A case when the union of polytopes is convex

Imre Bárány ${ }^{\text {a, }}{ }^{\text {b, }}$, Komei Fukuda ${ }^{\text {c, } \mathrm{d}, *}$
${ }^{a}$ Rényi Institute, Budapest, P.O. Box 127, 1364, Hungary
${ }^{\mathrm{b}}$ Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom
${ }^{\mathrm{c}}$ Institutes for Operations Research and Theoretical Computer Science, ETH Zentrum, CH-8092 Zurich, Switzerland
${ }^{\mathrm{d}}$ Mathematics Institute, EPFL, CH-1015 Lausanne, Switzerland Received 25 August 2004; accepted 15 November 2004

Submitted by R.A. Brualdi

Abstract

We present a necessary and sufficient condition for the union of a finite number of convex polytopes in \mathbb{R}^{d} to be convex. This generalises two theorems on convexity of the union of convex polytopes due to Bemporad et al. © 2004 Elsevier Inc. All rights reserved. AMS classification: Primary 52A20, 52A35; Secondary 52B11, 52B55 Keywords: Convex polytopes; Union; Convexity characterization; The colourful Carathéodory theorem

1. Introduction

A convex polytope or simply polytope is the convex hull of a finite set of points in Euclidean space \mathbb{R}^{d}. Bemporad et al. [2] studied various necessary and sufficient conditions for the union of several polytopes in \mathbb{R}^{d} to be convex. In particular, it was

[^0]shown that for two polytopes P_{1} and P_{2} in \mathbb{R}^{d}, their union $P_{1} \cup P_{2}$ is convex if and only if the line segment $\left[v_{1}, v_{2}\right]$ is contained in $P_{1} \cup P_{2}$ for each vertex v_{1} of P_{1} and each vertex v_{2} of P_{2}. The main objective of the present paper is to give a natural extension of this theorem to the general case of several polytopes.

Assume that P_{i} is a polytope in \mathbb{R}^{d} whose vertex set is X_{i}, for $i \in[n]$. Here [$\left.n\right]$ is a shorthand for the set $\{1,2, \ldots, n\}$. Define $P=\bigcup_{1}^{n} P_{i}, X=\cup_{1}^{n} X_{i}$ and $Q=\operatorname{conv} X$. Clearly, $P \subset Q$ always, and P is convex if and only if it coincides with Q. Obviously, if P is convex, then conv $S \subset P$ for every $S \subset X$. Our main theorem is a converse to this simple statement.

Theorem 1. Assume $d \geqslant 1, n \geqslant 2$. Then $P=Q$ if and only if $\operatorname{conv} S \subset P$ for each $S \subset X$ with $|S| \leqslant d+1$ and $\left|S \cap X_{i}\right| \leqslant 1$ for each $i \in[n]$.

It should be noted that Bemporad et al. gave another weaker version [2-Theorem 5] of the theorem in which the last condition " $\left|S \cap X_{i}\right| \leqslant 1$ for each $i \in[n]$ " is replaced by the weaker condition " $|S| \leqslant n$ ". It appears that our stronger theorem is substantially harder to prove.

Given sets A_{1}, \ldots, A_{n} a transversal is a set $\left\{a_{1}, \ldots, a_{n}\right\}$ with $a_{i} \in A_{i}$ for all i. We are going to use the following theorem known as the Colourful Carathéodory theorem.

Theorem 2 (The Colourful Carathéodory Theorem [1]). Given points $a, v \in \mathbb{R}^{d}$ and sets $A_{i} \subset \mathbb{R}^{d}, i \in[d]$, with $a \in \cap_{1}^{d} \operatorname{conv} A_{i}$, there exists a transversal $\left\{a_{1}, \ldots, a_{d}\right\}$ of the A_{i} such that

$$
a \in \operatorname{conv}\left\{a_{1}, \ldots, a_{d}, v\right\}
$$

2. Preparations

Carathéodory's theorem (see [3]) says that the convex hull of $S \subset \mathbb{R}^{d}$ is the union of simplices conv T with $T \subset S$ and $|T| \leqslant d+1$. We will call such a simplex colourful if its vertices constitute a transversal of a subsystem of the $X_{i}(i \in[n])$. In this terminology what we want to prove is the following: P is convex if it contains every colourful simplex.

The statement is invariant under nondegenerate affine transformations, so we may apply any such transformation even during the proof.

We will need a following simple lemma:
Lemma 3. Assume $T \subset \mathbb{R}^{d}$ is a polytope with nonempty interior and $E \subset T$ is an ellipsoid. Assume b_{1}, \ldots, b_{s} are the common points of E and ∂T and the outer unit normal to E at b_{i} is u_{i}. If $0 \notin$ int $\operatorname{conv}\left\{u_{1}, \ldots, u_{s}\right\}$, then there is another ellipsoid $E^{\prime} \subset T$, arbitrarily close to E, with $\operatorname{Vol} E^{\prime}>\operatorname{Vol} E$.

Proof. The statement is invariant under nondegenerate affine transformations so we may assume that E is just B_{r}, the ball of radius r centered at the origin. If $B_{r} \cap \partial T=$ \emptyset, then any B_{ρ} with ρ slightly larger than r will do for E^{\prime}.

Now assume that the set $B_{r} \cap \partial T=\left\{b_{1}, \ldots, b_{s}\right\}$ is nonvoid. It is clear that $u_{i}=$ b_{i} / r, and T has a facet with outer normal u_{i} at distance r from the origin (for all i), and all other facets are farther away.

Suppose $0 \notin$ int conv $\left\{u_{1}, \ldots, u_{s}\right\}$ and set $C=\operatorname{conv}\left\{b_{1}, \ldots, b_{s}\right\}$. Then $0 \notin \operatorname{int} C$ as well, and there is a unit vector u such that the hyperplane $u \cdot x=0$ separates C and 0 , that is, $u \cdot x \leqslant 0$ for every $x \in C$.

If the separation is strict, that is, $u \cdot x<0$ for all $x \in C$, then, for sufficiently small $\varepsilon>0$, the point εu is farther than r from each facet of T. In this case the ball $\varepsilon u+B_{r}$ is disjoint from the boundary of T if $\varepsilon>0$ is small enough. Then $\varepsilon u+B_{\rho}$ will do for E^{\prime} for all ρ slightly larger then r.

If the separation is not strict, then 0 is in the relative interior of the convex hull of a subset of $\left\{b_{1}, \ldots, b_{s}\right\}$. Say $0 \in \operatorname{relint}\left\{b_{1}, \ldots, b_{j}\right\}$. Then, for all small enough $\varepsilon>0$, the ball $\varepsilon u+B_{r}$ touches all facets of T that contain $b_{i}, i \in[j]$ and is disjoint from all other facets. The set conv $\left\{\left(\varepsilon u+B_{r}\right) \cup B_{r}\right\}$ is contained in T, and contains an ellipsoid E^{\prime}, arbitrarily close to B_{r} and of larger volume than B_{r}.

The following fact can be proved easily by induction on n.
Lemma 4. If Q and $P_{i}, i \in[n]$ are polytopes in \mathbb{R}^{d}, then the closure of $Q \backslash \bigcup_{1}^{n} P_{i}$ can be written as a finite union of simplices.

3. Proof of the main theorem

The statement is true for $d=1$ and any $n \geqslant 2$. We use induction on d so assume $d \geqslant 2$ and the statement is true in dimension $d-1$.

Assume the contrary: suppose polytopes P_{1}, \ldots, P_{n} in \mathbb{R}^{d} form a counterexample to the theorem with minimal n. The induction hypothesis implies that Q is full dimensional. Further, let F be a facet of Q. Then, in the hyperplane containing F, the induction hypothesis can be used to show that $F \subset P$. This implies that $\partial Q \subset P$.

The set $G=Q \backslash P$ is open. By Lemma 4, its closure $\mathrm{cl} G$ can be written as a finite union of full dimensional simplices F_{s}. Let V denote the set of vertices of the F_{s}. Choose a unit vector $u \in \mathbb{R}^{d}$ so that

$$
\min \{u \cdot x: x \in \operatorname{cl} G\}=\min \{u \cdot x: x \in V\}
$$

is reached on a unique vertex $a \in V$. Assume that a coincides with the origin (otherwise apply a suitable affine transformation). Write $H(t)=\left\{x \in \mathbb{R}^{d}: u \cdot x=t\right\}$. Clearly, $H(t) \cap Q=H(t) \cap P$ for $t \leqslant 0$. Let $t_{1}=\min \{u \cdot x: x \in V, x \neq 0\}$. Then $t_{1}>0$ and for $t \in\left(0, t_{1}\right)$

$$
H(t) \cap \operatorname{cl} G=H(t) \cap \cup F_{S}
$$

where the union is taken over all simplices F_{s} with $0 \in F_{s}$. No polytope P_{i} contains the origin in its interior. But $0 \in P_{i}$ for some $i \in[n]$ since otherwise $0 \notin P$.

We clean the picture further. Fix $t \in\left(0, t_{1}\right)$ very small (to be specified soon) and set, again for $0 \in F_{s}$ in the union,

$$
Z=H(t) \cap \operatorname{cl} G=H(t) \cap \cup F_{s} .
$$

Z is the union of $(d-1)$-dimensional simplices in $H(t)$ which is a copy of R^{d-1}. Choose an ellipsoid $E \subset Z$ of maximum $(d-1)$-dimensional volume. Such an ellipsoid clearly exists and has finitely many points $z \in P$ on its boundary. The segment $[0, z] \subset P$ since otherwise the interior of some simplex F_{S} with $0 \in F_{S}$ contains a point from the segment, but then the whole segment is contained in int F_{s}. Then $[0, \gamma z] \subset P_{i}$ for some $i \in[n]$ with a suitable $\gamma>0$. So if t is chosen small enough, then $[0, z] \subset P_{i}$. Here z is determined by P_{i} uniquely, we set $b_{i}=z$ for concreteness.

Assume, for simpler writing, that the set of indices i with b_{i} on the boundary of E is just [k]. Then $1 \leqslant k \leqslant n$. Write h_{i} for the halfspace (in $H(t)$) which contains E and whose boundary hyperplane contains b_{i}. Then $T=\bigcap_{i \in[k]} h_{i}$ is a polytope, $E \subset T$ and E is at a positive distance from all $P_{i}, i \notin[k]$.

Let u_{i} be the outer unit normal to E at $b_{i}(i \in[k])$. We claim that

$$
0 \in \operatorname{int} \operatorname{conv}\left\{u_{1}, \ldots, u_{k}\right\}
$$

Indeed, if this were not case, then Lemma 3 implies the existence of another ellipsoid $E^{\prime} \subset T$ arbitrarily close to E with $\operatorname{Vol} E^{\prime}>\operatorname{Vol} E$. Such an ellipsoid is contained in Z and has larger volume than E, contradicting the choice of E.

The claim shows that $d \leqslant k$ (otherwise int conv $\left\{u_{1}, \ldots, u_{k}\right\}$ is empty). Thus $d \leqslant$ $k \leqslant n$. Note that we are finished with the case $n<d$.

Now we apply a nondegenerate linear transformation (to all polytopes P_{i}, P and $Q)$ that keeps the hyperplane $H(0)$ fixed and moves the ellipsoid E to a ball B in $H(t)$ whose center, b, is orthogonal to $H(0)$. We keep the same notation, so the images of P, Q, P_{i}, and the points b_{i} will go under the same name. This should cause no confusion as we won't return to their preimages.

We write $C=\operatorname{pos} B$, this is a closed circular cone whose axis is the halfline $L(b)=\{\lambda b: \lambda \geqslant 0\}$. The cone C is separated from each $P_{i}(i \in[k])$ and the (unique) separating hyperplane is tangent to C along the halfline $L\left(b_{i}\right)$. Moreover, $C \cap P_{i}$ is contained in $L\left(b_{i}\right)$. It is also clear that $b \in \operatorname{int} C$. We define $C^{*}=C \cap\{x: u \cdot x \leqslant t\}$ and note that int $C^{*} \cap P=\emptyset$.

Claim 5. For distinct $i, j \in[k]$, the rays $L\left(b_{i}\right)$ and $L\left(b_{j}\right)$ are distinct.
Proof. Assume, on the contrary that $L\left(b_{1}\right)=L\left(b_{2}\right)$, say. Set $P_{0}=\operatorname{conv}\left(X_{1} \cup X_{2}\right)$. Since P_{1} and P_{2} are separated by the same hyperplane from C, P_{0} is separated from C by that hyperplane. It is not hard to check now that $P_{0}, P_{3}, \ldots, P_{n}$ is another
counterexample to the theorem with $n-1$ polytopes, contrary to the minimality of n.

We claim now that $k<n$. Indeed, the halfline $L(b)$ intersects ∂Q at the point b^{*}, say. As C and P_{i} are separated for all $i \in[k], b^{*} \notin P_{i}$. Now

$$
b^{*} \in \partial Q \subset P=\cup_{1}^{n} P_{i}
$$

so b^{*} is contained in one of the polytopes $P_{i}, i>k$. Assume, for concreteness, that $b^{*} \in P_{n}$. (Note that we are finished with the case $n \leqslant d$ now.)

We can now apply Theorem $2: 0 \in \operatorname{conv} X_{i}$ for each $i \in[k]$. The last vector $v \in$ \mathbb{R}^{d} can be anything; it will often but not always come from X_{n}. As k may be larger than d we will consider partial transversals of the system X_{i}. A partial transversal, or I-transversal, of this system is $\left\{x_{i} \in X_{i}: i \in I\right\}$, here I can be any subset of [$\left.k\right]$. Theorem 2 says now the following:

Lemma 6. For every $I \subset[k]$ with $|I|=d$ and every $v \in \mathbb{R}^{d}$ there exists an I-transversal $\left\{x_{i} \in X_{i}: i \in I\right\}$ such that

$$
0 \in \operatorname{conv}\left(\left\{x_{i}: i \in I\right\} \cup\{v\}\right) .
$$

We have to distinguish some cases.
Case 1. There is a colourful simplex whose interior contains the origin.
By the conditions of Theorem 1 this colourful simplex is contained in P, so a full neighbourhood of 0 lies in P, contradicting int $C^{*} \cap P=\emptyset$.

Thus 0 does not lie in the interior of any colourful simplex. Then by Lemma 6, for every $x_{n} \in X_{n}$ and for every $I \subset[k],|I|=d, 0$ is on the boundary of the convex hull of an I-transversal and x_{n}. Thus 0 is contained in the relative interior of the convex hull of a partial transversal plus possibly x_{n}.

Case 2. When 0 is not contained in the convex hull of any I-transversal, with $|I| \leqslant d$, of the $X_{i}, i \in[k]$. Then $k=d$ since otherwise Lemma 6 can be applied to X_{1}, \ldots, X_{d} with v equal to an arbitrary $x_{d+1} \in X_{d+1}$ and the convex hull of the transversal and x_{d+1} either contains 0 in its interior (which is impossible since Case 1 is excluded by now), or 0 is contained in the convex hull of some partial transversal from [k] which is impossible in Case 2.

So $k=d$. Choose a point $x_{n} \in X_{n}$. There are finitely many transversals $\left\{x_{1}, \ldots\right.$, $\left.x_{d}\right\}$ such that the set $F=\operatorname{conv}\left\{x_{1}, \ldots, x_{d}, x_{n}\right\}$ contains the origin. Write \mathscr{F} for the collection of such sets.

Claim 7. The union of these sets contains a small neighbourhood of the origin.

Proof. Write W for the set of unit vectors w such that, for all small $\varepsilon \in\left(0, \varepsilon_{0}\right], \varepsilon w$ is not contained in the affine hull of any d points from X. (All unit vectors, except those in a finite union of hyperplanes, satisfy this requirement if ε_{0} is chosen small
enough.) Now apply Lemma 6 to the system $X_{i}, i \in[d]$ and the point $v=x_{n}-\varepsilon w$ where $w \in W$. The result is a transversal $x_{i} \in X_{i}(i \in[d])$ such that

$$
0 \in \operatorname{conv}\left(\left\{x_{i}: i \in[d]\right\} \cup\left\{x_{n}-\varepsilon w\right\}\right) .
$$

In other words, there are $\gamma_{i} \geqslant 0($ for $i \in[d] \cup\{n\})$ that sum to one with

$$
0=\gamma_{1} x_{1}+\cdots+\gamma_{d} x_{d}+\gamma_{n}\left(x_{n}-\varepsilon w\right) .
$$

We claim that all $\gamma_{i}>0$ here. First, $\gamma_{n}=0$ would show that 0 is in the convex hull of x_{1}, \ldots, x_{d}, contrary to the assumptions of Case 2 . So $\gamma_{n}>0$ (for every small positive ε), and

$$
\gamma_{n} \varepsilon w=\gamma_{1} x_{1}+\cdots+\gamma_{d} x_{d}+\gamma_{n} x_{n}
$$

If some $\gamma_{i}=0$ here, then $\gamma_{n} \varepsilon w$ is in the affine hull of d or fewer vectors from X, contrary to the choice of w. Thus all $\gamma_{i}>0$.

The last equation shows that the simplex $F=\operatorname{conv}\left\{x_{1}, \ldots, x_{d}, x_{n}\right\}$ contains the segment $[0, \delta(w) w]$ for some small $\delta(w)>0$. Let $r(F)$ be the distance from the origin to the union of the facets of F not containing the origin. Thus if F contains $[0, \delta(w) w]$, then it contains $[0, r(F) w]$ as well.

Set $r=\min \{r(F): F \in \mathscr{F}\}$. Then for each $w \in W$ the segment $[0, r w]$ is contained in some $F \in \mathscr{F}$. This holds then for all unit vectors w as the union of $F \in \mathscr{F}$ is a closed set.

The Claim shows that the union of the colourful simplices contains a small neighbourhood of the origin. This contradicts, again, the assumption that int C^{*} is disjoint from P.

Case 3. When 0 is in the relative interior of the convex hull of some I-transversal with $I \subset[k],|I| \leqslant d$.

This is very simple if $|I|=d$. Assume the I-transversal is $\left\{x_{1}, \ldots, x_{d}\right\}$. Then the affine hull of x_{1}, \ldots, x_{d} is a hyperplane, and b and b^{*} are on the same side of it. As $b^{*} \in \operatorname{conv} X_{n}$, there is an $x_{n} \in X_{n}$ on the same side, and then the colourful simplex $\operatorname{conv}\left\{x_{1}, \ldots, x_{d}, x_{n}\right\}$ contains εb for some small $\varepsilon>0$. Hence the segment $[0, \varepsilon b]$ is in P and int $C^{*} \cap P$ is nonempty, a contradiction again.

Assume $|I|<d$ for all I in Case 3 and consider the family, \mathscr{T}, of transversals of the form

$$
T=\left\{x_{i_{1}}, \ldots, x_{i_{d}}, x_{n}\right\} \quad \text { with } 0 \in \operatorname{conv} T
$$

where $1 \leqslant i_{1}<\cdots<i_{d} \leqslant k$. Our target is to show that for some $T \in \mathscr{T}$, conv T intersects the interior of C.

This would finish the proof as follows: Let x be a common point of $\operatorname{conv} T$ and int C. Both C and conv T contain the origin, so the segment $(0, x]$ is contained in int $C \cap \operatorname{conv} T$. But conv T is a colourful simplex, so it is contained in P, yet int C^{*} should be disjoint from P.

For $T \in \mathscr{T}$ let $v(T)$ be the point in conv T nearest to b, so $v(T)$ is on the boundary of conv T. If b is short enough, then the whole segment $[0, v(T)]$ lies on the boundary
of conv T. This can be reached for all $T \in \mathscr{T}$, if we fix $t \in\left(0, t_{1}\right)$ small enough. Our target is to show that $v(T) \in \operatorname{int} C$ for some $T \in \mathscr{T}$.

Set $w(T)=b-v(T)$, then $v(T)$ and $w(T)$ are orthogonal, and $v(T)$ is the orthogonal projection of b onto the $(d-1)$-dimensional subspace whose normal is $w(T)$. Moreover, if conv $T \cap \operatorname{int} C=\emptyset$, then the vector $w(T)$ separates C and conv T, that is, $x \cdot w(T) \leqslant 0$ for all $x \in \operatorname{conv} T$ and $x \cdot w(T) \geqslant 0$ for all $x \in C$. Further, if $x \cdot w(T)=0$ for some $x \in C$, then x lies on a unique extreme ray of the circular cone C.

Note further, that $[0, v(T)]$ lies on the boundary of conv T. By Carathéodory's theorem, there is an $x_{i} \in T$ such that $[0, v(T)] \subset \operatorname{conv}\left(T \backslash\left\{x_{i}\right\}\right)$. Write T / y_{i} for the transversal $T=T \cup\left\{y_{i}\right\} \backslash\left\{x_{i}\right\}$ where $y_{i} \in X_{i}$. Clearly, $T / y_{i} \in \mathscr{T}$ and $w\left(T / y_{i}\right)$ is not longer than $w(T)$ since $v(T) \in \operatorname{conv}\left(T / y_{i}\right)$.

Choose now $S \in \mathscr{T}$ so that

$$
\|w(S)\|=\min \{\|w(T)\|: T \in \mathscr{T}\}
$$

Observe that $v(S) \neq 0$ or, equivalently, $w(S) \neq b$. Indeed, there is a partial transversal, $\left\{x_{1}, \ldots, x_{d}\right\}$ say, containing 0 in its convex hull. Further, there is $x_{n} \in X_{n}$ with $u \cdot x_{n}>0$ as $u \cdot b^{*}>0$ and $b^{*} \in \operatorname{conv} X_{n}$ where u is the unit vector from the very beginning of this proof. So $T=\left\{x_{1}, \ldots, x_{d}, x_{n}\right\} \in \mathscr{T}$ and $v(T)$ is shorter than b as the distance between b and $\left[0, x_{n}\right]$ is shorter than b.

Claim 8. $v(S) \in \operatorname{int} C$.
Proof. Assume the contrary, then conv S and C are separated by the hyperplane $H=\{x: x \cdot w(S)=0\}$.

Assume first that $v(S) \notin C$. Let $x_{i} \in S$ be a vector with $[0, v(S)] \subset \operatorname{conv}(S \backslash$ $\left.\left\{x_{i}\right\}\right)$. As $C \cap \operatorname{conv} S=\{0\}$ and $b_{i} \in C, b_{i} \cdot w(S)>0$. Further, $b_{i} \in \operatorname{conv} X_{i}$, so there is a $y_{i} \in X_{i}$ with $y_{i} \cdot w(S)>0$. But then $\left\|w\left(S / y_{i}\right)\right\|<\|w(S)\|$ showing that $v(S) \in C$, or rather, $v(S) \in \partial C$. (For $i=n$ one should take b instead of b_{i}.)

Now with $v(S) \in \partial C$ the assumption $b_{i} \cdot w(S)>0$ leads to the same contradiction. Thus $b_{i} \cdot w(S)=0$ so $w(S)$ is the (unique) normal to the cone C at the point b_{i}. This implies that $\beta b_{i}=v(S)$ for some positive β. Note that this i is unique, otherwise $\gamma b_{j}=v(S)$ (for some $\gamma>0$) and then rays $L\left(b_{i}\right)$ and $L\left(b_{j}\right)$ coincide which is impossible by Claim 5 . Assume for concreteness that $i=1$.

Set now $V=S \backslash\left\{x_{1}\right\}$, then $V \subset H$ and $|V|=d$ and the segment $[0, v(S)] \subset$ conv V. Next, $\left[0, b_{1}\right] \subset H \cap P_{1}$ since $0, b_{1} \in P_{1}$. The set P_{1} is separated from C by H. The set $Y=X_{1} \cap H \neq \emptyset$ since $b_{1} \in \operatorname{conv} Y$, let $y_{1} \in Y$ arbitrary. Note that both V and Y are contained in H, which is a copy of \mathbb{R}^{d-1}.

For every vector $a \in(0, v(S)] \cap\left(0, b_{1}\right]$,

$$
a \in \operatorname{conv} V \subset \operatorname{conv}\left(V \cup\left\{y_{1}\right\}\right) .
$$

The last set lies in H and contains $d+1$ elements. A well-known version of $\mathrm{Ca}-$ rathéodory's theorem (cf. [3]) implies the existence of $v \in V$ such that $a \in \operatorname{conv}(V \cup$
$\left.\left\{y_{1}\right\} \backslash\{v\}\right)$. The vector v may depend on a but it is the same for infinitely many a while a tends to 0 , say $v=x_{d} \in X_{d}$. Then

$$
[0, a] \subset \operatorname{conv}\left(S \cup\left\{y_{1}\right\} \backslash\left\{x_{1}, x_{d}\right\}\right)
$$

for some a on the segment $(0, v(S)]$. This new partial transversal contains $v(S)$ in its convex hull, and contains no point of X_{d}. As $b_{d} \cdot w(S)>0, y_{d} \cdot w(S)>0$ for a suitable $y_{d} \in X_{d}$. This gives a new transversal $S^{*}=S \cup\left\{y_{1}, y_{d}\right\} \backslash\left\{x_{1}, x_{d}\right\}$ with $w\left(S^{*}\right)$ shorter than $w(S)$. This final contradiction shows that $v(S) \in \operatorname{int} C$.

Acknowledgments

The first named author is grateful to Microsoft Research (in Redmond, WA) as part of this research was carried out on a very pleasant and fruitful visit there. The authors are grateful to an anonymous referee for suggestions improving the presentation of this paper.

References

[1] I. Bárány, A generalisation of Carathéodory's theorem, Discrete Math. 40 (1981) 141-152.
[2] A. Bemporad, K. Fukuda, F.D. Torrisi, Convexity recognition of the union of polyhedra, Comput. Geom. 18 (2001) 141-154.
[3] L. Danzer, B. Grunbaum, V. Klee, Helly's theorem and its relatives, in: Proc. Symp. Pure Math. vol. VIII, Convexity, AMS, Providence, RI, 1963.

[^0]: * Corresponding author.

 E-mail address: fukuda@ifor.math.ethz.ch (K. Fukuda).
 ${ }^{1}$ The first author was partially supported by Hungarian National Science Foundation Grants T 046246 and T 037846.

 0024-3795/\$ - see front matter © 2004 Elsevier Inc. All rights reserved.
 doi:10.1016/j.laa.2004.11.018

