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A case when the union of polytopes is convex
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Abstract

We present a necessary and sufficient condition for the union of a finite number of convex
polytopes in Rd to be convex. This generalises two theorems on convexity of the union of
convex polytopes due to Bemporad et al.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

A convex polytope or simply polytope is the convex hull of a finite set of points
in Euclidean space Rd . Bemporad et al. [2] studied various necessary and sufficient
conditions for the union of several polytopes in Rd to be convex. In particular, it was
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shown that for two polytopes P1 and P2 in Rd , their union P1 ∪ P2 is convex if and
only if the line segment [v1, v2] is contained in P1 ∪ P2 for each vertex v1 of P1 and
each vertex v2 of P2. The main objective of the present paper is to give a natural
extension of this theorem to the general case of several polytopes.

Assume that Pi is a polytope in Rd whose vertex set isXi , for i ∈ [n]. Here [n] is a
shorthand for the set {1, 2, . . . , n}. Define P = ⋃n

1 Pi , X = ∪n
1Xi and Q = convX.

Clearly, P ⊂ Q always, and P is convex if and only if it coincides with Q. Obvi-
ously, if P is convex, then conv S ⊂ P for every S ⊂ X. Our main theorem is a
converse to this simple statement.

Theorem 1. Assume d � 1, n � 2. Then P = Q if and only if conv S ⊂ P for each
S ⊂ X with |S| � d + 1 and |S ∩Xi | � 1 for each i ∈ [n].

It should be noted that Bemporad et al. gave another weaker version [2–Theorem
5] of the theorem in which the last condition “|S ∩Xi | � 1 for each i ∈ [n]” is
replaced by the weaker condition “|S| � n”. It appears that our stronger theorem
is substantially harder to prove.

Given sets A1, . . . , An a transversal is a set {a1, . . . , an} with ai ∈ Ai for all i.
We are going to use the following theorem known as the Colourful Carathéodory
theorem.

Theorem 2 (The Colourful Carathéodory Theorem [1]). Given points a, v ∈ Rd and
sets Ai ⊂ Rd , i ∈ [d], with a ∈ ∩d

1convAi, there exists a transversal {a1, . . . , ad}
of the Ai such that

a ∈ conv {a1, . . . , ad, v}.

2. Preparations

Carathéodory’s theorem (see [3]) says that the convex hull of S ⊂ Rd is the union
of simplices conv T with T ⊂ S and |T | � d + 1. We will call such a simplex col-
ourful if its vertices constitute a transversal of a subsystem of the Xi (i ∈ [n]). In this
terminology what we want to prove is the following: P is convex if it contains every
colourful simplex.

The statement is invariant under nondegenerate affine transformations, so we may
apply any such transformation even during the proof.

We will need a following simple lemma:

Lemma 3. Assume T ⊂ Rd is a polytope with nonempty interior and E ⊂ T is an
ellipsoid. Assume b1, . . . , bs are the common points of E and �T and the outer unit
normal to E at bi is ui. If 0 /∈ int conv {u1, . . . , us}, then there is another ellipsoid
E′ ⊂ T , arbitrarily close to E, with VolE′ > VolE.
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Proof. The statement is invariant under nondegenerate affine transformations so we
may assume thatE is just Br , the ball of radius r centered at the origin. If Br ∩ �T =
∅, then any Bρ with ρ slightly larger than r will do for E′.

Now assume that the set Br ∩ �T = {b1, . . . , bs} is nonvoid. It is clear that ui =
bi/r , and T has a facet with outer normal ui at distance r from the origin (for all i),
and all other facets are farther away.

Suppose 0 /∈ int conv {u1, . . . , us} and set C = conv {b1, . . . , bs}. Then 0 /∈ intC
as well, and there is a unit vector u such that the hyperplane u · x = 0 separates C
and 0, that is, u · x � 0 for every x ∈ C.

If the separation is strict, that is, u · x < 0 for all x ∈ C, then, for sufficiently
small ε > 0, the point εu is farther than r from each facet of T . In this case the ball
εu+ Br is disjoint from the boundary of T if ε > 0 is small enough. Then εu+ Bρ
will do for E′ for all ρ slightly larger then r .

If the separation is not strict, then 0 is in the relative interior of the convex hull
of a subset of {b1, . . . , bs}. Say 0 ∈ relint{b1, . . . , bj }. Then, for all small enough
ε > 0, the ball εu+ Br touches all facets of T that contain bi , i ∈ [j ] and is disjoint
from all other facets. The set conv {(εu+ Br) ∪ Br} is contained in T , and contains
an ellipsoid E′, arbitrarily close to Br and of larger volume than Br . �

The following fact can be proved easily by induction on n.

Lemma 4. If Q and Pi, i ∈ [n] are polytopes in Rd , then the closure of Q \ ⋃n
1 Pi

can be written as a finite union of simplices.

3. Proof of the main theorem

The statement is true for d = 1 and any n � 2. We use induction on d so assume
d � 2 and the statement is true in dimension d − 1.

Assume the contrary: suppose polytopes P1, . . . , Pn in Rd form a counterexam-
ple to the theorem with minimal n. The induction hypothesis implies that Q is full
dimensional. Further, let F be a facet of Q. Then, in the hyperplane containing F ,
the induction hypothesis can be used to show that F ⊂ P . This implies that �Q ⊂ P .

The set G = Q \ P is open. By Lemma 4, its closure clG can be written as a
finite union of full dimensional simplices Fs . Let V denote the set of vertices of the
Fs . Choose a unit vector u ∈ Rd so that

min{u · x : x ∈ clG} = min{u · x : x ∈ V }
is reached on a unique vertex a ∈ V . Assume that a coincides with the origin (oth-
erwise apply a suitable affine transformation). Write H(t) = {x ∈ Rd : u · x = t}.
Clearly,H(t) ∩Q = H(t) ∩ P for t � 0. Let t1 = min{u · x : x ∈ V, x /= 0}. Then
t1 > 0 and for t ∈ (0, t1)
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H(t) ∩ clG = H(t) ∩ ∪Fs,
where the union is taken over all simplices Fs with 0 ∈ Fs . No polytope Pi contains
the origin in its interior. But 0 ∈ Pi for some i ∈ [n] since otherwise 0 /∈ P .

We clean the picture further. Fix t ∈ (0, t1) very small (to be specified soon) and
set, again for 0 ∈ Fs in the union,

Z = H(t) ∩ clG = H(t) ∩ ∪Fs.
Z is the union of (d − 1)-dimensional simplices in H(t) which is a copy of Rd−1.

Choose an ellipsoidE ⊂ Z of maximum (d − 1)-dimensional volume. Such an ellip-
soid clearly exists and has finitely many points z ∈ P on its boundary. The segment
[0, z] ⊂ P since otherwise the interior of some simplex Fs with 0 ∈ Fs contains a
point from the segment, but then the whole segment is contained in intFs . Then
[0, γ z] ⊂ Pi for some i ∈ [n] with a suitable γ > 0. So if t is chosen small enough,
then [0, z] ⊂ Pi . Here z is determined by Pi uniquely, we set bi = z for concreteness.

Assume, for simpler writing, that the set of indices i with bi on the boundary
of E is just [k]. Then 1 � k � n. Write hi for the halfspace (in H(t)) which contains
E and whose boundary hyperplane contains bi . Then T = ⋂

i∈[k] hi is a polytope,
E ⊂ T and E is at a positive distance from all Pi , i /∈ [k].

Let ui be the outer unit normal to E at bi (i ∈ [k]). We claim that

0 ∈ int conv{u1, . . . , uk}.
Indeed, if this were not case, then Lemma 3 implies the existence of another

ellipsoid E′ ⊂ T arbitrarily close to E with VolE′ > VolE. Such an ellipsoid is
contained in Z and has larger volume than E, contradicting the choice of E.

The claim shows that d � k (otherwise int conv {u1, . . . , uk} is empty). Thus d �
k � n. Note that we are finished with the case n < d .

Now we apply a nondegenerate linear transformation (to all polytopes Pi, P and
Q) that keeps the hyperplane H(0) fixed and moves the ellipsoid E to a ball B in
H(t) whose center, b, is orthogonal to H(0). We keep the same notation, so the
images of P,Q,Pi , and the points bi will go under the same name. This should
cause no confusion as we won’t return to their preimages.

We write C = posB, this is a closed circular cone whose axis is the halfline
L(b) = {λb : λ � 0}. The coneC is separated from each Pi (i ∈ [k]) and the (unique)
separating hyperplane is tangent to C along the halfline L(bi). Moreover, C ∩ Pi is
contained inL(bi). It is also clear that b ∈ intC. We defineC∗ = C ∩ {x : u · x � t}
and note that intC∗ ∩ P = ∅.

Claim 5. For distinct i, j ∈ [k], the rays L(bi) and L(bj ) are distinct.

Proof. Assume, on the contrary that L(b1) = L(b2), say. Set P0 = conv (X1 ∪X2).
Since P1 and P2 are separated by the same hyperplane from C, P0 is separated from
C by that hyperplane. It is not hard to check now that P0, P3, . . . , Pn is another
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counterexample to the theorem with n− 1 polytopes, contrary to the minimality
of n. �

We claim now that k < n. Indeed, the halfline L(b) intersects �Q at the point b∗,
say. As C and Pi are separated for all i ∈ [k], b∗ /∈ Pi . Now

b∗ ∈ �Q ⊂ P = ∪n
1Pi

so b∗ is contained in one of the polytopes Pi , i > k. Assume, for concreteness, that
b∗ ∈ Pn. (Note that we are finished with the case n � d now.)

We can now apply Theorem 2: 0 ∈ convXi for each i ∈ [k]. The last vector v ∈
Rd can be anything; it will often but not always come from Xn. As k may be larger
than d we will consider partial transversals of the system Xi . A partial transversal,
or I -transversal, of this system is {xi ∈ Xi : i ∈ I }, here I can be any subset of [k].
Theorem 2 says now the following:

Lemma 6. For every I ⊂ [k] with |I | = d and every v ∈ Rd there exists an I -trans-
versal {xi ∈ Xi : i ∈ I } such that

0 ∈ conv ({xi : i ∈ I } ∪ {v}).

We have to distinguish some cases.
Case 1. There is a colourful simplex whose interior contains the origin.
By the conditions of Theorem 1 this colourful simplex is contained in P , so a full

neighbourhood of 0 lies in P , contradicting intC∗ ∩ P = ∅.
Thus 0 does not lie in the interior of any colourful simplex. Then by Lemma 6,

for every xn ∈ Xn and for every I ⊂ [k], |I | = d , 0 is on the boundary of the convex
hull of an I -transversal and xn. Thus 0 is contained in the relative interior of the
convex hull of a partial transversal plus possibly xn.

Case 2. When 0 is not contained in the convex hull of any I -transversal, with
|I | � d , of the Xi , i ∈ [k]. Then k = d since otherwise Lemma 6 can be applied to
X1, . . . , Xd with v equal to an arbitrary xd+1 ∈ Xd+1 and the convex hull of the
transversal and xd+1 either contains 0 in its interior (which is impossible since Case
1 is excluded by now), or 0 is contained in the convex hull of some partial transversal
from [k] which is impossible in Case 2.

So k = d . Choose a point xn ∈ Xn. There are finitely many transversals {x1, . . . ,

xd} such that the set F = conv {x1, . . . , xd, xn} contains the origin. Write F for the
collection of such sets.

Claim 7. The union of these sets contains a small neighbourhood of the origin.

Proof. Write W for the set of unit vectors w such that, for all small ε ∈ (0, ε0], εw
is not contained in the affine hull of any d points from X. (All unit vectors, except
those in a finite union of hyperplanes, satisfy this requirement if ε0 is chosen small
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enough.) Now apply Lemma 6 to the system Xi , i ∈ [d] and the point v = xn − εw

where w ∈ W . The result is a transversal xi ∈ Xi (i ∈ [d]) such that

0 ∈ conv({xi : i ∈ [d]} ∪ {xn − εw}).
In other words, there are γi � 0 (for i ∈ [d] ∪ {n}) that sum to one with

0 = γ1x1 + · · · + γdxd + γn(xn − εw).

We claim that all γi > 0 here. First, γn = 0 would show that 0 is in the convex
hull of x1, . . . , xd , contrary to the assumptions of Case 2. So γn > 0 (for every small
positive ε), and

γnεw = γ1x1 + · · · + γdxd + γnxn.

If some γi = 0 here, then γnεw is in the affine hull of d or fewer vectors from X,
contrary to the choice of w. Thus all γi > 0.

The last equation shows that the simplex F = conv {x1, . . . , xd, xn} contains the
segment [0, δ(w)w] for some small δ(w) > 0. Let r(F ) be the distance from the
origin to the union of the facets of F not containing the origin. Thus if F contains
[0, δ(w)w], then it contains [0, r(F )w] as well.

Set r = min{r(F ) : F ∈ F}. Then for each w ∈ W the segment [0, rw] is con-
tained in some F ∈ F. This holds then for all unit vectors w as the union of F ∈ F
is a closed set. �

The Claim shows that the union of the colourful simplices contains a small neigh-
bourhood of the origin. This contradicts, again, the assumption that intC∗ is disjoint
from P .

Case 3. When 0 is in the relative interior of the convex hull of some I -transversal
with I ⊂ [k], |I | � d .

This is very simple if |I | = d . Assume the I -transversal is {x1, . . . , xd}. Then the
affine hull of x1, . . . , xd is a hyperplane, and b and b∗ are on the same side of it. As
b∗ ∈ convXn, there is an xn ∈ Xn on the same side, and then the colourful simplex
conv {x1, . . . , xd, xn} contains εb for some small ε > 0. Hence the segment [0, εb]
is in P and intC∗ ∩ P is nonempty, a contradiction again.

Assume |I | < d for all I in Case 3 and consider the family, T, of transversals of
the form

T = {xi1 , . . . , xid , xn} with 0 ∈ conv T ,

where 1 � i1 < · · · < id � k. Our target is to show that for some T ∈ T, conv T
intersects the interior of C.

This would finish the proof as follows: Let x be a common point of conv T and
intC. Both C and conv T contain the origin, so the segment (0, x] is contained in
intC ∩ conv T . But conv T is a colourful simplex, so it is contained in P , yet intC∗
should be disjoint from P .

For T ∈ T let v(T ) be the point in conv T nearest to b, so v(T ) is on the boundary
of conv T . If b is short enough, then the whole segment [0, v(T )] lies on the boundary
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of conv T . This can be reached for all T ∈ T, if we fix t ∈ (0, t1) small enough. Our
target is to show that v(T ) ∈ intC for some T ∈ T.

Setw(T ) = b − v(T ), then v(T ) andw(T ) are orthogonal, and v(T ) is the orthog-
onal projection of b onto the (d − 1)-dimensional subspace whose normal is w(T ).
Moreover, if conv T ∩ intC = ∅, then the vector w(T ) separates C and conv T ,
that is, x · w(T ) � 0 for all x ∈ conv T and x · w(T ) � 0 for all x ∈ C. Further,
if x · w(T ) = 0 for some x ∈ C, then x lies on a unique extreme ray of the circular
cone C.

Note further, that [0, v(T )] lies on the boundary of conv T . By Carathéodory’s
theorem, there is an xi ∈ T such that [0, v(T )] ⊂ conv (T \ {xi}). Write T/yi for
the transversal T = T ∪ {yi} \ {xi} where yi ∈ Xi . Clearly, T/yi ∈ T and w(T/yi)
is not longer than w(T ) since v(T ) ∈ conv (T /yi).

Choose now S ∈ T so that

‖w(S)‖ = min{‖w(T )‖ : T ∈ T}.
Observe that v(S) /= 0 or, equivalently, w(S) /= b. Indeed, there is a partial trans-

versal, {x1, . . . , xd} say, containing 0 in its convex hull. Further, there is xn ∈ Xn

with u · xn > 0 as u · b∗ > 0 and b∗ ∈ convXn where u is the unit vector from the
very beginning of this proof. So T = {x1, . . . , xd, xn} ∈ T and v(T ) is shorter than
b as the distance between b and [0, xn] is shorter than b.

Claim 8. v(S) ∈ intC.

Proof. Assume the contrary, then conv S and C are separated by the hyperplane
H = {x : x · w(S) = 0}.

Assume first that v(S) /∈ C. Let xi ∈ S be a vector with [0, v(S)] ⊂ conv (S \
{xi}). As C ∩ conv S = {0} and bi ∈ C, bi · w(S) > 0. Further, bi ∈ convXi , so
there is a yi ∈ Xi with yi · w(S) > 0. But then ‖w(S/yi)‖ < ‖w(S)‖ showing that
v(S) ∈ C, or rather, v(S) ∈ �C. (For i = n one should take b instead of bi .)

Now with v(S) ∈ �C the assumption bi · w(S) > 0 leads to the same contradic-
tion. Thus bi · w(S) = 0 so w(S) is the (unique) normal to the cone C at the point
bi . This implies that βbi = v(S) for some positive β. Note that this i is unique,
otherwise γ bj = v(S) (for some γ > 0) and then rays L(bi) and L(bj ) coincide
which is impossible by Claim 5. Assume for concreteness that i = 1.

Set now V = S \ {x1}, then V ⊂ H and |V | = d and the segment [0, v(S)] ⊂
convV . Next, [0, b1] ⊂ H ∩ P1 since 0, b1 ∈ P1. The set P1 is separated from C by
H . The set Y = X1 ∩H /= ∅ since b1 ∈ convY , let y1 ∈ Y arbitrary. Note that both
V and Y are contained in H , which is a copy of Rd−1.

For every vector a ∈ (0, v(S)] ∩ (0, b1],
a ∈ convV ⊂ conv (V ∪ {y1}).

The last set lies in H and contains d + 1 elements. A well-known version of Ca-
rathéodory’s theorem (cf. [3]) implies the existence of v ∈ V such that a ∈ conv (V ∪
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{y1} \ {v}). The vector v may depend on a but it is the same for infinitely many a
while a tends to 0, say v = xd ∈ Xd . Then

[0, a] ⊂ conv (S ∪ {y1} \ {x1, xd})
for some a on the segment (0, v(S)]. This new partial transversal contains v(S) in
its convex hull, and contains no point of Xd . As bd · w(S) > 0, yd · w(S) > 0 for
a suitable yd ∈ Xd . This gives a new transversal S∗ = S ∪ {y1, yd} \ {x1, xd} with
w(S∗) shorter than w(S). This final contradiction shows that v(S) ∈ intC. �
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