

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 397 (2005) 381-388

www.elsevier.com/locate/laa

A case when the union of polytopes is convex

Imre Bárány ^{a, b, 1}, Komei Fukuda ^{c, d,*}

 ^a Rényi Institute, Budapest, P.O. Box 127, 1364, Hungary
^bDepartment of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
^c Institutes for Operations Research and Theoretical Computer Science, ETH Zentrum, CH-8092 Zurich, Switzerland
^d Mathematics Institute, EPFL, CH-1015 Lausanne, Switzerland Received 25 August 2004; accepted 15 November 2004

Submitted by R.A. Brualdi

Abstract

We present a necessary and sufficient condition for the union of a finite number of convex polytopes in \mathbb{R}^d to be convex. This generalises two theorems on convexity of the union of convex polytopes due to Bemporad et al. @ 2004 Elsevier Inc. All rights reserved.

© 2004 Elsevier nic. An rights reserved.

AMS classification: Primary 52A20, 52A35; Secondary 52B11, 52B55

Keywords: Convex polytopes; Union; Convexity characterization; The colourful Carathéodory theorem

1. Introduction

A *convex polytope* or simply *polytope* is the convex hull of a finite set of points in Euclidean space \mathbb{R}^d . Bemporad et al. [2] studied various necessary and sufficient conditions for the union of several polytopes in \mathbb{R}^d to be convex. In particular, it was

^{*} Corresponding author.

E-mail address: fukuda@ifor.math.ethz.ch (K. Fukuda).

 $^{^{\}rm 1}$ The first author was partially supported by Hungarian National Science Foundation Grants T 046246 and T 037846.

shown that for two polytopes P_1 and P_2 in \mathbb{R}^d , their union $P_1 \cup P_2$ is convex if and only if the line segment $[v_1, v_2]$ is contained in $P_1 \cup P_2$ for each vertex v_1 of P_1 and each vertex v_2 of P_2 . The main objective of the present paper is to give a natural extension of this theorem to the general case of several polytopes.

Assume that P_i is a polytope in \mathbb{R}^d whose vertex set is X_i , for $i \in [n]$. Here [n] is a shorthand for the set $\{1, 2, ..., n\}$. Define $P = \bigcup_{i=1}^{n} P_i$, $X = \bigcup_{i=1}^{n} X_i$ and Q = conv X. Clearly, $P \subset Q$ always, and P is convex if and only if it coincides with Q. Obviously, if P is convex, then conv $S \subset P$ for every $S \subset X$. Our main theorem is a converse to this simple statement.

Theorem 1. Assume $d \ge 1$, $n \ge 2$. Then P = Q if and only if conv $S \subset P$ for each $S \subset X$ with $|S| \le d + 1$ and $|S \cap X_i| \le 1$ for each $i \in [n]$.

It should be noted that Bemporad et al. gave another weaker version [2–Theorem 5] of the theorem in which the last condition " $|S \cap X_i| \leq 1$ for each $i \in [n]$ " is replaced by the weaker condition " $|S| \leq n$ ". It appears that our stronger theorem is substantially harder to prove.

Given sets A_1, \ldots, A_n a *transversal* is a set $\{a_1, \ldots, a_n\}$ with $a_i \in A_i$ for all *i*. We are going to use the following theorem known as the Colourful Carathéodory theorem.

Theorem 2 (The Colourful Carathéodory Theorem [1]). Given points $a, v \in \mathbb{R}^d$ and sets $A_i \subset \mathbb{R}^d$, $i \in [d]$, with $a \in \bigcap_1^d \operatorname{conv} A_i$, there exists a transversal $\{a_1, \ldots, a_d\}$ of the A_i such that

 $a \in \operatorname{conv} \{a_1, \ldots, a_d, v\}.$

2. Preparations

Carathéodory's theorem (see [3]) says that the convex hull of $S \subset \mathbb{R}^d$ is the union of simplices conv *T* with $T \subset S$ and $|T| \leq d + 1$. We will call such a simplex *colourful* if its vertices constitute a transversal of a subsystem of the X_i ($i \in [n]$). In this terminology what we want to prove is the following: *P* is convex if it contains every colourful simplex.

The statement is invariant under nondegenerate affine transformations, so we may apply any such transformation even during the proof.

We will need a following simple lemma:

Lemma 3. Assume $T \subset \mathbb{R}^d$ is a polytope with nonempty interior and $E \subset T$ is an ellipsoid. Assume b_1, \ldots, b_s are the common points of E and ∂T and the outer unit normal to E at b_i is u_i . If $0 \notin \text{int conv} \{u_1, \ldots, u_s\}$, then there is another ellipsoid $E' \subset T$, arbitrarily close to E, with Vol E' > Vol E.

Proof. The statement is invariant under nondegenerate affine transformations so we may assume that *E* is just B_r , the ball of radius *r* centered at the origin. If $B_r \cap \partial T = \emptyset$, then any B_ρ with ρ slightly larger than *r* will do for *E'*.

Now assume that the set $B_r \cap \partial T = \{b_1, \dots, b_s\}$ is nonvoid. It is clear that $u_i = b_i/r$, and T has a facet with outer normal u_i at distance r from the origin (for all i), and all other facets are farther away.

Suppose $0 \notin \text{int conv} \{u_1, \ldots, u_s\}$ and set $C = \text{conv} \{b_1, \ldots, b_s\}$. Then $0 \notin \text{int } C$ as well, and there is a unit vector u such that the hyperplane $u \cdot x = 0$ separates C and 0, that is, $u \cdot x \leq 0$ for every $x \in C$.

If the separation is strict, that is, $u \cdot x < 0$ for all $x \in C$, then, for sufficiently small $\varepsilon > 0$, the point εu is farther than *r* from each facet of *T*. In this case the ball $\varepsilon u + B_r$ is disjoint from the boundary of *T* if $\varepsilon > 0$ is small enough. Then $\varepsilon u + B_\rho$ will do for *E'* for all ρ slightly larger then *r*.

If the separation is not strict, then 0 is in the relative interior of the convex hull of a subset of $\{b_1, \ldots, b_s\}$. Say $0 \in \text{relint}\{b_1, \ldots, b_j\}$. Then, for all small enough $\varepsilon > 0$, the ball $\varepsilon u + B_r$ touches all facets of *T* that contain $b_i, i \in [j]$ and is disjoint from all other facets. The set conv $\{(\varepsilon u + B_r) \cup B_r\}$ is contained in *T*, and contains an ellipsoid E', arbitrarily close to B_r and of larger volume than B_r . \Box

The following fact can be proved easily by induction on n.

Lemma 4. If Q and P_i , $i \in [n]$ are polytopes in \mathbb{R}^d , then the closure of $Q \setminus \bigcup_{i=1}^{n} P_i$ can be written as a finite union of simplices.

3. Proof of the main theorem

The statement is true for d = 1 and any $n \ge 2$. We use induction on d so assume $d \ge 2$ and the statement is true in dimension d - 1.

Assume the contrary: suppose polytopes P_1, \ldots, P_n in \mathbb{R}^d form a counterexample to the theorem with minimal *n*. The induction hypothesis implies that *Q* is full dimensional. Further, let *F* be a facet of *Q*. Then, in the hyperplane containing *F*, the induction hypothesis can be used to show that $F \subset P$. This implies that $\partial Q \subset P$.

The set $G = Q \setminus P$ is open. By Lemma 4, its closure cl *G* can be written as a finite union of full dimensional simplices F_s . Let *V* denote the set of vertices of the F_s . Choose a unit vector $u \in \mathbb{R}^d$ so that

 $\min\{u \cdot x : x \in \operatorname{cl} G\} = \min\{u \cdot x : x \in V\}$

is reached on a unique vertex $a \in V$. Assume that *a* coincides with the origin (otherwise apply a suitable affine transformation). Write $H(t) = \{x \in \mathbb{R}^d : u \cdot x = t\}$. Clearly, $H(t) \cap Q = H(t) \cap P$ for $t \leq 0$. Let $t_1 = \min\{u \cdot x : x \in V, x \neq 0\}$. Then $t_1 > 0$ and for $t \in (0, t_1)$

383

$$H(t) \cap \operatorname{cl} G = H(t) \cap \cup F_s,$$

where the union is taken over all simplices F_s with $0 \in F_s$. No polytope P_i contains the origin in its interior. But $0 \in P_i$ for some $i \in [n]$ since otherwise $0 \notin P$.

We clean the picture further. Fix $t \in (0, t_1)$ very small (to be specified soon) and set, again for $0 \in F_s$ in the union,

$$Z = H(t) \cap \operatorname{cl} G = H(t) \cap \cup F_s.$$

Z is the union of (d-1)-dimensional simplices in H(t) which is a copy of \mathbb{R}^{d-1} . Choose an ellipsoid $E \subset Z$ of maximum (d-1)-dimensional volume. Such an ellipsoid clearly exists and has finitely many points $z \in P$ on its boundary. The segment $[0, z] \subset P$ since otherwise the interior of some simplex F_s with $0 \in F_s$ contains a point from the segment, but then the whole segment is contained in int F_s . Then $[0, \gamma z] \subset P_i$ for some $i \in [n]$ with a suitable $\gamma > 0$. So if t is chosen small enough, then $[0, z] \subset P_i$. Here z is determined by P_i uniquely, we set $b_i = z$ for concreteness.

Assume, for simpler writing, that the set of indices *i* with b_i on the boundary of *E* is just [*k*]. Then $1 \le k \le n$. Write h_i for the halfspace (in H(t)) which contains *E* and whose boundary hyperplane contains b_i . Then $T = \bigcap_{i \in [k]} h_i$ is a polytope, $E \subset T$ and *E* is at a positive distance from all P_i , $i \notin [k]$.

Let u_i be the outer unit normal to E at b_i $(i \in [k])$. We claim that

 $0 \in \operatorname{int} \operatorname{conv}\{u_1, \ldots, u_k\}.$

Indeed, if this were not case, then Lemma 3 implies the existence of another ellipsoid $E' \subset T$ arbitrarily close to E with Vol E' > Vol E. Such an ellipsoid is contained in Z and has larger volume than E, contradicting the choice of E.

The claim shows that $d \leq k$ (otherwise int conv $\{u_1, \ldots, u_k\}$ is empty). Thus $d \leq k \leq n$. Note that we are finished with the case n < d.

Now we apply a nondegenerate linear transformation (to all polytopes P_i , P and Q) that keeps the hyperplane H(0) fixed and moves the ellipsoid E to a ball B in H(t) whose center, b, is orthogonal to H(0). We keep the same notation, so the images of P, Q, P_i , and the points b_i will go under the same name. This should cause no confusion as we won't return to their preimages.

We write C = pos B, this is a closed circular cone whose axis is the halfline $L(b) = \{\lambda b : \lambda \ge 0\}$. The cone *C* is separated from each P_i $(i \in [k])$ and the (unique) separating hyperplane is tangent to *C* along the halfline $L(b_i)$. Moreover, $C \cap P_i$ is contained in $L(b_i)$. It is also clear that $b \in \text{int } C$. We define $C^* = C \cap \{x : u \cdot x \le t\}$ and note that int $C^* \cap P = \emptyset$.

Claim 5. For distinct $i, j \in [k]$, the rays $L(b_i)$ and $L(b_j)$ are distinct.

Proof. Assume, on the contrary that $L(b_1) = L(b_2)$, say. Set $P_0 = \text{conv}(X_1 \cup X_2)$. Since P_1 and P_2 are separated by the same hyperplane from C, P_0 is separated from C by that hyperplane. It is not hard to check now that P_0, P_3, \ldots, P_n is another

384

385

counterexample to the theorem with n-1 polytopes, contrary to the minimality of n. \Box

We claim now that k < n. Indeed, the halfline L(b) intersects ∂Q at the point b^* , say. As *C* and P_i are separated for all $i \in [k], b^* \notin P_i$. Now

$$b^* \in \partial Q \subset P = \bigcup_{i=1}^n P_i$$

so b^* is contained in one of the polytopes P_i , i > k. Assume, for concreteness, that $b^* \in P_n$. (Note that we are finished with the case $n \leq d$ now.)

We can now apply Theorem 2: $0 \in \operatorname{conv} X_i$ for each $i \in [k]$. The last vector $v \in \mathbb{R}^d$ can be anything; it will often but not always come from X_n . As k may be larger than d we will consider *partial transversals* of the system X_i . A partial transversal, or *I*-transversal, of this system is $\{x_i \in X_i : i \in I\}$, here I can be any subset of [k]. Theorem 2 says now the following:

Lemma 6. For every $I \subset [k]$ with |I| = d and every $v \in \mathbb{R}^d$ there exists an *I*-transversal $\{x_i \in X_i : i \in I\}$ such that

 $0 \in \operatorname{conv}\left(\{x_i : i \in I\} \cup \{v\}\right).$

We have to distinguish some cases.

Case 1. There is a colourful simplex whose interior contains the origin.

By the conditions of Theorem 1 this colourful simplex is contained in *P*, so a full neighbourhood of 0 lies in *P*, contradicting int $C^* \cap P = \emptyset$.

Thus 0 does not lie in the interior of any colourful simplex. Then by Lemma 6, for every $x_n \in X_n$ and for every $I \subset [k]$, |I| = d, 0 is on the boundary of the convex hull of an *I*-transversal and x_n . Thus 0 is contained in the *relative* interior of the convex hull of a partial transversal plus possibly x_n .

Case 2. When 0 is not contained in the convex hull of any *I*-transversal, with $|I| \leq d$, of the X_i , $i \in [k]$. Then k = d since otherwise Lemma 6 can be applied to X_1, \ldots, X_d with v equal to an arbitrary $x_{d+1} \in X_{d+1}$ and the convex hull of the transversal and x_{d+1} either contains 0 in its interior (which is impossible since Case 1 is excluded by now), or 0 is contained in the convex hull of some partial transversal from [k] which is impossible in Case 2.

So k = d. Choose a point $x_n \in X_n$. There are finitely many transversals $\{x_1, \ldots, x_d\}$ such that the set $F = \text{conv} \{x_1, \ldots, x_d, x_n\}$ contains the origin. Write \mathscr{F} for the collection of such sets.

Claim 7. The union of these sets contains a small neighbourhood of the origin.

Proof. Write W for the set of unit vectors w such that, for all small $\varepsilon \in (0, \varepsilon_0]$, εw is not contained in the affine hull of any d points from X. (All unit vectors, except those in a finite union of hyperplanes, satisfy this requirement if ε_0 is chosen small

enough.) Now apply Lemma 6 to the system X_i , $i \in [d]$ and the point $v = x_n - \varepsilon w$ where $w \in W$. The result is a transversal $x_i \in X_i$ ($i \in [d]$) such that

 $0 \in \operatorname{conv}(\{x_i : i \in [d]\} \cup \{x_n - \varepsilon w\}).$

In other words, there are $\gamma_i \ge 0$ (for $i \in [d] \cup \{n\}$) that sum to one with

 $0 = \gamma_1 x_1 + \cdots + \gamma_d x_d + \gamma_n (x_n - \varepsilon w).$

We claim that all $\gamma_i > 0$ here. First, $\gamma_n = 0$ would show that 0 is in the convex hull of x_1, \ldots, x_d , contrary to the assumptions of Case 2. So $\gamma_n > 0$ (for every small positive ε), and

 $\gamma_n \varepsilon w = \gamma_1 x_1 + \cdots + \gamma_d x_d + \gamma_n x_n.$

If some $\gamma_i = 0$ here, then $\gamma_n \varepsilon w$ is in the affine hull of *d* or fewer vectors from *X*, contrary to the choice of *w*. Thus all $\gamma_i > 0$.

The last equation shows that the simplex $F = \text{conv} \{x_1, \ldots, x_d, x_n\}$ contains the segment $[0, \delta(w)w]$ for some small $\delta(w) > 0$. Let r(F) be the distance from the origin to the union of the facets of *F* not containing the origin. Thus if *F* contains $[0, \delta(w)w]$, then it contains [0, r(F)w] as well.

Set $r = \min\{r(F) : F \in \mathcal{F}\}$. Then for each $w \in W$ the segment [0, rw] is contained in some $F \in \mathcal{F}$. This holds then for all unit vectors w as the union of $F \in \mathcal{F}$ is a closed set. \Box

The Claim shows that the union of the colourful simplices contains a small neighbourhood of the origin. This contradicts, again, the assumption that int C^* is disjoint from P.

Case 3. When 0 is in the relative interior of the convex hull of some *I*-transversal with $I \subset [k], |I| \leq d$.

This is very simple if |I| = d. Assume the *I*-transversal is $\{x_1, \ldots, x_d\}$. Then the affine hull of x_1, \ldots, x_d is a hyperplane, and *b* and b^* are on the same side of it. As $b^* \in \text{conv } X_n$, there is an $x_n \in X_n$ on the same side, and then the colourful simplex conv $\{x_1, \ldots, x_d, x_n\}$ contains εb for some small $\varepsilon > 0$. Hence the segment $[0, \varepsilon b]$ is in *P* and int $C^* \cap P$ is nonempty, a contradiction again.

Assume |I| < d for all I in Case 3 and consider the family, \mathcal{T} , of transversals of the form

 $T = \{x_{i_1}, \dots, x_{i_d}, x_n\} \quad \text{with } 0 \in \text{conv } T,$

where $1 \leq i_1 < \cdots < i_d \leq k$. Our target is to show that for some $T \in \mathcal{T}$, conv *T* intersects the interior of *C*.

This would finish the proof as follows: Let x be a common point of conv T and int C. Both C and conv T contain the origin, so the segment (0, x] is contained in int $C \cap \text{conv } T$. But conv T is a colourful simplex, so it is contained in P, yet int C^* should be disjoint from P.

For $T \in \mathcal{T}$ let v(T) be the point in conv T nearest to b, so v(T) is on the boundary of conv T. If b is short enough, then the whole segment [0, v(T)] lies on the boundary

of conv *T*. This can be reached for all $T \in \mathcal{T}$, if we fix $t \in (0, t_1)$ small enough. Our target is to show that $v(T) \in \text{int } C$ for some $T \in \mathcal{T}$.

Set w(T) = b - v(T), then v(T) and w(T) are orthogonal, and v(T) is the orthogonal projection of *b* onto the (d - 1)-dimensional subspace whose normal is w(T). Moreover, if conv $T \cap$ int $C = \emptyset$, then the vector w(T) separates *C* and conv *T*, that is, $x \cdot w(T) \leq 0$ for all $x \in \text{conv } T$ and $x \cdot w(T) \geq 0$ for all $x \in C$. Further, if $x \cdot w(T) = 0$ for some $x \in C$, then *x* lies on a unique extreme ray of the circular cone *C*.

Note further, that [0, v(T)] lies on the boundary of conv *T*. By Carathéodory's theorem, there is an $x_i \in T$ such that $[0, v(T)] \subset \text{conv} (T \setminus \{x_i\})$. Write T/y_i for the transversal $T = T \cup \{y_i\} \setminus \{x_i\}$ where $y_i \in X_i$. Clearly, $T/y_i \in \mathcal{T}$ and $w(T/y_i)$ is not longer than w(T) since $v(T) \in \text{conv} (T/y_i)$.

Choose now $S \in \mathcal{T}$ so that

 $||w(S)|| = \min\{||w(T)|| : T \in \mathscr{T}\}.$

Observe that $v(S) \neq 0$ or, equivalently, $w(S) \neq b$. Indeed, there is a partial transversal, $\{x_1, \ldots, x_d\}$ say, containing 0 in its convex hull. Further, there is $x_n \in X_n$ with $u \cdot x_n > 0$ as $u \cdot b^* > 0$ and $b^* \in \operatorname{conv} X_n$ where u is the unit vector from the very beginning of this proof. So $T = \{x_1, \ldots, x_d, x_n\} \in \mathcal{T}$ and v(T) is shorter than b as the distance between b and $[0, x_n]$ is shorter than b.

Claim 8. $v(S) \in \text{int } C$.

Proof. Assume the contrary, then conv *S* and *C* are separated by the hyperplane $H = \{x : x \cdot w(S) = 0\}.$

Assume first that $v(S) \notin C$. Let $x_i \in S$ be a vector with $[0, v(S)] \subset \operatorname{conv} (S \setminus \{x_i\})$. As $C \cap \operatorname{conv} S = \{0\}$ and $b_i \in C$, $b_i \cdot w(S) > 0$. Further, $b_i \in \operatorname{conv} X_i$, so there is a $y_i \in X_i$ with $y_i \cdot w(S) > 0$. But then $||w(S/y_i)|| < ||w(S)||$ showing that $v(S) \in C$, or rather, $v(S) \in \partial C$. (For i = n one should take *b* instead of b_i .)

Now with $v(S) \in \partial C$ the assumption $b_i \cdot w(S) > 0$ leads to the same contradiction. Thus $b_i \cdot w(S) = 0$ so w(S) is the (unique) normal to the cone *C* at the point b_i . This implies that $\beta b_i = v(S)$ for some positive β . Note that this *i* is unique, otherwise $\gamma b_j = v(S)$ (for some $\gamma > 0$) and then rays $L(b_i)$ and $L(b_j)$ coincide which is impossible by Claim 5. Assume for concreteness that i = 1.

Set now $V = S \setminus \{x_1\}$, then $V \subset H$ and |V| = d and the segment $[0, v(S)] \subset$ conv V. Next, $[0, b_1] \subset H \cap P_1$ since $0, b_1 \in P_1$. The set P_1 is separated from C by H. The set $Y = X_1 \cap H \neq \emptyset$ since $b_1 \in$ conv Y, let $y_1 \in Y$ arbitrary. Note that both V and Y are contained in H, which is a copy of \mathbb{R}^{d-1} .

For every vector $a \in (0, v(S)] \cap (0, b_1]$,

 $a \in \operatorname{conv} V \subset \operatorname{conv} (V \cup \{y_1\}).$

The last set lies in *H* and contains d + 1 elements. A well-known version of Carathéodory's theorem (cf. [3]) implies the existence of $v \in V$ such that $a \in \text{conv} (V \cup$

387

 $\{y_1\} \setminus \{v\}$). The vector v may depend on a but it is the same for infinitely many a while a tends to 0, say $v = x_d \in X_d$. Then

 $[0, a] \subset \operatorname{conv} \left(S \cup \{y_1\} \setminus \{x_1, x_d\} \right)$

for some *a* on the segment (0, v(S)]. This new partial transversal contains v(S) in its convex hull, and contains no point of X_d . As $b_d \cdot w(S) > 0$, $y_d \cdot w(S) > 0$ for a suitable $y_d \in X_d$. This gives a new transversal $S^* = S \cup \{y_1, y_d\} \setminus \{x_1, x_d\}$ with $w(S^*)$ shorter than w(S). This final contradiction shows that $v(S) \in \text{int } C$. \Box

Acknowledgments

The first named author is grateful to Microsoft Research (in Redmond, WA) as part of this research was carried out on a very pleasant and fruitful visit there. The authors are grateful to an anonymous referee for suggestions improving the presentation of this paper.

References

- [1] I. Bárány, A generalisation of Carathéodory's theorem, Discrete Math. 40 (1981) 141–152.
- [2] A. Bemporad, K. Fukuda, F.D. Torrisi, Convexity recognition of the union of polyhedra, Comput. Geom. 18 (2001) 141–154.
- [3] L. Danzer, B. Grunbaum, V. Klee, Helly's theorem and its relatives, in: Proc. Symp. Pure Math. vol. VIII, Convexity, AMS, Providence, RI, 1963.