12}$.

Lemma 2.5 applies to every positive cone $C_{i} \in \mathcal{C}$ and to the packing \mathcal{C}^{+} consisting of the positive cones in \mathcal{C}. This gives, for every C_{i}, a cylinder $Z_{i}=\operatorname{Cyl}\left(r_{i}, \alpha r_{i}, \beta r_{i}\right)+v_{i}$ that is intersected only by C_{i} and possibly by some translates of $-C$ in \mathcal{C}, but by no cone in $\mathcal{C}^{+} \backslash\left\{C_{i}\right\}$.

We also note that all r_{i} are larger than the fixed positive number

$$
\left(\frac{2 \beta}{2+\alpha}\right)^{6} R=\left(\frac{\alpha}{2+\alpha}\right)^{6} R
$$

and so

$$
\operatorname{Vol} Z_{i}=\pi \gamma r_{i}^{3} \geq \pi \gamma\left(\frac{\alpha}{2+\alpha}\right)^{18} R^{3}=: c_{0}
$$

The negative cones in \mathcal{C} are disjoint from the axis of Z_{i} because this axis is contained in C_{i}. Then the main lemma obviously can be applied to Z_{i} and to the packing \mathcal{C}^{-}formed by the negative cones in \mathcal{C}. So the negative cones in \mathcal{C} occupy at most $1-\eta$ fraction of Z_{i}. The only positive cone intersecting Z_{i} is C_{i}, and $\operatorname{Vol}\left(Z_{i} \cap C_{i}\right) \leq\left(\alpha r_{i}\right)^{3} \pi / 3$. Thus \mathcal{C} altogether misses at least

$$
\eta \operatorname{Vol} Z_{i}-\frac{\pi}{3}\left(\alpha r_{i}\right)^{3}=\left(\eta-\frac{\alpha^{3}}{3 \gamma}\right) \operatorname{Vol} Z_{i}=\left(\eta-\frac{2 \alpha^{2}}{3}\right) \operatorname{Vol} Z_{i}=\frac{\eta}{3} \operatorname{Vol} Z_{i}
$$

of the volume of Z_{i}, since we have chosen $\eta=\alpha^{2}$.
Using the avoidance lemma (Lemma 2.3) it is easy to check that the cylinders Z_{i} are disjoint. Consequently, for each positive cone $C_{i} \in \mathcal{C}^{+}$, an $\eta / 3$ fraction of the volume of the cylinder Z_{i} is left uncovered by \mathcal{C}.

The same applies to the negative cones in \mathcal{C} as well. Now when computing the density of \mathcal{C}, we consider a large cube Q containing n cones from the packing, with at least half of them positive, say. If $n \mathrm{Vol} C<\frac{1}{2} \mathrm{Vol} Q$, then the density in Q is small, smaller than $\frac{2}{3}$ for $\operatorname{Vol} Q$ sufficiently large, since the cones from \mathcal{C} that intersect Q but are not contained in Q can cover only a small portion
of Q. So we now suppose that $n \mathrm{Vol} C \geq \frac{1}{2} \mathrm{Vol} Q$. Then in the cylinders Z_{i} corresponding to the positive cones from \mathcal{C} contained in Q, a volume of at least

$$
\frac{n}{2} \frac{\eta}{3} c_{0}
$$

is uncovered by \mathcal{C}, while the volume of Q is at most $2 n \operatorname{Vol} C \leq \frac{2 \pi}{3} n$. This implies that \mathcal{C} leaves an ε fraction of Q uncovered, where

$$
\varepsilon=\frac{\eta c_{0}}{4 \pi}=\frac{1}{8} \frac{\alpha^{21} R^{3}}{(2+2 \alpha)^{18}} \approx 5.327 \cdot 10^{-75}
$$

Remark. By fine-tuning the parameters in this argument and in the proof of the main lemma it is possible to get $\varepsilon \approx 10^{-42}$. This is much larger than the ε above but still extremely small.

4 Proof of the main lemma

For simpler notation we translate the upper face of the considered cylinder to the plane $\pi(0)$. So here we assume that $Z=\operatorname{Cyl}(r, \gamma r, 0), \gamma=\beta-\alpha$.

We will argue by contradiction; so we assume that \mathcal{C}^{+}is a packing of translates of C with $T \cap \bigcup \mathcal{C}^{+}=\emptyset$ that misses less than η fraction (of the volume) of Z. We suppose that all cones in \mathcal{C}^{+}intersect Z.

We set $\rho=2 \sqrt{\eta} r$ and we let $V=\operatorname{Cyl}(\rho, \gamma r, \gamma r / 2)$ be a smaller cylinder in the lower half of Z.

Claim 4.1 There is a $C_{1} \in \mathcal{C}^{+}$intersecting V such that $a\left(C_{1}\right)<\gamma r+2 \rho$.

Proof. By the choice of ρ, the cylinder V has volume $2 \eta \operatorname{Vol} Z$, and so it is met by some element of \mathcal{C}, say by C_{1}. Since C_{1} is disjoint from the axis T of the cylinder Z, there exists a halfspace H with T on its boundary and disjoint from C_{1}. Since $\operatorname{Vol}(H \cap V) \geq \eta \operatorname{Vol} Z$, there exists another $C_{2} \in \mathcal{C}^{+}$intersecting V.

For contradiction let us suppose that both $a\left(C_{1}\right) \geq \gamma r+2 \rho$ and $a\left(C_{2}\right) \geq$ $\gamma r+2 \rho$. Then both C_{1} and C_{2} intersect $\pi(\gamma r)$ and both are at a distance of at most ρ from T, implying that

$$
\operatorname{dist}\left(\pi(\gamma r) \cap C_{1}, \pi(\gamma r) \cap C_{2}\right) \leq 2 \rho
$$

However, by the avoidance lemma (Lemma 2.3)

$$
\operatorname{dist}\left(\pi(\gamma r) \cap C_{1}, \pi(\gamma r) \cap C_{2}\right)>2 \rho
$$

a contradiction. Thus we have $a\left(C_{1}\right)<\gamma r+2 \rho$ or $a\left(C_{2}\right)<\gamma r+2 \rho$, and at least one of the cones C_{1} and C_{2} satisfies the requirements of the claim.

Now let $C_{1} \in \mathcal{C}^{+}$be as in the claim, and let us put

$$
a_{1}=\min \left(\gamma r, a\left(C_{1}\right)\right)
$$

Since C_{1} intersects V, we have $a_{1} \geq \gamma r / 2$. Let C_{2}, \ldots, C_{m} be the cones in \mathcal{C}^{+} with $a_{i}=a\left(C_{i}\right) \leq a_{1}$, where the notation is chosen so that $a_{1} \geq a_{2} \geq \ldots \geq$ $a_{m} \geq 0$.

We will denote by \tilde{C} a general element of our packing \mathcal{C}^{+}. For every $\tilde{C} \in \mathcal{C}^{+}$ different from C_{1}, \ldots, C_{m} we have $a_{1}<a(\tilde{C})$. For $x \in[0, \alpha r)$ we define

$$
\tilde{C}(x)=\operatorname{Area}(\tilde{C} \cap \pi(x) \cap Z) .
$$

The function $C_{i}():.[0, \gamma r] \rightarrow \mathbf{R}$ is positive, continuous, and increasing on $\left[0, a_{i}\right]$, and is equal to zero on $\left(a_{i}, a_{1}\right)$ for $i=1, \ldots, m$. For $\tilde{C} \in \mathcal{C}^{+}$different from these C_{i}, the function $C($.$) is nonnegative, continuous, and nondecreasing on$ $\left[0, a_{1}\right]$.

We denote by M the volume missed by \mathcal{C}^{+}from Z. Set $a_{m+1}=0$. Then

$$
\begin{aligned}
M & =\int_{0}^{\gamma r}\left(r^{2} \pi-\sum_{\tilde{C} \in \mathcal{C}^{+}} \tilde{C}(x)\right) d x \\
& \geq \int_{0}^{a_{1}}\left(r^{2} \pi-\sum_{\tilde{C} \in \mathcal{C}^{+}} \tilde{C}(x)\right) d x \\
& =\sum_{i=1}^{m} \int_{a_{i+1}}^{a_{i}}\left(r^{2} \pi-\sum_{\tilde{C} \in \mathcal{C}^{+}} \tilde{C}(x)\right) d x \\
& \geq \sum_{i=1}^{m} \int_{a_{i+1}}^{a_{i}}\left(\sum_{\tilde{C} \in \mathcal{C}^{+}} \tilde{C}\left(a_{i}\right)-\sum_{\tilde{C} \in \mathcal{C}^{+}} \tilde{C}(x)\right) d x \\
& \geq \sum_{i=1}^{m} \int_{a_{i+1}}^{a_{i}}\left(C_{1}\left(a_{i}\right)-C_{1}(x)\right) d x .
\end{aligned}
$$

Here the last inequality holds since $\tilde{C}\left(a_{i}\right) \geq \tilde{C}(x)$ for $x \in\left[a_{i}, a_{i+1}\right]$, and hence we can restrict the summation to the single cone C_{1}. The previous inequality follows from $\sum_{\tilde{C} \in \mathcal{C}^{+}} C(x) \leq r^{2} \pi$, which holds since \mathcal{C}^{+}is a packing. We need a simple claim, whose proof is postponed to the end of this section.

Claim 4.2 For $0 \leq x \leq y \leq a_{1}$ we have

$$
C_{1}(y)-C_{1}(x) \geq \frac{r}{4}(y-x) .
$$

We continue the last inequality for the missed volume M :

$$
\begin{aligned}
M & \geq \sum_{i=1}^{m} \int_{a_{i+1}}^{a_{i}}\left(C_{1}\left(a_{i}\right)-C_{1}(x)\right) d x \\
& \geq \sum_{i=1}^{m} \int_{a_{i+1}}^{a_{i}} \frac{r}{4}\left(a_{i}-x\right) d x=\frac{r}{8} \sum_{i=1}^{m}\left(a_{i}-a_{i+1}\right)^{2} \\
& \geq \frac{r}{8} \cdot \frac{\left(\sum_{1}^{m}\left(a_{i}-a_{i+1}\right)\right)^{2}}{m}=\frac{r}{8} \cdot \frac{\left(a_{1}\right)^{2}}{m} \geq \frac{\gamma^{2} r^{3}}{32 m} .
\end{aligned}
$$

By now we are almost finished with the proof. First, all C_{i} intersect the disk $r D \subset \pi$, and for each $i=1, \ldots, m$,

$$
a_{i} \leq a_{1}<\gamma r+2 \rho<\alpha r+2 \sqrt{\eta} r=3 \alpha r<2 r .
$$

Figure 4: Proof of Claim 4.2-the situation in the plane $\pi(x)$.
Thus by the last part of Lemma 2.4 we have $m \leq 6$. Second, since $\operatorname{Vol} Z=\gamma r^{3} \pi$, we have

$$
M \geq \frac{\gamma^{2} r^{3}}{32 m} \geq \frac{\gamma}{192 \pi} \operatorname{Vol} Z=\eta \operatorname{Vol} Z
$$

contrary to our assumption that $M<\eta \mathrm{Vol} Z$.
Proof of Claim 4.2. We recall that C_{1} is the cone in \mathcal{C}^{+}intersecting the smaller cylinder V, avoiding the axis T (of V and Z), and satisfying $a\left(C_{1}\right)<$ $\gamma r+2 \rho$. We write T_{1} for the axis of C_{1}. For $0 \leq x \leq a\left(C_{1}\right)$, we let $p_{0}(x)$ denote the point in the slice $C_{1} \cap \pi(x)$ nearest to T. Clearly, $p_{0}(x)$ is unique and lies on the boundary of $C_{1} \cap \pi(x)$. We denote by $T(x)$ the point $T \cap \pi(x)$, and $T_{1}(x)$ is the point $T_{1} \cap \pi(x)$.

It follows easily from $a\left(C_{1}\right)<\gamma r+2 \rho$ that T_{1} is far from T : their distance is at least $\frac{1}{2}-\rho$.

Since C_{1} intersects V, we have $\left|T\left(a_{1}\right)-p_{0}\left(a_{1}\right)\right| \leq \rho$. The segment $\left[p_{0}\left(a_{1}\right), v_{1}\right]$, where v_{1} is the tip of C_{1}, lies in C_{1}, and so by Fact 2.1, the point $\left[p_{0}\left(a_{1}\right), v_{1}\right] \cap$ $\pi(x) \in C_{1}$ is at distance at most $\rho+\left(a_{1}-x\right)$ from $T(x)$. This implies that for all $x \in\left[0, a_{1}\right]$

$$
\left|T(x)-p_{0}(x)\right| \leq \rho+\left(a_{1}-x\right) \leq 2 \sqrt{\eta} r+\gamma r<3 \alpha r .
$$

Further, for all $x \in\left[0, a_{1}\right], \pi(x) \cap \partial C_{1}$ is a closed convex curve in $\pi(x)$; see Fig. 4. The part of this closed convex curve that lies in Z consists of connected components; let $L(x)$ denote the component containing $p_{0}(x)$. Since T_{1} is far from $T, C_{1} \cap \pi(x)$ cannot lie completely in Z. Thus $L(x)$ is a convex curve with two distinct endpoints. Consequently, the length $\ell(x)$ of $L(x)$ satisfies

$$
\ell(x) \geq 2(r-|T(x)-p(x)|) \geq 2(r-3 \alpha r) \geq \frac{3}{2} r .
$$

Let p be an arbitrary point of the curve $L(x)$, and let q be the intersection point of $\pi(y)$ and the line through p and v_{1}. Further, let C^{*}, L^{*}, and p^{*} denote the orthogonal projection of $C_{1} \cap \pi(x), L(x)$, and p, respectively, onto $\pi(y)$; see Fig. 5. We have

$$
C_{1}(y)-C_{1}(x)=\operatorname{Area}\left(\left(\left(C_{1} \cap \pi(y)\right) \backslash C^{*}\right) \cap Z\right) .
$$

Since C^{*} is a homothetic copy of $C_{1} \cap \pi(y)$ with center of homothety $T_{1}(y)$, the points $q, p^{*}, T_{1}(y)$ are collinear. It follows from Fact 2.1 that $\left|q-p^{*}\right| \geq \frac{1}{2}(y-x)$.

Figure 5: Proof of Claim 4.2 continued.

Further, Fact 2.2 shows that the angle between the segment $\left[q, p^{*}\right]$ and the tangent line to L^{*} at p^{*} is at least 30 degrees. Define

$$
F=\bigcup_{p \in L(x)}\left[q, p^{*}\right] .
$$

It is now clear that

$$
\text { Area } F \geq \frac{1}{2}(y-x) \ell(x) \sin 30^{\circ}=\frac{1}{4}(y-x) \ell(x) .
$$

It is not hard to see that F almost coincides with $\left(\left(C_{1} \cap \pi(x)\right) \backslash C^{*}\right) \cap Z$. More precisely, let L^{\prime} be the set of those $p \in L(x)$ for which the segment $\left[q, p^{*}\right]$ is contained in Z. One can show readily that the length of L^{\prime} is at least $\frac{2}{3} \ell(x)$; we omit the elementary details. Finally we have

$$
\begin{aligned}
C_{1}(y)-C_{1}(x) & =\operatorname{Area}\left(\left(\left(C_{1} \cap \pi(x)\right) \backslash C^{*}\right) \cap Z\right) \\
& \geq \frac{2}{3} \operatorname{Area} F \geq \frac{1}{6}(y-x) \ell(x) \\
& \geq \frac{1}{4}(y-x) r .
\end{aligned}
$$

5 Proof of the auxiliary lemmas

Proof of Lemma 2.3. The cone C_{1} intersects the plane $\pi\left(a_{2}\right)$ and $C_{1} \cap \pi\left(a_{2}\right)$ is a homothetic copy of the base B. This homothetic copy and $B\left(C_{2}\right)$ are disjoint and so they can be separated in $\pi\left(a_{2}\right)$ by a line ℓ. For $i=1,2$ let ℓ_{i} be the line that is the intersection of π with the affine hull of $v\left(C_{i}\right)$ and ℓ. The strip between ℓ_{1} and ℓ_{2} separates $\pi \cap C_{1}$ and $\pi \cap C_{2}$. Its width is at least a_{2}, as one can easily see using Fact 2.1.

Proof of Lemma 2.4. We show first that there is at most one cone $C^{*} \in \mathcal{C}^{+}$ with $a\left(C^{*}\right)>2 r$. If there were two, C_{1} and C_{2}, then

$$
\operatorname{dist}\left(C_{1} \cap \pi, C_{2} \cap \pi\right) \geq 2 r
$$

by the avoidance lemma (Lemma 2.3). But since $r D$ lies in the $2 r$-neighborhood (in π) of $C_{1} \cap \pi, C_{2}$ cannot intersect $r D$, a contradiction.

Next, let $C_{1}, \ldots, C_{m} \in \mathcal{C}^{+}$be the cones intersecting $r D$. We are done if $m \leq 1$. For $m \geq 2$ we may assume $a\left(C_{i}\right) \leq 2 r$ for all $i \geq 2$. For each $i=2, \ldots, m$ there is a point $p_{i} \in r D \cap \partial C_{i}$. Since for $i \geq 2, \pi \cap C_{i}$ is a copy of the base B scaled by a factor between $1-2 r$ and 1 , Fact 2.2 implies the existence of a planar wedge $K_{i} \subset \pi$, with apex at p_{i} and angle 60 degrees, such that $G_{i}=\left(p_{i}+\left(\frac{1}{2}-r\right) D\right) \cap K_{i}$ lies completely in C_{i}.

An elementary computation (using $r \leq \frac{1}{12}$) shows that G_{i} intersects the boundary of the disk $\frac{1}{2} D$ in an arc longer than 0.15π. (We omit the details of this argument.) Since these arcs are disjoint, there are at most $\frac{\pi}{0.15 \pi}=6.66 \ldots$ of them. Thus $m \leq 7$ follows.

Proof of Lemma 2.5. Let $C_{0}, C_{1}, \ldots, C_{m} \in \mathcal{C}$ be the cones intersecting the cylinder $\operatorname{Cyl}(R, \alpha R, 0)$ with $a_{1} \geq a_{2} \geq \cdots \geq a_{m}$.

We show first that $a_{i}<2 R$ for every i. This is satisfied if $a_{i} \leq \alpha R$, so suppose $a_{i}>\alpha R$. In this case $C_{i} \cap \pi(\alpha R)$ intersects the cylinder $\operatorname{Cyl}(R, \alpha R, 0)$ so the distance between $C_{i} \cap \pi(\alpha R)$ and $C_{0} \cap \pi(\alpha R)$ is at most $R-\frac{\alpha}{2} R$. The avoidance lemma applied to C_{i} and C_{0} in the plane $\pi(\alpha R)$ shows that

$$
\operatorname{dist}\left(C_{i} \cap \pi(\alpha R), C_{0} \cap \pi(\alpha R)\right) \geq a_{i}-\alpha R
$$

So we have $a_{i} \leq R+\frac{\alpha}{2} R<2 R$.
With $a_{i}<2 R$ proved, Lemma 2.4 applies and shows that $m \leq 6$.
Next we want to define r whose existence is stated in the lemma. If $a_{1} \leq \beta R$, then $r=R$ will clearly do. So we suppose $a_{1}>\beta R$.

We call an index $j \in\{1, \ldots, m-1\}$ a big drop if

$$
a_{j+1} \leq \frac{2 \beta}{2+\alpha} a_{j}
$$

First we assume that there is a big drop, and let j be the first big drop (that is, no $i<j$ is a big drop). Then, for all $i<j$,

$$
a_{i+1}>\frac{2 \beta}{2+\alpha} a_{i}, \text { implying } a_{j}>\left(\frac{2 \beta}{2+\alpha}\right)^{j-1} a_{1}>\left(\frac{2 \beta}{2+\alpha}\right)^{j-1} \beta R .
$$

In this case $r=\frac{2 a_{j}}{2+\alpha}$ will do. Indeed, for $i>j$ we have $a_{i} \leq a_{j+1} \leq \beta r$, and thus C_{i} lies completely above the considered cylinder $\operatorname{Cyl}(r, \alpha r, \beta r)$. For $i \leq j$, the avoidance lemma (applied in $\pi(\alpha r)$) and Fact 2.1 show that $C_{i} \cap \pi(\alpha r)$ is at least at a distance of

$$
\left(a_{i}-\alpha r\right)+\frac{\alpha}{2} r \geq a_{j}-\frac{\alpha}{2} r=r
$$

from the axis of C_{0}. This implies that C_{i} does not intersect the interior of $\operatorname{Cyl}(r, \alpha r, 0)$. Also, $r>\left(\frac{2 \beta}{2+\alpha}\right)^{j} R \geq\left(\frac{2 \beta}{2+\alpha}\right)^{5} R$ since $j \leq m-1 \leq 5$.

Next, we assume that there is no big drop. Then $r=\frac{2 a_{m}}{2+\alpha}$ will do. Indeed, in this case C_{i} is disjoint from the interior of $\operatorname{Cyl}(r, \alpha r, 0)$ for each $i \geq 1$. This can be checked the same way as in the previous paragraph. Finally,

$$
r>\left(\frac{2 \beta}{2+\alpha}\right)^{m} R \geq\left(\frac{2 \beta}{2+\alpha}\right)^{6} R
$$

Acknowledgment. For their hospitality and support we thank CNRS, and the universitues of Jussieu and Marne-la-Vallée where most of the research reported here took place. We are also grateful to W. Kuperberg for useful and inspiring comments and for careful reading of the manuscript.

References

[1] U. Betke, M. Henk, Densest lattice packings of 3-polytopes, Comput. Geom. 16 (2000), 157-186.
[2] A. Bezdek, On the density of packings of congruent bodies, in: F. Glatz ed., Lectures at the Hungarian Academy of Sciences, MTA Press, 1998, 117-126 (in Hungarian).
[3] A. Bezdek, W. Kuperberg, Packing space with convex cones, manuscript, (2006).
[4] L. Danzer, B. Grunbaum, V. Klee, Helly's theorem and its relatives, in: V. Klee ed., Proc. Symp. Pure Math., Vol VII, Convexity, AMS Providence RI, 1963.
[5] W. Kuperberg, private communication (2001).
[6] H. Minkowski, Dichteste gitterformige Lagerung kongruenter Körper, Nachr. K. Ges. Wiss. Göttingen, Math.-Phys. KL (1904), 311-355, also in: Gesammelte Abhandlungen vol. II, 3-42, Leipzig 1911.

[^0]: *Supported by Hungarian National Foundation Grants T 046246 and T 037846.

