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PLANAR POINT SETS WITH A SMALL NUMBER OF EMPTY
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Abstract

A subset A of a finite set P of points in the plane is called an empty polygon, if each
point of A is a vertex of the convex hull of A and the convex hull of A contains no other
points of P . We construct a set of n points in general position in the plane with only

≈ 1.62n2 empty triangles, ≈ 1.94n2 empty quadrilaterals, ≈ 1.02n2 empty pentagons, and

≈ 0.2n2 empty hexagons.

1. Introduction

Results. We say that a set P of points in the plane is in general position if
it contains no three points on a line.

Let P be a finite set of points in general position in the plane. We call a
subset A of k points in P an empty k-gon if the convex hull of A is a k-gon
containing no point of P \A.

Let gk(n) be the minimum number of empty k-gons in a set of n points
in general position in the plane. Horton [10] proved that gk(n) = 0 for any
k = 7 and any n ∈ N. The following bounds on gk(n), k = 3,4,5,6, have been
known:

n2 −O(n log n) 5 g3(n) 5 3771
2240

n2 = 1.683 . . . n2,

1
2
n2 −O(n) 5 g4(n) 5 976

448
n2 = 2.131 . . . n2,
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⌊
n− 4

6

⌋
5 g5(n) 5 393

320
n2 = 1.228 . . . n2,

g6(n) 5 666
2240

n2 = 0.297 . . . n2.

The upper bounds have been shown in [5], improving previous bounds of
[11, 3, 13]. The lower bound on g3(n) has been shown in [3], the lower bound
on g4(n) by Bárány (see [13]) and by Dumitrescu [5], and the lower bound
on g5(n) in [4]. In this paper we give the following improved upper bounds:

Theorem 1.

g3(n) 5
(

4 +
35
72

+
16
3

α− 16
3

β

)
p · n2 + o(n2) = 1.6195 . . . n2 + o(n2),

g4(n) 5
(

5 +
31
56

+ 8α− 16β +
16
3

γ

)
p · n2 + o(n2) = 1.9396 . . . n2 + o(n2),

g5(n) 5
(

3− 1
56

+
16
3

α− 16β +
32
3

γ

)
p · n2 + o(n2)

= 1.0206 . . . n2 + o(n2),

g6(n) 5
(

293
504

+
4
3
α− 16

3
β +

16
3

γ

)
p · n2 + o(n2) = 0.2005 . . . n2 + o(n2),

where

p =
3
π2

= 0.3039635 . . . ,

α =
∑

z=3 odd

1
z2

=
π2

8
− 1 = 0.2337005 . . . ,

β =
∑

z=3 odd

1
z22blog2 zc = 0.07582879 . . . ,

γ =
∑

z=3 odd

1
z24blog2 zc = 0.03210483 . . . .

Our construction seems to be the final one of the type developed in [13,
5], and is, perhaps, the best possible up to the additive o(n2)-factor. Several
exciting questions remain open. The most interesting is whether g6(n) > 0
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for sufficiently large n (e.g. see [7]). In other words, is it true that if P is
a finite set of points in general position in the plane with |P | large enough,
then P contains an empty hexagon. Another question is whether g3(n) =
(1 + ε)n2 holds for large enough n for some fixed ε > 0. This would be the
case if one could show that g5(n) > εn2 for some fixed ε > 0. These questions
have turned out to be more difficult than expected: for instance the innocent
looking g6(n) > 0 has been a challenge for more than 30 years now.

2. The construction

Our construction giving the upper bounds in Theorem 1 is a set ob-
tained from the grid

√
n×√n by a little perturbation (due to monotonicity

of gk(n) it suffices to prove Theorem 1 when n is a square of an integer).
Throughout the rest of the paper, n is a square of an integer, and Λ is the
grid {1, 2, . . . ,

√
n}× {1, 2, . . . ,

√
n}. The perturbed set will be denoted by

Λ∗. The construction of Λ∗ uses so-called Horton sets [12] which generalize
a construction of Horton [10] giving g7(n) = 0 for any n.

Horton sets. Let H be a finite set of points in general position in the plane
such that no two points have the same x-coordinate, and let h0, h1, . . . , hm

be the points of H listed by increasing x-coordinate. We say that a subset
H ′ j H lies far below a subset H ′′ j H (and H ′′ lies far above H ′), if the
entire set H ′′ lies above every line trough a pair of points of H ′ and the entire
set H ′ lies below every line trough a pair of points of H ′′. For 0 5 i < j, we
define a subset Hi,j of H as the set of points hk with k ≡ i (mod j). The
set H is called a Horton set if, for every j = 2, 4, 8, 16, . . . and every integer
i with 0 5 i < j/2, the set Hi,j lies far below or far above Hi+j/2,j . It was
shown in [12] that if H is Horton, then also each Hi,j , 0 5 i < j, is Horton.
Obviously, if H is Horton then also each contiguous segment of H (i.e., a set
of points hk of H with k0 5 k 5 k1) is Horton.

Construction of Λ∗. Set m :=
√

n−1 = 1 and ε := 1/(10m). We construct an
auxiliary random Horton set H = H(ε) of size m + 1 as follows. We choose
randomly and independently for each i, j, 0 5 i < j/2, 2 5 j = 2l 5 m, the
mutual position of the sets Hi,j , Hi+j/2,j (whose union is the set Hi,j/2):
the set Hi,j will lie with probability 1/2 far above Hi+j/2,j and with prob-
ability 1/2 far below Hi+j/2,j . For a given choice of mutual positions, we

define H as the set of points hk = (k, ε
∑blog2 mc

l=1 ±(m + 1)−l), k = 0, . . . , m,
where the choice of + or − at (m + 1)−l corresponds to the choice of mu-
tual position of those sets Hi,2l , Hi+2l−1,2l whose union Hi,2l−1 contains

hk (we take +(m + 1)−l in the sum if hk lies in that of the sets Hi,2l ,
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Hi+2l−1,2l which lies far above the other of these sets; otherwise we take

−(m + 1)−l). The x-coordinates of the points of H = H(ε) are 0, 1, . . . , m
and the y-coordinates lie in the interval (−ε, ε). For ε′ > 0, we consider
another, analogously defined random Horton set H ′ = H ′(ε′) of size m + 1.
Further, we consider the set H ′′ = H ′′(ε′) obtained from H ′ = H ′(ε′) by the
interchange of the axes, i.e. H ′′ = T (H ′), where T : (x, y) 7→ (y, x). We
define Λ∗ as the Minkowski sum of the sets H = H(ε) and H ′′ = H ′′(ε′),
where ε′ = ε′(m) > 0 is sufficiently small compared to ε = 1/(10m) (e.g.,
ε′ = 1/

(
20m(m + 1)1+log2 m)

will do). The set Λ∗ approximates Λ. For a
point X in Λ, we denote by X∗ the corresponding point of Λ∗. We usually
use letters I, J,K,L, R, S, T to denote points in Λ. We denote their coor-
dinates by I =

(
i, y(I)

)
, J =

(
j, y(J)

)
, etc. (We use such a notation since

we mostly work with the first coordinate). It follows from the choice of ε, ε′
that for any three points I, J,K ∈ Λ the following holds:

Observation 2. (i) If I, J,K ∈ Λ are not collinear, then the triples I,
J , K and I∗, J∗, K∗ have the same orientation.

(ii) If I, J,K ∈ Λ lie on a non-vertical common line, then the orientation
of the triple I∗, J∗, K∗ is equal to the orientation of the triple hi, hj, hk of
points of H.

(iii) If I, J,K ∈ Λ lie on a vertical common line, then the orientation of
the triple I∗, J∗, K∗ is determined by the orientation of the corresponding
triple of points of H ′.

It follows from Observation 2 that the points of Λ∗ corresponding to the
intersection of a non-vertical line with Λ form a set having the same order
type as a contiguous part of some set Hi,j , 0 5 i < j. Consequently, such
points form a Horton set (see Claim 3.10 in [12]).

Observation 3. The points of Λ∗ corresponding to the intersection of a
non-vertical line with Λ form a random Horton set G. That is, randomly and
independently for each i, j, 0 5 i < j/2, 2 5 j = 2l 5 m, the set Gi,j lies with
probability 1/2 far above Gi+j/2,j and with probability 1/2 far below Gi+j/2,j.

Notation. The lattice is the usual lattice of points in the plane with integer
coordinates. A lattice point is a point of the lattice. We say that a line is
a lattice line, if it contains infinitely many lattice points. For a non-vertical
lattice line l, we denote by l+ (resp. l−) the closest lattice line above (be-
low) l and parallel to l. A lattice segment is a segment connecting two lattice
points. We say that a lattice segment is s-prime, if it contains s + 1 lattice
points (including its endpoints). If a lattice segment is 1-prime (i.e., its rel-
ative interior contains no lattice points), then we call it a prime segment.
Otherwise we call it a non-prime segment.

If I∗1I∗2 . . . I∗k is an empty k-gon in Λ∗, then we also say that I1I2 . . . Ik is
an empty k-gon (it may be degenerate).
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For an empty k-gon P = L1L2 . . . Lk with all vertices in Λ, we define the
base of P as the segment LvLw connecting the vertex Lv having the smallest
x-coordinate with the vertex Lw having the largest x-coordinate. If P has
more vertices with the smallest x-coordinate, then we choose for Lv that
one with the smallest y-coordinate. Similarly, if P has more vertices with
the largest x-coordinate, then we choose for Lw that one with the largest
y-coordinate.

If the base of an empty polygon P is prime, non-prime, or s-prime, then
we say that P is prime, non-prime, or s-prime, respectively.

We say that a (possibly degenerate) polygon P with all vertices in Λ is
a t-line polygon, if t is the least number such that the vertices of P lie on t
neighboring parallel lattice lines.

3. Structure of the proof

We note first that Λ∗ contains no empty 7-gon. This was proved in [13]:
the reason is that Λ∗ is built from Horton sets.

For each k = 3, 4, 5, 6, we distinguish five types of empty k-gons and es-
timate the expected number of empty k-gons for each of them separately.
Here are the five types of empty k-gons:

• 3-line k-gons,
• 2-line prime k-gons,
• 2-line non-prime k-gons,
• 1-line 2s-prime k-gons (s ∈ N),
• 1-line r-prime k-gons (r 6= 2s).
It follows from Observation 4 below that every empty polygon in Λ∗ is

1-, 2-, or 3-line. Thus, the above five types embrace all empty polygons in
Λ∗.

Observation 4 ([12]). If the convex hull of a subset S of Λ has no
lattice point in the interior, then S lies either on one line, or on two parallel
lines with no lattice point strictly between them, or on the perimeter of a
lattice triangle with exactly one lattice point in the relative interior of each
side.

Next, let P be a finite point set, of n points, say, in the plane in general
position. Consider the complex, C, of empty convex polygons in P . C is
clearly a simplicial complex. Let fk(P ) be its f -vector (k = 1, 2, . . . ), that
is, fk(P ) is the number of empty convex k-gons in P . Clearly f1(P ) = n, and
f2(P ) =

(
n
2

)
. It is proved by Edelman and Rainer [6] that C is contractible.

Then it satisfies the Euler equation:

f1(P )− f2(P ) + f3(P )− f4(P ) · · · = 1.
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There is another linear relation satisfied by the f -vector: it is shown by
Ahrens et al. [1] that

f1(P )− 2f2(P ) + 3f3(P )− 4f4(P ) · · · = |P ∩ int conv P |.

These two linear relations are very useful in our construction since there
f1(Λ∗) = n, f2(Λ∗) =

(
n
2

)
and fk(Λ∗) = 0 when k > 6. So out of the remain-

ing four quantities fi(Λ∗), i = 3, 4, 5, 6, only 2 have to be determined. Our
choice is to compute f3 and f6, which means that out of the 20 entries of
the following table, we only compute 10.

Empty: [×(3/π2)n2] triangles quadrilaterals pentagons hexagons
3-line 1/24 1/8 1/8 1/24

2-line prime 10/3 29/7 16/7 10/21
2-line non-prime 2/3 54/49 24/49 8/147
1-line 2s-prime 4/9 9/49 4/49 4/441

other 1-line 16
3 α− 16

3 β 8α−16β+ 16
3 γ 16

3 α−16β+ 32
3 γ 4

3α− 16
3 β+ 16

3 γ

Each entry in the table must be multiplied by (3/π2)n2 to obtain a
≈-approximation of the correspoding quantity. E.g., the entry 10/3 in the
second row and first column means that Λ∗ contains (10/3) · (3/π2)n2 +o(n2)
2-line prime triangles. It is easily verified that the 10 entries in the first and
last column and the above equations on the f -vector give Theorem 1.

In fact we have computed all entries of the above table. The method is
to fix the base, IJ of the k-gon in question, then compute the expectation
of the empty k-gons with base IJ , and then sum for all possible bases. This
is fairly straightforward although lengthy in all five cases except the 2-line
prime k-gons where we need a more detailed analysis.

4. Auxiliary statements

In this section we collect several simple facts (and prove some of them)
that will be needed later. Most of them are quite easy.

We say that a segment I∗J∗, i 6= j, in Λ∗ is open up if K∗ lies below the
line I∗J∗ for any lattice point K in the relative interior of IJ . Similarly, we
say that a segment I∗J∗, i 6= j, is open down if K∗ lies above the line I∗J∗
for any lattice point K in the relative interior of IJ . If I∗J∗ is open up or
down, then we also say that the segment IJ is open up or down, respectively.

Clearly, each prime segment is open up and down, and each 2-prime
segment is open either up or down. Here is a more general lemma:
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Lemma 5. Let IJ be an s-prime segment in Λ. Then:
(i) If s is a power of 2, then the segment IJ is open up (down, respec-

tively) with probability 1/s.
(ii) If s is not a power of 2, then the segment IJ is open neither up nor

down. ¤

Observation 6. If I∗J∗K∗ is an empty triangle in Λ∗, i 6= j, and K
lies strictly above the line IJ , then IJ is open up. Analogously, if I∗J∗K∗
is an empty triangle in Λ∗, i 6= j, and K lies strictly below the line IJ , then
IJ is open down. ¤

Let f(n), g(n) be two real functions defined for any n = m2,m ∈ N. We
write f(n) ≈ g(n) (and say that f(n) equals ≈ g(n)), if

lim
m→∞

f(m2)
g(m2)

= 1.

We denote the set of prime segments in the
√

n×√n grid Λ by P, and
its size by pn = |P|. It is well-known (see for instance [9]) that

pn ≈ 6
π2

(
n

2

)
≈ 3

π2
n2.

Lemma 7. (i) For any r = 2, the number of r-prime segments in Λ is
≈ pn

r2 .
(ii) For any r = 2 and n = 1, the number of r-prime segments in Λ is at

most 8n2

r2 .

Proof. We first suppose that
√

n is divisible by r. Consider the map-

ping f : Λ →
{

1, . . . ,
√

n
r

}
×

{
1, . . . ,

√
n

r

}
defined by f(I) =

(⌈
i
r

⌉
,
⌈

y(I)
r

⌉)

for I ∈ Λ. Each r-prime segment is mapped to a lattice segment of the
same direction and 1/r of its original length. Thus, each r-prime seg-
ment is mapped to a prime segment. Moreover, each prime segment KL in{

1, . . . ,
√

n
r

}
×

{
1, . . . ,

√
n

r

}
is the image of exactly r2 r-prime segments in Λ,

namely it is the image of the r-prime segments
(
r ·K +(α,β), r ·L+(α,β)

)
,

where α, β ∈ {0, 1, . . . , r − 1}.
It follows that if

√
n is divisible by r then Λ determines r2 · pn/r2 r-

prime segments. This yields (i): for any n = m2, Λ determines at least r2 ·
pb√n/rc2 ≈

pn

r2 and at most r2 · pd√n/re2 ≈
pn

r2 r-prime segments.

If r = √
n then Λ determines no r-prime segments and (ii) clearly holds.

Otherwise Λ determines at most r2 ·pd√n/re2 5 r2 · (d
√

n/re2
2

)
5 r2 · (4n/r2)

2

2 =
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8n2

r2 r-prime segments, as required in (ii). ¤

Lemma 8. Let H, H ′ be two Horton sets, let H lie far below H ′, and
let H = {h0, . . . , hz}, H ′ = {h′0, . . . , h′z′}. Further, let P j H ∪H ′ be the
vertex set of an empty polygon in H ∪H ′, and let P ∩H 6= ∅ and P ∩H ′ 6= ∅.
Then |P ∩H| 5 3 and |P ∩H ′| 5 3. Moreover, if |P ∩H|=3 then P ∩H =
{hi, h i+j

2
, hj}, where j− i is a power of 2. Analogously, if |P ∩H ′| = 3 then

P ∩H ′ = {hk, h k+l
2

, hl}, where l − k is a power of 2. ¤
Let H be a Horton set with vertices denoted as usual. Then we say that

a segment hihj , j > i, in H is open down, if all points hk, i < k < j, lie above
it. Similarly, we say that hihj is open up, if all points hk, i < k < j, lie below
it.

Lemma 9. (i) Any Horton set of size 2s determines 2s+1 − (s + 2) open
down segments.

(ii) If H = {h0, . . . , h2s−1} is a Horton set of size 2s, where the points are
listed according to the increasing x-coordinate, then H determines 2s − (s +
1) open down segments hihj with j > i + 1.

(iii) In (i) and (ii), “open down” can be replaced by “open up”.

Proof. We proceed by induction on s. The lemma clearly holds for s =
0, 1. Suppose now that H = {h0, h1, . . . , h2s−1} is a Horton set of size 2s, s =
2. Let H ′ be the lower of the sets H0,2,H1,2. By the inductive assumption,
H ′ determines 2s − (s + 1) open down segments. The set H determines the
following two types of open down segments:
(T1) 2s − 1 segments hihi+1,
(T2) 2s − (s + 1) open down segments determined by H ′.

Thus, H determines (2s − 1) +
(
2s − (s + 1)

)
= 2s+1 − (s + 2) open down

segments. This gives (i). The open down segments hihj with j > i + 1 are
just the segments of type (T2). This gives (ii).

(iii) follows from the symmetry. ¤
Observation 10. For each s ∈ N, let fs(n), gs(n) be two functions sat-

isfying fs(n) ≈ gs(n). Moreover, suppose that for each ε > 0 there is a t ∈ N
such that, for any n ∈ N,

∞∑

s=t+1

fs(n) 5 εn2 and
∞∑

s=t+1

gs(n) 5 εn2.

Then
∞∑

s=1

fs(n) ≈
∞∑

s=1

gs(n) + o(n2). ¤
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5. 3-line triangles and hexagons

5.1. The parity of the coordinates of lattice prime segments

Here we estimate the number of 2-prime segments IJ , I, J ∈ Λ, such that
j−i
2 is even. The standard method from [9] showing that pn ≈ 3

π2 n2 gives
easily the following.

Lemma 11. The number of prime segments IJ with j − i even is

≈ pn

3
. ¤

Lemma 12. (i) Λ determines ≈ pn

12 2-prime segments IJ with j−i
2 even.

(ii) Λ determines ≈ pn

12 2-prime segments IJ with j−i
2 6= 0 even.

Proof. Certainly, it suffices to prove the lemma for
√

n even.

Consider the mapping f : Λ →
{

1, . . . ,
√

n
2

}
×

{
1, . . . ,

√
n

2

}
defined by

f(I) =
(⌈

i
2

⌉
,
⌈

y(I)
2

⌉)
, as in the proof of Lemma 7 (for r = 2). Each 2-prime

segment IJ in Λ is mapped to a prime segment, and each prime segment KL

in
{

1, . . . ,
√

n
2

}
×

{
1, . . . ,

√
n

2

}
is the image of exactly 4 2-prime segments in

Λ. Moreover, for a 2-prime segment IJ in Λ, j−i
2 is even if and only if l − k

( = j−i
2 ) is even, where k, l are the x-coordinates of the points K = f(I),

L = f(J), respectively.
Thus, by Lemma 11, Λ determines

≈ 4 · pn/4

3
≈ 1

12
pn

2-prime segments IJ with j−i
2 even. This gives (i).

Since there are only O(n) 2-prime segments IJ with j− i = 0, (ii) follows
from (i) and from pn = Θ(n2). ¤

5.2. 3-line triangles

Let IJK be an IJ-triangle with all three sides 2-prime and no lattice
point in the interior. We now find the probability that IJK is empty. Set
R = I+J

2 , S = I+K
2 , T = J+K

2 (see Fig. 1).
If j−i

2 is odd, then (exactly) one of the numbers k−i
2 , j−k

2 is also odd.
Without loss of generality, let k−i

2 be odd. Then i ≡ j ≡ k 6≡ r ≡ s (mod 2).
Consequently, R∗ and S∗ lie either both below or both above the segments
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Fig. 1 The points R, S, T .

I∗J∗ and I∗K∗, respectively. Thus, (exactly) one of the points R∗, S∗ lies
inside the triangle I∗J∗K∗. We conclude that IJK is not an empty triangle
in this case.

Suppose now that j−i
2 is even. If both numbers k−i

2 , j−k
2 are even, then

in the triangle IRS the y-components of a side are of the same parity, and
then the midpoint of this side is a lattice point. Consequently, one of the
sides of the original triangle IJK is not 2-prime.

Thus j−i
2 is even and both k−i

2 , j−k
2 are odd. Consequently, i ≡ j ≡ k ≡

r 6≡ s ≡ t (mod 2). With probability 1/2, both points S∗, T ∗ lie inside the
triangle I∗J∗K∗. Independently and also with probability 1/2, the point R∗

lies inside the triangle I∗J∗K∗. Thus, if j−i
2 is even then I∗J∗K∗ is empty

with probability 1/4.
For a 2-prime segment IJ ∈ P with j−i

2 > 0 even, there are exactly two
lattice points K, i 5 k 5 j, such that IJK is a 3-line triangle. One such
placement of K is on the line (IJ+)+ (in which case the points S, T are the
two points on IJ+ satisfying i 5 s < t < j), the other placement of K is on
the line (IJ−)− (in which case the points S, T are the two points on IJ−
satisfying i < s < t 5 j), see Fig. 2. It now follows from Lemma 12(ii) that

Fig. 2 Two possible placements of K.

the expected number of empty 3-line triangles is ≈ 2 · 1
4 · pn

12 = pn

24 .
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5.3. 3-line hexagons

Each empty 3-line triangle IJK corresponds to the empty 3-line hexagon
I I+J

2 J J+K
2 K K+I

2 , and vice versa. Thus, the number of empty 3-line
hexagons equals the number of empty 3-line triangles.

6. 2-line prime triangles and hexagons

6.1. Some lattice properties

Given a non-vertical prime segment IJ ∈ P, there is a unique K ∈ (IJ)+

with i 5 k < j. We let q+(IJ) denote this lattice point K. Assume
J − I = (m, t) with 0 < t < m and let K − I = (x, y). Then ym + x(−t) = 1
as one can readily check. Thus x is the inverse of −t (mod m). We will
use a theorem of Balog and Deshoulliers [2] saying that x is “uniformly dis-
tributed” in [0,m).

Theorem 13 ([2]). Assume m is a positive integer. Then for any α ∈
(0, 1], and any η > 0, the number of pairs (t, x) with t ∈ {1, . . . ,m} and x ∈{

1, . . . , bαmc} where xt ≡ −1 (mod m) is

αϕ(m) + O(m1/2+η)

where the implied constant depends at most on η.

Actually, the original result of Balog and Deshoulliers is more general
and is stated in a slightly different form.

For r ∈ N, we define a subset Pr of P as the set of non-vertical prime
segments IJ ∈ P such that the x-coordinate of q+(IJ) lies in the interval
[i, i + j−i

2r ).

Lemma 14. (i) For any r = 1,

|Pr| ≈ |P|
2r

,

(ii) For any r, n = 1,

|Pr| 5 20
2r

n2.

Proof. (i) is a direct corollary of Theorem 13.
To prove (ii), suppose that I ∈ Λ and that t ∈ {1, 2, . . . ,b√2nc}. The

number of lattice points K ∈ Λ, k > i, with t 5 ‖K − I‖ < t + 1 is approx-
imately πt — certainly smaller than 10t (say). Now, let K be one of
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these points. If IK is non-prime, then there is no lattice point J with
K = q+(IJ). Otherwise the lattice points J with K = q+(IJ) lie on the
lattice half-line IK− ∩ {

(x, y) ∈ R2 : x = k
}

(see Fig. 3). The half-line

Fig. 3 The lattice points J with K = q+(IJ).

IK− ∩ {
(x, y) ∈ R2 : x = k

}
contains at most

√
2n

‖K−I‖ 5
√

2n
t lattice points

J ∈ Λ. It follows that for each I and t ∈ {1, 2, . . . ,b√2nc} there are at

most 10t ·
√

2n
t =

√
200n lattice points J with t 5

∥∥q+(IJ)− I
∥∥ < t + 1. If

IJ ∈ Pr then
∥∥q+(IJ)− I

∥∥ <
√

2n
2r . It follows that for each I there are at

most j√
2n

2r

k
∑

t=1

√
200n 5 20

2r
n

lattice points J ∈ Λ with IJ ∈ Pr. Consequently,

|Pr| 5 20
2r

n2. ¤

We denote the lattice points on the open halfline
−−−−−→
Iq+(IJ) by K1 =

q+(IJ), K2, K3, . . . , so that Kt = I + t
(
q+(IJ)− I

)
for each t ∈ N. See

Fig. 4. Similarly, we denote the lattice points on the open halfline

−−−−−−−−−−−−−−−→
J(J − (

q+(IJ)− I
)
)

by L1, L2, L3, . . . , so that Lt = J − t
(
q+(IJ)− I

)
for each t ∈ N. We remark

that Pr is the set of segments IJ ∈ P such that i 5 k2r < j, where k2r is the
x-coordinate of the point K2r = I + 2r

(
q+(IJ)− I

)
.

For IJ ∈ P1 and s = 0, we define two events E+
s = E+

s (IJ) and E−s =
E−s (IJ) as follows:

E+
s = E+

s (IJ): the segment IK2s is open down,
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Fig. 4 The lattice points Ki, Li.

E−s = E−s (IJ): the segment JL2s is open up.
Clearly, K2s lies in some empty 2-line IJ-polygons if and only if IJ ∈ Ps

and E+
s is satisfied. Similarly, L2s lies in some empty 2-line IJ-polygons if

and only if IJ ∈ Ps and E−s is satisfied.
The following observation follows from Lemma 5(i):

Observation 15. For any s = 0 and IJ ∈ Ps,

Prob (E+
s ) =

1
2s

, Prob (E−s ) =
1
2s

. ¤

The following lemma shows that the events E+
s and E−s′ are almost inde-

pendent if IJ is taken uniformly from Pr.

Lemma 16. Let r ∈ N and 0 5 s, s′ 5 r. Then

∑

IJ∈Pr

Prob (E+
s ∧ E−s′) ≈

pn

2r
· 1
2s+s′ .

Proof. If s = 0 then, by Observation 15 and by Lemma 14(i),

∑

IJ∈Pr

Prob (E+
s ∧ E−s′) =

∑

IJ∈Pr

Prob (E−s′) ≈
pn

2r
· 1
2s′ ,

as required. Analogously, the lemma holds also for s′ = 0. We further sup-
pose that s, s′ = 1.

Let IJ ∈ Pr and let K = K1 = q+(IJ). Not all three numbers i + j,
i + k, j + k are even, since in that case one of the points I+J

2 , I+K
2 , J+K

2
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(corresponding to an even of the numbers y(I) + y(J), y(I) + y(K), y(J) +
y(K)) would be a lattice point. Consequently, by a parity argument, exactly
one of the numbers i + j, i + k, j + k is even.

By Lemma 11, there are ≈ |P|
3 segments IJ ∈ P with i + j even. Conse-

quently, by Theorem 13, there are ≈ |Pr|
3 segments IJ ∈ Pr with i + j even.

By Lemma 11, there are ≈ 2|P|
3 segments IJ ∈ P with i+ j odd, which is

the same as j − i odd. Thus, by symmetry, there are ≈ |P|
3 segments IJ ∈ P

with k − i even and also ≈ |P|
3 segments IJ ∈ P with k − i odd.

We want to use now Theorem 13 with J − I = (m, t) and x ∈ [0,m2−r),
with the extra condition that x = k − i is even (resp. odd). When x
is even and lies in [0, m2−r) then x/2 is an integer in [0,m2−r−1) for
which (2t)(x/2) ≡ −1 (mod m) and 2t runs through the reduced residue
classes (mod m). The number of such pairs (2t, x/2) is then 2−r−1ϕ(m) +
O(m1/2+η), which implies that there are ≈ |Pr|

3 segments IJ ∈ Pr with j − i
odd and k− i even. Then the complementary set of segments with j − i odd
and k − i odd is also of size ≈ |Pr|

3 .
Let IJ ∈ Pr. If i + k is even (and i + j, j + k are odd), then the x-

coordinates of I,K1,K2, . . . have the other parity than the x-coordinates of
J, L1, L2, . . . . Consequently, the events E+

s and E−s′ are independent and

Prob (E+
s ∧ E−s′) = Prob (E+

s ) · Prob (E−s′) =
1

2s+s′

in this case.
If i+ j is even, then the x-coordinates of I,K2,K4, . . . , J,L2, L4, . . . have

the other parity than the x-coordinates of K1,K3, . . . , L1, L3, . . . . Conse-
quently, either K∗

1 lies below the line I∗K∗
2s or L∗1 lies above the line J∗L∗

2s′ .
Thus,

Prob (E+
s ∧ E−s′) = 0

in this case (provided s, s′ = 1).
If j + k is even, then the x-coordinates of K1,K3, . . . , J, L2, L4, . . . have

the other parity than the x-coordinates of I,K2,K4, . . . , L1, L3, . . . . The fol-
lowing two conditions are necessary for E+

s ∧ E−s′ :
C1: {I∗,K∗

2 ,K∗
4 , . . . } lies far below {K∗

1 ,K∗
3 , . . . },

C2: {L∗1, L∗3, . . . } lies far below {J∗, L∗2, L∗4, . . . }.
Clearly, C1 is satisfied if and only if C2 is satisfied. Thus,

Prob (C1 ∧ C2) = Prob (C1) = Prob (C2) =
1
2
.

Suppose that C1 ∧ C2 is satisfied. Then E+
s is satisfied if and only if I∗K∗

2s

is open down in the (random) Horton set {I∗,K∗
2 ,K∗

4 , . . . , K∗
2s}, i.e., with
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probability 1
2s−1 . Analogously, E−s′ is satisfied if and only if J∗L∗

2s′ is open
up in the (random) Horton set {J∗, L∗2, L∗4, . . . , L∗2s′}, i.e., with probability

1
2s′−1 . Moreover, E+

s and E−s′ are independent (provided j + k is even and
C1 ∧ C2 is satisfied), since the x-coordinates of I,K2,K4, . . . , K2s have the
other parity than the x-coordinates of J, L2, L4, . . . , L2s′ . Thus, if j + k is
even then

Prob (E+
s ∧ E−s′)

= Prob (C1 ∧ C2) · Prob (E+
s | C1 ∧ C2) · Prob (E−

s′ | C1 ∧ C2)

=
1
2
· 1
2s−1

· 1
2s′−1

=
1

2s+s′−1
.

Altogether,

∑

IJ∈Pr

Prob (E+
s ∧ E−s′) ≈

Pr

3
· 1
2s+s′ +

Pr

3
· 0 +

Pr

3
· 1
2s+s′−1

=
pn

2r
· 1
2s+s′ . ¤

6.2. 2-line prime triangles

The expected number of empty 2-line IJ-triangles with IJ ∈ Pr \ Pr+1

is

∑

IJ∈Pr\Pr+1

( r∑

s=0

Prob (E+
s ) +

r∑

s′=0

Prob (E−s′)
)

=
∑

IJ∈Pr\Pr+1

( r∑

s=0

1
2s

+
r∑

s′=0

1
2s′

)

=
(

4− 2
2r

)
|Pr \ Pr+1|,

and thus the expected number of empty 2-line IJ-triangles with IJ ∈ P1 =
∞⋃

r=1

(Pr \ Pr+1) is

(1)
∞∑

r=1

(
4− 2

2r

)
|Pr \ Pr+1|.
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By Lemma 14(i),

(2) |Pr \ Pr+1| ≈ pn

2r+1
.

For every ε > 0, there is a t ∈ N such that, by Lemma 14(ii), the sum of
the terms in (1) with r = t + 1 can be bounded from above by

∞∑

r=t+1

4 · 20
2r

n2 =
80
2t

n2 < εn2.

Thus, by Observation 10 and by (2),

(1) ≈
∞∑

r=1

(
4− 2

2r

)
pn

2r+1
(3)

=
(

2− 1
3

)
pn

=
5
3
· pn.

Similarly, define P ′r as the set of non-vertical prime segments IJ ∈ P
such that the x-coordinate of q+(IJ) lies in the interval [j − j−i

2r , j). An
analogue of the above proof shows that the expected number of empty 2-line
IJ-triangles with IJ ∈ P ′1 is also

(4) ≈ 5
3
· pn.

Consequently, the expected number of empty 2-line prime triangles is
the sum of (3) and (4), that is,

≈ 10
3
· pn.
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6.3. 2-line prime hexagons

We first estimate the number of empty 2-line IJ-hexagons with IJ ∈
Pr \ Pr+1. Each of them is of form JKtKt/2ILt′Lt′/2. Thus, their expected
number is

∑

IJ∈Pr\Pr+1

r∑

s=1

r∑

s′=1

Prob (E+
s ∧ E−s′) =

r∑

s=1

r∑

s′=1

∑

IJ∈Pr\Pr+1

Prob (E+
s ∧ E−s′).

It follows that the expected number of empty 2-line IJ-hexagons with IJ ∈
P1 =

∞⋃

r=1

(Pr \ Pr+1) is

∞∑

r=1

r∑

s=1

r∑

s′=1

∑

IJ∈Pr\Pr+1

Prob (E+
s ∧ E−s′).(5)

Lemma 16 and the inclusion Pr+1 j Pr imply that

(6)
r∑

s=1

r∑

s′=1

∑

IJ∈Pr\Pr+1

Prob (E+
s ∧ E−s′)

≈
r∑

s=1

r∑

s′=1

(pn

2r
− pn

2r+1

)
· 1
2s+s′ =

(
1− 1

2r

)2 pn

2r+1
.

For every ε > 0, there is a t ∈ N such that, by Lemma 14(ii), the terms
in (5) with r = t + 1 can be bounded from above by

∞∑

r=t+1

r∑

s=1

r∑

s′=1

∑

IJ∈Pr\Pr+1

1 5
∞∑

r=t+1

r2|Pr \ Pr+1| 5
∞∑

r=t+1

r2 20
2r

n2 < εn2.

Thus, by Observation 10 and by (6),

(5) ≈
∞∑

r=1

(
1− 1

2r

)2 pn

2r+1
(7)

=
∞∑

r=1

(
1

2r+1
− 1

22r
+

1
23r+1

)
pn
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=
(

1
2
− 1

3
+

1
14

)
pn

=
5
21
· pn.

A similar argument as at the end of Paragraph 6.2 shows that the ex-
pected number of empty 2-line prime hexagons is twice as much as (7), i.e.,

≈ 10
21
· pn.

7. 2-line non-prime triangles and hexagons

7.1. 2-line non-prime triangles

If there is an empty 2-line non-prime IJ-triangle, then IJ must be open
up or down and thus IJ must be 2s-prime for some s ∈ N.

Let s ∈ N and let IJ ∈ P be a non-vertical 2s-prime segment with j > i.
The line IJ+ contains 2s points K ∈ Λ with i 5 k < j (unless j = i + 2,
y(I) =

√
n). Each of these points determines an empty 2-line IJ-triangle

IJK if and only if IJ is open up, i.e., with probability 1
2s . Thus, the ex-

pected number of empty 2-line IJ-triangles with one vertex on the line IJ+

is equal to 2s

2s = 1. By symmetry, the expected number of empty 2-line IJ-
triangles with one vertex on the line IJ− is also 1 (unless j = i+2, y(I) = 1).
Thus, the expected number of empty 2-line non-prime triangles is

≈
∞∑

s=1

∑

(IJ is 2s-prime)

2.(8)

The “≈” appears in (8) since the expected number of empty 2-line IJ-
triangles is 0 for vertical 2s-prime segments IJ ∈ P and is smaller than 2 for
2s-prime segments IJ ∈ P, j = i + 2, with y(I) =

√
n or y(J) = 1.

It follows from Lemma 7(ii) that the first sum in (8) satisfies the assump-
tions of Observation 10, and thus (8) can be estimated by

≈
∞∑

s=1

pn

4s
· 2 =

2
3
· pn.
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7.2. 2-line non-prime hexagons

If there is an empty 2-line non-prime IJ-hexagon, then IJ must be open
up or down and thus IJ must be 2s-prime for some s ∈ N.

Let s ∈ N and let IJ be a non-vertical 2s-prime segment with j > i. The
line IJ+ contains 2s points K with i 5 k < j (unless j = i + 2, y(I) =

√
n),

forming a (random) Horton set, which we denote by H. By Lemma 9(ii),
H determines 2s − (s + 1) open down segments KK ′ with K+K′

2 ∈ H. Each
of these segments determines an empty 2-line IJ-hexagon I I+J

2 JK ′K′+K
2 K

if and only if IJ is open up, i.e., with probability 1
2s . Thus, the expected

number of empty 2-line IJ-hexagons with all vertices on the lines IJ and
IJ+ is equal to 2s−(s+1)

2s = 1− s+1
2s (unless j = i + 2, y(I) =

√
n).

Altogether, the expected number of two-line non-prime hexagons is

≈ 2 ·
∞∑

s=1

∑

(IJ is 2s-prime)

(
1− s + 1

2s

)
.(9)

The “≈” appears in (9) for analogous reasons as in (8).
It follows from Lemma 7(ii) that the first sum in (9) satisfies the assump-

tions of Observation 10, and thus (9) can be estimated by

≈ 2 ·
∞∑

s=1

pn

4s

(
1− s + 1

2s

)

= 2 ·
(

1
3
− 8

49
− 7

49

)
· pn

=
8

147
· pn.

8. 1-line 2s-prime triangles and hexagons

For k ∈ N and s = 0, we define Vk(s) as the expected number of those
empty k-gons in a random Horton set H of size 2s + 1, which contain both
the leftmost point and the rightmost point of H.

Lemma 17. For any s = 0,

V3(s) = s, V6(s) = s− 4 +
s + 2
2s−1

.
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Proof. Let h0, h1, . . . , h2s be the points of a Horton set H listed accord-
ing to the increasing x-coordinate. For i = 0, . . . , s−1, we define a 2i-element
subset H(i) of H by

H(i) = H2s−i−1,2s−i =
{

hj ∈ H : j ≡ 2s−i−1 (mod 2s−i)
}

.

Observe that H \ {h0, h2s} is a disjoint union of the sets H(i), i =
1, . . . , s− 1 and that each H(i) = H2s−i−1,2s−i lies far above or far below
the set H0,2s = {h0, h2s} j H0,2s−i . In particular, each H(i) lies either be-
low or above the line h0h2s .

We distinguish s combinatorial cases C1,C2, . . . , Cs defined for i = 1, 2,
. . . , s− 1 by

Ci: The line h0h2s separates H(0) ∪H(1) ∪ · · · ∪H(i− 1) from H(i).
The remaining case Cs is defined by
Cs: The whole set H(0) ∪ · · · ∪H(s− 1) lies on one side of the line h0h2s .

Clearly,

Prob (Ci) =





1
2i

, for i = 1, 2 . . . , s− 1,

1
2s−1

, for i = s.

The triangle h0h2s−1h2s is always empty. Moreover, in case Ci (1 5 i <

s) there are 2i empty triangles h0h2sp, p ∈ H(i). It is easy to see that there
are no other empty triangles with the two vertices h0, h2s . Thus,

V3(s) = 1 +
s−1∑

i=1

Prob (Ci) · 2i = 1 +
s−1∑

i=1

1 = s.

It remains to compute V6(s). Without loss of generality, let H(0) =
{h2s−1} lie under the line h0h2s . By Lemma 9(ii), in case Ci (1 5 i < s)
there are 2i− (i + 1) empty hexagons h0h2s−1h2shvh v+w

2
hw corresponding to

the 2i− (i + 1) open down segments hwhv, v > w + 1, in H(i). By Lemma 8,
there are no other empty hexagons with the two vertices h0, h2s . Thus,

V6(s) =
s−1∑

i=1

1
2i
· (2i − (i + 1)

)
= s− 4 +

s + 2
2s−1

. ¤

Lemma 18. Let k = 3. If Vk(s) = O(s), then the expected number of
empty 1-line 2s-prime k-gons (s ∈ N) in Λ is

≈
∞∑

s=1

Vk(s)
4s

· pn.
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Proof. Let k = 3. The expected number of empty 1-line 2s-prime k-
gons (s ∈ N) is

(10)
∞∑

s=1

∑

(IJ is 2s-prime)

Vk(s).

We may apply Observation 10, since, by Lemma 7(ii), for any ε > 0 and
for any sufficiently large t = t(ε),

∞∑

s=t+1

∑

(IJ is 2s-prime)

Vk(s) 5
∞∑

s=t+1

8n2

4s
Vk(s)

5
∞∑

s=t+1

O
( s

4s

)
· n2

< εn2.

The lemma now follows from (10), Observation 10, and Lemma 7(i). ¤
We are ready to estimate the number of empty 1-line 2s-prime triangles

and hexagons. By Lemmas 17 and 18, the expected number of 1-line 2s-
prime triangles is

≈
∞∑

s=1

s

4s
· pn =

4
9
· pn,

and the expected number of empty 1-line 2s-prime hexagons is

≈
∞∑

s=1

s− 4 + s+2
2s−1

4s
· pn =

(
4
9
− 4

3
+

16
49

+
4
7

)
· pn =

4
441

· pn.

9. 1-line r-prime triangles and hexagons (r 6= 2s)

For k ∈ N and odd z = 3, we define Wk(z) as the expected number of
those empty k-gons in a random Horton set H of size z + 1, which contain
both the leftmost point and the rightmost point of H.

Lemma 19. For any odd z = 3,

W3(z) = 4− 4
2ω

, W6(z) = 1− 4
2ω

+
4
4ω

,

where ω = blog2 zc.
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Proof. Let z = 3 be odd and let H = {h0, . . . , hz} be a Horton set with
vertices listed according to the increasing x-coordinate. For i = 1, 2, . . . , ω =
blog2 zc, we put Ki = h2i and Li = hz−2i . Clearly, only the points h0, hz,
Ki, Li (1 5 i 5 ω) may be vertices of empty polygons with the two ver-
tices h0, hz. Without loss of generality, let {h0,K1,K2, . . . , Kω} j H0,2 =
{h0, h2, . . . , hz−1} lie far below {Lω, Lω−1, . . . , L1, hz} j H1,2 = {h1, h3, . . . ,
hz}.

By Lemma 5, for any i = 1, . . . , ω, the segment h0Ki is open up in H0,2

with probability 1
2i−1 . Analogously, Lihz is open down in H1,2 also with

probability 1
2i−1 . Thus, each of the triangles h0Kihz and h0Lihz is empty

with probability 1
2i−1 , and

W3(z) = 2 ·
ω∑

i=1

1
2i−1

= 4− 4
2ω

.

Any two empty triangles h0Kihz and h0Ljhz (i, j = 2) give rise to an
empty hexagon h0Ki−1KihzLj−1Lj . Thus,

W6(z) =
ω∑

i=2

ω∑

j=2

1
2i−1

· 1
2j−1

=
( ω∑

i=2

1
2i−1

)2

=
(

1− 1
2ω−1

)2

= 1− 4
2ω

+
4
4ω

.

¤

Observation 20. For any odd z = 3 and any k, s ∈ N, the expected num-
ber of empty k-gons in a random Horton set H of size 2sz + 1 containing
both the leftmost point and the rightmost point of H is equal to Wk(z).

Proof. We denote the points of H as above. The set H0,2s = {h0, h2s ,
. . . , h2sz} is a random Horton set of size z + 1. Its convex hull contains no
other points of H. Thus, H0,2s determines, in expectation, Wk(z) empty k-
gons with the two vertices h0, h2sz. There are no other empty k-gons with
the two vertices h0, h2sz, since the interior of every triangle h0h2szhi, hi ∈
H \H0,2s , contains one of the points h2s , h2s(z−1). ¤

Here is an analogue of Lemma 18:

Lemma 21. Let k ∈ N. If Wk(z) = O(1), then the expected number of
empty 1-line r-prime k-gons (r 6= 2s) in Λ is

≈ 4
3

∑

z=3 odd

Wk(z)
z2

· pn.
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Proof. Let k ∈ N. By Observation 20, the expected number of empty
1-line 2s-prime k-gons is

(11)
∑

z=3 odd

∞∑

s=0

∑

(IJ is 2sz-prime)

Wk(z).

It follows from Lemma 7 and from two applications of Observation 10
that (11) can be estimated by

≈
∑

z=3 odd

∞∑

s=0

pn

4sz2
Wk(z) =

4
3

∑

z=3 odd

Wk(z)
z2

· pn.

¤
We are ready to estimate the number of empty 1-line r-prime triangles

and hexagons (r 6= 2s). By Lemmas 19 and 21, the expected number of 1-line
r-prime triangles (r 6= 2s) is

≈ 4
3

∑

z=3 odd

4− 4
2ω

z2
· pn =

(
16
3

α− 16
3

β

)
· pn,

and the expected number of empty 1-line r-prime hexagons (r 6= 2s) is

≈ 4
3

∑

z=3 odd

1− 4
2ω + 4

4ω

z2
· pn =

(
4
3
α− 16

3
β +

16
3

γ

)
· pn.
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