
TENSORS, COLOURS, OCTAHEDRA

IMRE BÁRÁNY

Abstract. Several theorems in combinatorial convexity admit
colourful versions. This survey describes old and new applications
of two methods that can give such colourful results. One is the
octahedral construction, the other is Sarkaria’s tensor method.

1. Introduction

Theorems of Carathéodory, Helly, and Tverberg are classical results
in combinatorial convexity. They all have coloured versions. Some
others involve colours directly. For instance in Kirchberger’s theorem
[16], the elements of a finite set X ⊂ Rd are coloured Red and Blue,
and the statement is that the Red and Blue points can be separated
by a hyperplane if and only if for every Y ⊂ X with |Y | ≤ d + 2, the
Red and Blue points in Y can be separated by a hyperplane.

The aim of this paper is to describe and explain old and new appli-
cations of two methods that have turned out to be useful when proving
such colourful results. One is the octahedral construction, discovered
and first used by László Lovász in 1991, which appeared in [4]. The
other is Karinbir Sarkaria’s tensor method, originally from [26] and
developed further in [5].

In the next section Tverberg’s theorem and its colourful version are
presented. The octahedral construction is given in Section 3 with ap-
plications followed in later sections.

2. Tverberg’s theorem and its Coloured Version

Tverberg’s theorem is a gem, one of my favourites. Here is what it
says.

Theorem 2.1. Assume d ≥ 1, r ≥ 2 and X ⊂ Rd has (r−1)(d+1)+1
elements. Then X has a partition into r parts X1, . . . , Xr such that∩r

1 conv Xi ̸= ∅.

The number (r − 1)(d + 1) + 1 is best possible here: for a general
position X with one fewer element, the affine hulls of an r-partition do
not have a common point (by counting dimensions).
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sions, tensors, octahedra.
1



2 IMRE BÁRÁNY

The case r = 2 is Radon’s theorem from 1922 [22] that has a simple
proof: Given x ∈ Rd we write (x, 1) for the (d+ 1)-dimensional vector
whose first d components are equal to those of x, and the last one is
1. This time |X| = d+ 2 so the vectors (x, 1) ∈ Rd+1 have a nontrivial
linear dependence

∑
α(x)(x, 1) = (0, 0). Letting X1 = {x ∈ X :

α(x) ≥ 0} and X2 = {x ∈ X : α(x) < 0} is the partition needed.
Indeed, defining α =

∑
x∈X1

α(x) and α∗(x) = α(x)/α for x ∈ X1 and
α∗(x) = −α(x)/α for x ∈ X2, we have convex combinations in

z =
∑
x∈X1

α∗(x)x =
∑
x∈X2

α∗(x)x

showing that z ∈ conv X1

∩
conv X2.

There are several proofs of Tverberg’s theorem, for instance in Tver-
berg [30, 31], Tverberg and Vrećica [32], Roudneff [24], Sarkaria [26],
Bárány and Onn [5], Zvagelskii [35], none of them easy. We will give
another proof in Section 8 which is from Arocha et al. [1].

The coloured version of Tverberg’s theorem follows now.

Theorem 2.2. For every d ≥ 1 and r ≥ 2 there is t = t(r, d) with
the following property. Given sets C1, . . . , Cd+1 ∈ Rd (called colours),

each of size t, there are r disjoint sets S1, . . . , Sr ⊂
∪d+1

1 Ci such that
|Sj ∩ Ci| = 1 for every i, j and

∩r
1 conv Sj ̸= ∅.

In other words, given colours C1, . . . , Cd+1 ⊂ Rd of large enough
size, there are r disjoint and colourful sets Sj whose convex hulls have
a point in common. Colourful means that Sj is a transversal of the Ci,
that is, Sj contains one element from each Ci. The need for this result
emerged in connection with the halving plane problem (c.f. [3]). It
was proved there that t(3, 2) is finite. Shortly afterward it was proved
by Bárány and Larman [4] that t(r, 2) = r for all r, clearly the best
possible result. The same paper presents Lovász’s proof that t(2, d) = 2
for all d, the first application of the octahedral method. To simplify
notation we write [k] for the set {1, 2, . . . , k}.

3. The octahedral construction

Proof of t(2, d) = 2. We have Ci = {ai, bi} ⊂ Rd, i ∈ [d + 1]. Note
that we may exchange the names of ai and bi later. We want to choose
a transversal T from C1, . . . , Cd+1 such that the convex hulls of T and
of the complementary transversal T have a point in common. For this
purpose let

Qd+1 = conv {±e1, . . . ,±ed+1}
be the standard octahedron in Rd+1 (the ei are the usual basis vectors).
We define a map f : ∂Qd+1 → Rd by setting f(ei) = ai and f(−ei) = bi,
and then extend f simplicially to ∂Qd+1, that is, to the facets of Qd+1.
Note that f maps the facets of Qd+1 to the convex hull of a transversal
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T exactly, and the opposite facet is mapped to conv T . So what we
need is a pair of opposite facets whose images intersect.

This cries out for the Borsuk-Ulam theorem: ∂Qd+1 is homeomor-
phic to Sd and so f is an Sd → Rd map. By a variant of Borsuk-Ulam
there are antipodal points z,−z ∈ ∂Qd+1 with f(z) = f(−z). If z lies
on a facet F , then −z lies on the opposite facet F . For simpler writing
assume that F = conv {e1, . . . , ed+1}, then F = conv {−e1, . . . ,−ed+1},
and we see that conv {a1, . . . , ad+1} and conv {b1, . . . , bd+1} have f(z) =
f(−z) as a common point.

Actually, more is true: if z =
∑d+1

1 γiei, then −z =
∑d+1

1 γi(−ei),

and the common point is
∑d+1

1 γiai =
∑d+1

1 γibi. Thus the common
point comes with the same coefficients in the convex combinations. �

This is the octahedral method. The basic idea is that facets of the oc-
tahedron correspond to transversals of C1, . . . , Cd+1, transversals have
the structure of ∂Qd+1, and disjoint transversals come from opposite
facets, and the next step is the use of algebraic topology like the Borsuk-
Ulam theorem above.

Unfortunately the method does not work for r ≥ 3. It was conjec-
tured in [4] that t(r, d) = r for all r and d. Finiteness of t(r, d) was
proved by Živaljević and Vrećica [34] using equivariant topology. Their
result is that t(r, d) ≤ 2r − 1 if r is a prime (which implies finiteness
of t(r, d) for all r). The same was proved by different methods by
Björner et al. [8] and by Matoušek [18]. More recently Blagojević,
Matschke, and Ziegler [9] showed that t(r, d) = r if r + 1 is a prime
which is again best possible. The strange primality condition in all
cases is needed because cyclic groups of prime order behave better in
equivariant topology. But the theorem is probably true for every r, the
primality condition is required for the method and not for the problem.
It is however disappointing (for a convex geometer) that a completely
convex (or linear, if you wish) problem does not have a direct con-
vex (or linear) proof, and topology seems a necessity here. Finding a
purely geometric proof remains a challenge. The interested reader may
wish to read Günter Ziegler’s fascinating article [33] about Tverberg’s
theorem and its colourful version.

Remark. Quite recently, Pablo Soberón [27] has found another (and
simpler) proof of t(2, d) = 2. It starts with the observation that the

vectors ai−bi, i ∈ [d+1] are linearly dependent, so
∑d+1

1 γi(ai−bi) = 0
for some not all zero γi. Some γi may be negative, but then we exchange
the names of ai and bi which makes γi positive. Then

∑
γiai =

∑
γibi.

Assuming as we can that
∑

γi = 1,
∑

γiai =
∑

γibi is a common
point of the convex hulls of transversals a1, . . . , ad+1 and b1, . . . , bd+1.
Note that even the coefficients are the same. So this method gives
exactly the same result as the octahedral construction. A little extra
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is the efficient algorithm that follows from this proof. The paper [27]
gives precise conditions for the existence of colourful partitions whose
convex hulls have a common point with equal coefficients. The proof
uses tensors as in Sarkaria’s lemma which will be described in Section 7.

4. Colourful Carathéodory theorem

Carathéodory’s classical theorem says in essence that being in the
convex hull has a very finite reason. Precisely, if A ⊂ Rd and a ∈
conv A, then a ∈ conv B for some B ⊂ A with |B| ≤ d + 1. The
colourful version of this theorem is an old result of mine [2].

Theorem 4.1. If A1, . . . , Ad+1 ⊂ Rd and a ∈
∩d+1

1 conv Ai, then there
is a transversal ai ∈ Ai for all i, such that a ∈ conv {a1, . . . , ad+1}.

The colourful version contains the original one: simply take Ai = A
for every A. A natural question is how many such transversals are
there, and the natural setting for the question is when a is the origin
(which makes no difference), the points in

∪d+1
1 Ai together with the

origin are in general position, and each Ai has exactly d+ 1 elements.
Of course, 0 /∈

∪d+1
1 Ai, and we may assume that each Ai ⊂ Sd−1, the

unit sphere of Rd. We call a transversal {a1, . . . , ad+1} special if the
origin lies in its convex hull. Define τ(d) as the minimal number of
special transversals under these conditions.

A neat construction from Deza et al. [11] shows that τ(d) ≤ d2 + 1
and it is not hard to check that τ(2) = 5. Carathéodory’s theorem has
a cone hull or positive hull version, slightly stronger than the convex
one. We write pos A for the cone hull of the elements in A ⊂ Rd, that
is, pos A is the set of vectors

∑n
1 γiai with γi ≥ 0 and ai ∈ A for all

i ∈ [n] and all n ∈ Z.

Theorem 4.2. If A1, . . . , Ad ⊂ Rd and a ∈
∩d

1 pos Ai, then there is a
transversal ai ∈ Ai for all i such that a ∈ pos {a1, . . . , ad}.

It is quite easy to check (or see [2] for the proof) that this result has
the following consequence.

Corollary 4.3. If a ∈ Rd, A1, . . . , Ad ⊂ Rd, and 0 ∈
∪d

1 conv Ai, then
there is a transversal ai ∈ Ai for all i such that 0 ∈ conv {a, a1, . . . , ad}.

The Corollary shows immediately that every point in
∪d+1

1 Ai be-
longs to at least one special transversal, so τ(d) ≥ d + 1. The octahe-
dral construction has been used to improve this bound to a quadratic
one, in several papers. In particular, Bárány and Matoušek [6] show
τ(d) ≥ d(d + 1)/5 and τ(3) = 10 (which is best possible), Stephen
and Thomas [29] prove τ(d) ≥ (d + 2)2/4, and Deza et al. [12] give
τ(d) ≥ (d + 1)2/2, which is further improved to τ(d) ≥ 1

2
d2 + 7

2
d − 8

when d ≥ 4 by Deza, Meunier, and Sarrabezolles in [13].
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How can the octahedral construction help here? Well, it is clear
that a1, . . . , ad+1 is a special transversal iff −ad+1 ∈ pos {a1, . . . , ad}.
Fix now the special transversal a1, . . . , ad+1 and consider a partial
transversal b1 ∈ A1, . . . , bd ∈ Ad with bi different from ai for all i.
The octahedral construction defines a map f : ∂Qd → Rd by setting
f(ei) = ai, f(−ei) = bi (for all i), and then extend it simplicially to
∂Qd. As 0 /∈ f(∂Qd) by the general position assumption, we can define
g(x) = f(x)/∥f(x)∥. The map g : ∂Qd → Sd−1 is continuous and is
essentially an Sd−1 → Sd−1 map, so if it takes some (non-critical) value,
then it takes it at least twice, or else it takes every value at least once.

More precisely, if the degree of g is nonzero, then g takes every
value in Sd−1 at least once, and if its degree is zero, then it takes
every non-critical (in the sense of Sard’s Lemma, see Milnor’s book
[19]) value at least twice. But g takes the value −ad+1 at least once,
since −ad+1 ∈ g(∂Qd). Moreover, this value is non-critical because
of the general position assumption. Writing T = {a1, . . . , ad+1} and
B = {b1, . . . , bd} we have established the following fact.

Lemma 4.4. Under the above condition either T ∪B contains another
special transversal, different from T , or every bd+1 ∈ Ad+1 \ {ad+1}
belongs to a special transversal from T ∪B.

This consequence of the octahedral construction is used, with varying
outcome, in all quadratic lower bounds to τ(d). But the lemma also
leads to a completely combinatorial problem: determine the minimum
number of edges a hypergraph H can have provided it is a (d + 1)-
partite (d+1)-uniform hypergraph with partition classes A1, . . . , Ad+1,
|Ai| = d+1 for each i, and satisfies the following conditions (mimicking
those of the special transversals):

• for every a ∈
∪d+1

1 Ai there is T ∈ H with a ∈ T
• for every i and for every T ∈ H with T ∩ Ai = ai, and for every
B = {b1, . . . , bi−1, bi+1, . . . , bd+1} with B disjoint from T , either there is
T ∗ ∈ H, T ∗ ̸= T with T ∗ ⊂ T ∪B, or for every a ∈ Ai there is T ∗ ∈ H
with a ∈ T ∗ and T ∗ \ {a} ⊂ T ∪B.

Here the first condition comes from Corollary 4.3, and the second
from Lemma 4.4 as the role of ad+1 can be taken be an arbitrary a ∈∪

Ai. Note however that the condition 0 ∈ conv Ai is lost in this
combinatorial setting.

Open question 4.5. For a hypergraph H with these properties,
does |H| have to have at least d2+1 edges? 1 Even with no hypergraph,
is it true that τ(d) = d2 + 1?

1This question has recently been settled in the affirmative by Pauline
Sarrabezolles [25], implying τ(d) = d2 + 1.
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5. Colourful Carathéodory strengthened

The following result is a generalization of Theorem 4.1. It was found
at the same time on two different continents, and was published by
Holmsen, Pach, Tverberg [15] and by Arocha, Bárány, Fabila, Bracho,
Montejano [1]. The proof is based on the octahedral construction. In
both cases the original target was a colourful Helly type theorem on
the sphere, see [15] or [1].

Theorem 5.1. If A1, . . . , Ad+1 ⊂ Rd, none of them empty and a ∈
conv (Ai ∪ Aj) for all distinct i, j ∈ [d+ 1], then there is a transversal
ai ∈ Ai for all i, such that a ∈ conv {a1, . . . , ad+1}.

Proof. We identify a with the origin. We can assume that every Ai

is finite. Let T be the transversal with ai ∈ Ai for i ∈ [d + 1] whose
convex hull △ = conv T is closest to the origin. Let z ∈ △ be this
closest point. If z = 0 we are done, so assume z ̸= 0, and let H be the
hyperplane passing through, and orthogonal to, z. Write H+ for the
closed halfspace bounded by H and not containing 0. As z is on the
boundary of the simplex △, it is in the convex hull of a proper subset
of T , say of {a1, . . . , ad}.

We claim that z lies in the relative interior of conv {a1, . . . , ad}. As-
sume on the contrary that z is in the convex hull of {a1, . . . , ad−1}, say.
There is a point b ∈ (Ad ∪ Ad+1) \H+ as otherwise Ad ∪Ad+1 ⊂ H+ so
their convex hull does not contain the origin, contrary to the condition
of the theorem. Now {a1, . . . , ad−1, b} can be extended to a transver-
sal T ∗ whose convex hull of contains the segment [z, b]. But [z, b],
and consequently conv T ∗, contains a point closer to the origin than z,
contradicting the choice of T .

Note that Ad+1 ⊂ H+ since replacing ad+1 by any b ∈ Ad+1 \ H+

would give a transversal whose convex hull is closer to the origin than
conv T . Let H0 be the hyperplane parallel to H and containing the ori-
gin, and H− be the closed halfspace bounded by H0 and not containing
△.

It follows that there is bi ∈ Ai ∩ H− for every i ∈ [d], as otherwise
Ai ∪ Ad+1 lies in the complement of H− and is then separated from
the origin. We can apply the octahedral construction now. Define
f : ∂Qd → Rd by setting f(ei) = ai, f(−ei) = bi and extend f
simplicially to the facets of Qd.

Again, ∂Qd is an Sd−1 so removing f(∂Qd) from Rd results in an
unbounded connected component and finitely many bounded connected
components (by the Jordan curve theorem in higher dimensions). The
unbounded component contains the interior of H+. The segment [0, z)
is disjoint from f(∂Qd) so it lies in some connected component Ω. It is
clear that Ω is not the unbounded connected component.

Consider now a point a ∈ Ad+1, and the halfline L starting at 0 in
direction −a. L starts in Ω and ends up in the unbounded component.
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H

H0

z

0

a1
a2

a3

b1

b2

b3

Figure 1. Figure for Theorem 6.1, almost works for
Theorem 5.1. Only parts of f(∂Qd) are drawn.

So it must intersect f(∂Qd) at some point v = L ∩ f(F ) where F is a
facet of ∂Qd. Then v is in the convex hull of a transversal of A1, . . . , Ad

(even of {a1, b1}, . . . , {ad+1, bd+1}). Since 0 ∈ [a, v], the convex hull of
this partial transversal and a contains the origin, contrary to the choice
of T . �

The theorem has d(d+ 1)/2 conditions, one for each pair i, j. All of
them are needed as the following example shows. Assume the points
a, x1, . . . , xd+1, y are in general position and a ∈ conv {x1, . . . , xd+1},
and let Ai = {x1, . . . , xd+1} for i ∈ [d−1] and Ad = Ad+1 = {y}. There
is no transversal whose convex hull would contain a yet for every pair
i, j apart from d, d + 1, a ∈ conv (Ai ∪ Aj). The same example shows
that the conditions a ∈ conv (Ai ∪ Aj ∪ Ak) for every triple i, j, k do
not work. More disappointingly, the result does not extend to the cone
hull, as shown by a very simple example in R2.

Open question 5.2. It would be interesting to design an effective
algorithm that, under the conditions of Theorem 4.1, finds a colourful
simplex whose convex hull contains the origin. The proof of Theo-
rem 4.1, and also that of Theorem 5.1 only gives the existence of such
a simplex. So in fixed dimension they give an algorithm with at most
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(d+ 1)d+1 steps, which is way too many when dimension is part of the
input. For further information about this question see Bárány, Onn [5].

6. Colourful Carathéodory for connected compacta

A theorem of Fenchel [14] asserts that if a compact set A ⊂ Rd is
connected, then a ∈ conv A implies the existence of B ⊂ A with a ∈
conv B and |B| ≤ d. So the Carathéodory number can be lowered. The
colourful version of Fenchel’s result is given in Bárány and Karasev [7].
Its proof is based on the octahedral construction, again. Recall that
if A ⊂ Rd is connected and compact, then for every hyperplane H
disjoint from A, one of the open halfspaces bounded by H contains A.

Theorem 6.1. Assume A1, . . . , Ad ⊂ Rd are compact connected sets
with 0 ∈

∩d
1 conv Ai. Then there is a transversal ai ∈ Ai (i ∈ [d] such

that 0 ∈ conv {a1, . . . , ad}.

The proof is similar to the previous one. Choose a transversal T =
{a1, . . . , ad} whose convex hull △ is closest to the origin, and let z ∈ △
be this closest point. If z = 0 we are done, so suppose z ̸= 0. It is easy
to see (we omit the details) that △ is a d− 1-dimensional simplex and
that z lies in the relative interior of S.

Let H be the hyperplane passing through, and orthogonal to, z,
clearly △ ⊂ H. Again, let H0 be the hyperplane parallel to H and
containing the origin. As Ai is connected, there is a point bi ∈ H0 ∩Ai

for every i ∈ [d]. The octahedral construction applies the same way
as before. So we have f : ∂Qd → Rd, the simplicial extension from
the vertices f(ei) = ai, f(−ei) = bi. This time f(∂Qd) lies between
H and H0, and evidently 0 /∈ f(∂Qd). Again, removal of f(∂Qd) from
Rd yields connected components, and 0 is in the unbounded one. But
the points on the segment [0, z), close enough to z lie in a bounded
component. This shows that the open segment (0, z) intersects f(∂Qd).
The intersection point is in the convex hull of a transversal and closer
to the origin than z. Contradiction. �

In [7] a second (and interesting) proof of the theorem is given which
uses vector bundles and has some further consequences.

7. Sarkaria’s lemma

Assume X1, X2, . . . , Xr ⊂ Rd are finite sets, r ≥ 2. There is a good
necessary and sufficient condition for

∩r
1 conv Xi = ∅ which we now

describe.

Theorem 7.1. Under the above conditions,
∩r

1 conv Xi = ∅ if and only
if there are closed halfspaces D1, . . . , Dr with conv Xi ⊂ Di for every
i ∈ [r] such that

∩r
1Di = ∅.



TENSORS, COLOURS, OCTAHEDRA 9

The proof is easy. One direction is trivial. For the other one set
Ki = conv Xi. The case r = 2 is just the separation theorem for convex
sets. For larger r we have K1 ∩

∩r
2 Ki = ∅ so by separation there is a

closed halfspace D1 containing K1 with D1∩
∩r

2Ki = ∅. This way K1 is
replaced by D1, and the same way K2 is replaced by D2, etc. After step

j−1 we have
∩j−1

1 Di∩
∩r

j Ki = ∅ and soKj∩
(∩j−1

1 Di ∩
∩r

j+1Ki

)
= ∅.

Here Kj is convex, compact and
∩j−1

1 Di ∩
∩r

j+1Ki is convex so the
separation theorem applies. �

The case when
∩r

1Di = ∅ can be characterized by duality. Assume
Di = {x ∈ Rd : aix ≤ αi}.

Theorem 7.2. With the above notation
∩r

1Di = ∅ if and only if
(0,−1) ∈ pos {(ai, αi) : i ∈ [r]}.

Sketch of proof. The condition
∩r

1 Di = ∅ is equivalent to ”the
system of linear inequalities aix ≤ αi, i ∈ [r] has no solution”. Then
Farkas’s lemma proves the theorem. �

This an outer or dual type characterization. Sarkaria’s lemma is an
inner characterization of the fact that

∩k
1 conv Xi = ∅. We need an

artificial tool: choose vectors v1, . . . , vr ∈ Rr−1 so that their unique (up
to a multiplier) linear dependence is v1 + · · · + vr = 0. Suppose that
X1, X2, . . . , Xr ⊂ Rd are finite sets, and write X =

∪r
1Xi. We assume

further that the Xis are disjoint. (Alternatively, we can consider X a
multiset.) Each x ∈ X comes from a unique Xi = Xi(x). With each
such x we associate the tensor

x = vi ⊗ (x, 1) ∈ Rn

where n = (r− 1)(d+1). The tensor x can be thought of as an (r− 1)
by (d + 1) matrix as well. Here is Sarkaria’s lemma [26], in the form
given in Bárány and Onn [5]. (Originally it used number fields instead
of tensors.)

Theorem 7.3. Under the above conditions,
∩r

1 conv Xi = ∅ if and only

if 0 /∈ conv X.

Proof. We prove the theorem by showing that 0 ∈ conv X iff∩r
1 conv Xi ̸= ∅.
If 0 ∈ conv X, then there are α(x) ≥ 0 for all x ∈ X such that∑

x∈X

α(x) = 1 and
∑
x∈X

α(x)x = 0.
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Replacing x by vi ⊗ (x, 1) gives

0 =
∑
x∈X

α(x)x =
r∑

i=1

∑
x∈Xi

α(x)vi ⊗ (x, 1)

=
r∑

i=1

vi ⊗
∑
x∈Xi

α(x)(x, 1).

Set zi =
∑

x∈Xi
α(x)(x, 1) ∈ Rd+1 for i ∈ [r]. We claim that z1 =

z2 = · · · = zr. By symmetry it suffices to show that z1 = z2. By
the choice of the vectors v1, . . . , vr there is u ∈ Rr−1 such that uv1 =
1, uv2 = −1 and uvi = 0 for all i > 2. Multiplying the last formula by
u from the left gives 0 =

∑r
i=1 uvi ⊗ zi = z1 − z2.

This implies, in particular, that the last coordinate of each zi is
equal to 1/r. Thus yi =

∑
x∈Xi

rα(x)x is a convex combination of the
elements of Xi, and y = y1 = · · · = yr. Consequently y is a common
element of each conv Xi.

The steps of this proof can be reversed easily showing that condition∩r
1 conv Xi ̸= ∅ implies 0 ∈ conv X. �
Remark. Note that when r = 2, v1 = 1 and v2 = −1, Sarkaria’s

lemma gives X1 resp. X2 as the set of elements with positive (and
negative) coefficients in the linear dependence of (x1, 1), . . . , (xd+2, 1).
Sarkaria’s tensor method is a direct and beautiful generalization of the
proof of Radon’s theorem.

8. Kirchberger generalized

Recall Kirchberger’s theorem [16] from the first section with Red and
Blue points. We want to have more colours this time, so we give the
theorem in a slightly different form. The elements of a finite sets X ⊂
Rd are coloured Red or Blue which is simply a partition of X into X1,
(the Red points) and X2, (the Blue ones). We say that X is separated
along the colours if conv X1∩conv X2 = ∅. Now Kirchberger’s theorem
says that X is separated along the colours iff every subset of X, of size
at most d+ 2, is separated along the colours.

The extension to more colours is quite natural now. Assume a finite
set (or multiset) X ⊂ Rd is coloured with r ≥ 2 colours, that is, there
is a partition X = X1 ∪ · · · ∪ Xr. We say that X is separated along
the colours if

∩r
1 conv Xi = ∅. The colourful version of Kirchberger’s

theorem is a result of A. Pór [21]:

Theorem 8.1. With the above notation X ⊂ Rd is separated along the
colours if and only if every subset of X of size at least (r−1)(d+1)+1
is separated along the colours.

Note that r = 2 is the original Kirchberger theorem. Theorem 8.1
can be proved using Theorem 7.2, for instance. But here we aim for
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more. Set n = (r− 1)(d+1) and assume that, for every i ∈ [r] and for
every j ∈ [n+1], a finite set Xi,j ⊂ Rd is given (which may be empty).
This can be thought of as an r by (n+1) matrix whose i, j-entry is the
set Xi,j.

G1 G2 . . . Gn+1

X1 X1,1 X1,2 . . . X1,n+1

X2 X2,1 X2,2 . . . X2,n+1
...

...
...

...
...

Xr Xr,1 Xr,2 . . . Xr,n+1

We call the sets Xi =
∪n+1

j=1 Xi,j colours and the sets Gj =
∪r

i=1Xi,j

groups, (nothing to do with groups in algebra though). A transversal
of this system is a set Y = {y1, y2, . . . , yn+1} if yj ∈ Gj for every j.
In the multiset case, of course, every yj ∈ Y comes from a uniquely
determined Xi,j ⊂ Gj. The following result is form Arocha et al. [1].

Theorem 8.2. Under the above conditions, if every transversal is sep-
arated along the colours, then so is some group Gj.

Proof. We use Sarkaria’s lemma. A transversal Y is separated
along the colours iff 0 /∈ conv Y (where Y ∈ Rn). If 0 /∈ conv Y for all
transversals, then by Theorem 4.1, we can’t have 0 ∈ conv Gj for all
j, meaning that 0 /∈ conv Gj for some j ∈ [n+ 1]. Then, by Sarkaria’s
lemma again, Gj is separated along the colours.

Note that using Theorem 5.1 instead of colourful Carathéodory, one
gets a little more, namely, two groups whose union is separated along
the colours. �

We give two applications of this result. The first is the colourful
Kirchberger Theorem 8.1. The finite X is partitioned as X1 ∪ · · · ∪Xr

and we define Xi,j = Xi for all j = [n+1]. A transversal Y in this case
is sequence of n+1 elements of X (possibly with repetitions), and Y is
separated along the colours simply means that

∩r
1 conv (Y ∩Xi) = ∅.

If all transversals are separated along the colours, then so is one group
by the theorem we just proved. But all groups are the same, which
means that X1, . . . , Xr are separated along the colours.

The second application is a proof of Tverberg’s theorem. We are
given a set X = {x1, . . . , xn+1} in Rd, n = (r − 1)(d + 1) and we are
going to find an r-partition X1 ∪ · · · ∪ Xr of X with

∩r
1 conv Xi ̸= ∅.

Define Xi,j = {xj} for all i ∈ [r]. As each group is a single point
repeated r times, no group is separated along the colours. Theorem 8.2
implies then that some transversal, say Y , is not separated along the
colours. Note that each yj ∈ Y comes from a unique Xi,j. For a fixed
i, let Xi be the set of yj ∈ Y that come from Xi,j. This is a partition of
X. The fact that Y is not separated along the colours means exactly
that

∩r
1 conv Xi ̸= ∅, as required.
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Open question 8.3. Give an effective algorithm to find a Tverberg
partition of a set X ⊂ Rd with (r − 1)(d+ 1) + 1 elements. Note that
a positive answer to Open question 4.5 would solve this problem, via
Sarkaria’s lemma.

9. Tverberg’s theorem with tolerance

A partition of a finite setX ⊂ Rd with partsX1, . . . , Xr has tolerance
t if for every set T ⊂ X of size t

r∩
1

conv (Xi \ T ) ̸= ∅.

A partition with tolerance with t = 0 is just a Tverberg partition. The
question is what size of X, as a function of d, r and t, guarantees the
existence of an r-partition with tolerance t. This question is open even
in the case r = 2, t = 1 (see [28] for more information). Recently
Soberón and Strausz [28] have given an upper bound on this number.
Their argument uses Sarkaria’s lemma, that is why we present it here.

Theorem 9.1. Suppose d ≥ 1, r ≥ 2, t ≥ 0 are integers. Every
X ⊂ Rd with at least (r− 1)(d+ 1)(t+ 1) + 1 elements has a partition
into r parts with tolerance t.

Note that the slightly weaker bound (t+1)[(r−1)(d+1)+1] follows
from Tverberg’s theorem directly.

It will be convenient to say that S ⊂ Rd captures the origin if 0 ∈
conv S, and S captures the origin with tolerance t if 0 ∈ conv (S \ T )
for every T ⊂ S with |T | ≤ t.

We need a definition and a lemma. Given S ⊂ S ′ ⊂ Rp and a group
G, an action of G on S ′ is said to be compatible with S if the following
holds:
• If A ⊂ S ′ captures the origin, then so does gA for every g ∈ G,
• Ga captures the origin for every a ∈ S.

Lemma 9.2. Assume p ≥ 1 and t ≥ 0 are integers, n = p(t + 1) + 1,
S = {a1, . . . , an} ⊂ Rd, and G is a finite group with |G| ≤ p. If there is
an action of G on a set S ′ which is compatible with S ⊂ S ′, then there
are gj ∈ G (for all j ∈ [n]) such that the set {g1a1, . . . , gnan} captures
the origin with tolerance t.

We prove the theorem first.

Proof of Theorem 9.1 Set n = (r − 1)(d + 1)(t + 1) + 1, X =
{x1, . . . , xn}, p = (r − 1)(d + 1), and let v1, v2, . . . , vr ∈ Rr−1 be the
vertices of a regular simplex centered at the origin. So α1v1 + · · · +
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αrvr = 0 iff α1 = · · · = αr. Then v1, . . . , vr satisfy the conditions of
Sarkaria’s lemma. Define

S ′ = {vi ⊗ (xj, 1) ∈ Rp : i ∈ [r], j ∈ [n]} and

S = {vr ⊗ (xj, 1) ∈ Rp : j ∈ [n]}.

There is a natural action of Zr (the cyclic group of order r) on S ′, given
by m(vi ⊗ (xj, 1)) = vi+m ⊗ (xj, 1) where i+m is taken mod r.

Next we check the conditions of Lemma 9.2. For each a ∈ S ′, Zra
captures the origin as

∑r
1 vi = 0. Suppose A is a subset of S ′ that

captures the origin. As the simplex with vertices v1, . . . , vr is regular,
the coefficients of the convex combination that give 0 for A work for
gA to give 0 again for every g ∈ Zr. Note that the condition d ≥ 1 is
needed as it implies p ≥ r = |G|.

So the lemma applies and gives mj ∈ Zk, (j ∈ [n]) such that, with
mj(vr ⊗ (xj, 1)) = vmj

⊗ (xj, 1) the set

Y = {m1(vr ⊗ (x1, 1),m2(vr ⊗ (x2, 1), . . . ,mn(vr ⊗ (xn, 1)}
= {vm1 ⊗ (x, 1), . . . , vmn ⊗ (xn, 1)}

captures the origin with tolerance t.
We are almost done. Define Xi = {xj : mj = 1} for i ∈ [r]. This

is an r-partition of X and with this partition the set Y is exactly the
set X that appears in Sarkaria’s lemma. As Y captures the origin
with tolerance t, for every T ⊂ X of size at most t, 0 ∈ conv (X \ T ).
Sarkaria’s lemma implies then that

∩r
1 conv (Xi\T ) ̸= ∅. SoX1, . . . , Xr

form an r-partition of X with tolerance t. �

Proof of the lemma. Let G = {g1, . . . , gq}, q ≤ p. We use in-
duction on r. The case t = 0 is the colourful Carathéodory Theo-
rem 4.1 with Ga1, . . . , Gan as colour classes. Suppose the lemma is
true for t − 1 but false for t. Given a vector (h1, . . . , hn) ∈ Gn define
h · S = {h1a1, . . . , hnan}. Since the lemma is false for r, for every
h ∈ Gn there is T ⊂ h · S with t points so that h · S \ T is separated
from the origin. So dist(0, conv (h · S \ T )) > 0.

For a given h ∈ Gn let D(h) denote the minimum of all such dis-
tances, so D(h) > 0. Choose h∗ ∈ G∗ so that D(h∗) is minimal
among all the D(h). Let T ∗ be the t-element subset of h∗ ·S for which
D(h∗) = dist(0, conv (h∗ · S \ T ∗)). Write △ = conv (h∗ · S \ T ∗), so
there is x ∈ △ which realizes this distance. Let H be the hyperplane
in Rp that contains x and is orthogonal to x. It follows that x is in the
convex hull of a set V ⊂ (h∗ · S \ T ∗) ∩ H with at most p elements.
Write U = h∗ · S \ V and let H− be the halfspace bounded by H and
containing the origin.

It is easy to see that U is compatible with the action of G, and
m = |U | ≥ pt + 1. The induction hypothesis yields a vector k ∈ G|U |

such that k · U captures the origin with tolerance t− 1. Observe that
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for each b ∈ U there is gi ∈ G such that gib ∈ H−. This follows
as the set Gb captures the origin for every b ∈ U . Consider the sets
(g1k) · U, . . . , (gqk) · U written as rows in the matrix below.

g1k1u1 g1k2u2 . . . g1kmum

g2k1u1 g2k2u2 . . . g2kmum
...

...
...

...
gqk1u1 gqk2u2 . . . gqkmum

By the previous observation, every column here contains an element
in H−. There are m ≥ pt + 1 columns and q ≤ p rows. By the
pigeonhole principle there is a g ∈ G such that (gk) · U has at least
t+ 1 elements in H−.

Next we define a new vector h ∈ Gn by setting hj = gkj if aj ∈ U
and hj = h∗

j otherwise. We claim that D(h) < D(h∗). Let T ⊂ h · S
be a set of at most t points such that 0 /∈ conv ((h · S) \ T ). Now
T cannot contain t − 1 or fewer points from (gh∗) · U , because then
h · S \ T would capture the origin. Thus T ⊂ (gh∗) · U and then
there is a point a ∈ H− ∩ ((gh∗) · U) that is not in T . It follows
that conv (V ∪ {a}) is closer to the origin than conv V . Thus indeed
D(h) < D(h∗) contradicting the minimality of D(h∗). �

Open question 9.3. Write T (d, r, t) for the smallest integer such
that every set X ⊂ Rd with T (d, r, t) points has an r-partition with
tolerance t. Theorem 9.1 shows that T (r, d, t) ≤ (r−1)(d+1)(t+1)+1.
What is the exact value of T (d, r, t)? Even the case t = 1 is open, the
best known lower bound is ⌊5d/3⌋+ 3 ≤ T (d, r, 1), cf [23] and [17].

Some recent results concerning T (d, r, t) for d ≤ 2 can be found in
Mulzer, Stein [20].
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and matching complexes. J. London Math. Soc., 45 (1944), 25–39.
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[31] H. Tverberg. A generalization of Radon’s theorem II. Bull. Austr. Math. Soc.,
24 (1981), 321–325.
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