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Abstract

A set of the form C-Zd ; where CDRd is convex and Zd denotes the integer lattice, is called

a convex lattice set. It is known that the Helly number of d-dimensional convex lattice sets is

2d : We prove that the fractional Helly number is only d þ 1: For every d and every aAð0; 1�
there exists b40 such that whenever F1;y;Fn are convex lattice sets in Zd such that
T

iAI Fia| for at least að n
dþ1Þ index sets IDf1; 2;y; ng of size d þ 1; then there exists a

(lattice) point common to at least bn of the Fi: This implies a ðp; d þ 1Þ-theorem for every

pXd þ 1; that is, ifF is a finite family of convex lattice sets in Zd such that among every p sets

ofF; some d þ 1 intersect, thenF has a transversal of size bounded by a function of d and p:
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1. Introduction

Let Zd denote the integer lattice in the d-dimensional Euclidean space Rd : A

subset FDZd is called a convex lattice set if there is a convex set CDRd with

F ¼ C-Zd : In this paper, we investigate Helly-type (and Gallai-type) properties of
convex lattice sets.
The well-known theorem of Helly states that if C is a finite family of convex sets in

Rd such that any d þ 1 or fewer of the sets of F intersect, then
T
Ca|; we say that

the d-dimensional convex sets have Helly number d þ 1: It is known that the Helly

number of convex lattice sets in Zd is much larger, namely 2d [4] (for the lower

bound, consider the family of all the ð2d � 1Þ-point subsets of f0; 1gd). Our results
show that this large Helly number can be regarded as a ‘‘local anomaly’’ and that the
relevant number for other, more global Helly-type properties is only d þ 1:
The behavior of integer points in convex bodies is a central topic in integer

programming. The Helly number of convex lattice sets, and the Radon number of
the corresponding convexity space, have been studied in connection with integer
programming, geometry of numbers, crystallographic lattices, computational
complexity in lattices, and indivisibilities in economy (see [4,10,11]).

Technically, our main result is a fractional Helly theorem. For convex sets in Rd ;
the fractional Helly theorem proved by Katchalski and Liu [8] asserts the following
(here and in the sequel, we use the notation ½n� ¼ f1; 2;y; ngÞ: For every dX1 and
every aAð0; 1� there exists a b ¼ bðd; aÞ40 with the following property. Let

C1;y;Cn be convex sets in Rd such that
T

iAI Cia| for at least að n
dþ1Þ index sets

ID½n� of size ðd þ 1Þ: Then there exists a point contained in at least bn of the Ci: The

best possible value of bðd; aÞ is 1� ð1� aÞ1=ðdþ1Þ [7] and, in particular, b-1 as a-1:
Alon et al. [1] observed that the method of Katchalski and Liu [8] and the fact that

the Helly number for convex lattice sets is 2d immediately imply a fractional Helly

theorem for convex lattice sets with 2d -tuples instead of ðd þ 1Þ-tuples. (For the
reader’s convenience, we sketch the proof at the end of Section 2.) It is conjectured in
[1] that a fractional Helly theorem with d þ 1 actually holds. Here, we confirm this
conjecture:

Theorem 1.1 (Fractional Helly theorem for convex lattice sets). For every dX1 and

every aAð0; 1� there exists a b ¼ bðd; aÞ40 with the following property. Let F1;y;Fn

be convex lattice sets in Zd such that
T

iAI Fia| for at least að n
dþ1Þ index sets ID½n� of

size ðd þ 1Þ: Then there exists a point contained in at least bn sets among the Fi:

Here we cannot expect b tending to 1 with a-1; since the Helly number is larger
than d þ 1:
The method of the proof combines Ramsey-theoretic arguments with results in

convexity.
By an ingenious method, Alon and Kleitman [2] established a conjecture of

Hadwiger and Debrunner from 1957, the so-called ðp; qÞ-theorem: Let p; q; d be
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integers with pXqXd þ 1X2: Then there exists a number HDðp; q; dÞ such that the
following holds: Let C be a finite family of convex sets in Rd satisfying the ðp; qÞ-
condition; that is, among any p sets of C; there are q sets with a nonempty
intersection. Then tðCÞpHDðp; q; dÞ: Here tðFÞ denotes the transversal number of a

set system F; i.e. the smallest cardinality of a set XD
S
F such that F-Xa| for

every FAF:
The Alon–Kleitman proof uses many tools from combinatorial convexity, but as

was observed in [1], the crucial ingredient in the proof is the fractional Helly
theorem, and all the other tools can be derived from it on a quite general abstract
level. In particular, the results of [1] show that Theorem 1.1 implies a ðp; qÞ-theorem
for convex lattice sets for every pXqXd þ 1: Since we do not try to optimize the
constants, it is sufficient to state the theorem for q ¼ d þ 1:

Theorem 1.2 (ðp; qÞ-theorem for convex lattice sets). Let p and d be integers with

pXd þ 1X2: Then there exists a number IHDðp; dÞ such that any finite family F of

convex lattice sets in Zd satisfying the ðp; d þ 1Þ-condition has tðFÞpIHDðp; dÞ:

This result has been known for d ¼ 2 [1]. It was derived from a Gallai-type result

of Hausel [6]: IfF is a finite family of convex lattice sets in Z2 such that every 3 sets
of F intersect, then tðFÞp2: For p ¼ q ¼ d þ 1; Theorem 1.2 yields an analogous

statement for Zd ; with the transversal number being at most IHDðd þ 1; dÞ: The
bound for this number obtained from our proof is enormous (although primitively
recursive). It would be interesting to find a proof with significantly better bounds
(Hausel’s proof seems neither to generalize to higher dimensions nor to provide a
fractional Helly theorem).
Further generalizations of the Alon–Kleitman ðp; qÞ-theorem and of Theorem 1.2,

somewhat complicated-looking but perhaps useful, are proved in Section 4.

2. Tools

Intermixed sets: The main property of convex lattice sets used in the proof of
Theorem 1.1 is captured in the following definition and lemma. Let rX1 be an

integer, let e40 be a real number, let Z1;Z2;y;ZrCRd be finite sets or multisets,
and let Z denote their disjoint union. Call Z1;Z2;y;Zr e-intermixed if every
halfspace g with jg-ZjXejZj intersects each of Z1;y;Zr:

Lemma 2.1 (Intermixing lemma). If Z1;Z2;y;ZrCZd are finite sets of lattice points

that are ð1=hÞ-intermixed, where h ¼ 2d ; then ð
Tr

j¼1 convðZjÞÞ-Zda|:

Proof. This is like an argument for bounding the Radon number for lattice convex
sets ([12]; also see [10]) using the already mentioned fact that the Helly number of

convex lattice sets is h ¼ 2d :
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Let n ¼ jZj and set k ¼ In�1
h
m: Let F ¼ fconvðYÞ :YDZ; jY jXn � kg: Every h

subsets of Z of cardinality n � k have a common point, because their complements
together cannot cover all of Z: By the Helly theorem for convex lattice sets, there is
an integer point zA

T
F:

Suppose that zeconvðZjÞ: Then there is a halfspace g containing z but no point of

Zj : At the same time, we have jg-Zj4k; for otherwise jZ\gjXn � k; and so

convðZ\gÞAF: So g contains at least k þ 1 points of Z but no point of Zj ; and it

follows that Z1;y;Zr are not ð1=hÞ-intermixed. &

We are actually going to use the following consequence of the intermixing
lemma:

Corollary 2.2. Let Z1;Z2;y;ZrCZd be finite sets or multisets. Assume, moreover,
that they are indexed by the same index set I; that is, Zj ¼ fzji : iAIg: Then at least one

of the following are true:

(i) all the convex hulls have a common integer point, i.e.
Tr

j¼1 convðZjÞ-Zda|;

or

(ii) there are a subset I 0DI with jI 0jX2�d jI j and two indices j1; j2A½r� such that

convðZ0
j1
Þ-convðZ0

j2
Þ ¼ |; where Z0

j ¼ fzji : iAI 0g (and the convex hulls are

in RdÞ:

Proof. If the Zj are 2�d-intermixed, then the intermixing lemma implies (i).

If they are not 2�d -intermixed, there is a halfspace g containing at least 2�drjI j
points of

S
Zj and disjoint from some Zj1 : Choose a j2 with

jg-Zj2 jX r
r�12

�d jI jX2�d jI j: Letting I 0 ¼ fiAI : zj2;iAgg; we obtain the situation as

in (ii). &

Hypergraphs: It is convenient to formulate some of the subsequent arguments in
terms of k-partite hypergraphs. A k-uniform hypergraph is a pair H ¼ ðV ;EÞ; where
V ¼ VðHÞ is the vertex set, and the edge set E ¼ EðHÞDðV

k
Þ is a system of k-element

subsets of V : A k-uniform hypergraph is k-partite if V can be partitioned into
disjoint sets (classes) V1;V2;y;Vk such that each edge contains exactly one point
from each class.
A k-uniform k-partite hypergraph H as above is called complete if all the possible

edges are present; i.e. EðHÞ ¼ ffv1;y; vkg : v1AV1;y; vkAVkg: Let Kkðt1; t2;y; tkÞ
denote a complete k-uniform k-partite hypergraph with classes of sizes t1; t2;y; tk;

respectively, and let KkðtÞ ¼ Kkðt; t;y; tÞ: We need the following theorem of Erd +os
and Simonovits [5] about super-saturated hypergraphs.

Theorem 2.3. For any positive integers k and t and any e40 there exists d40 with the

following property. Let H be a k-uniform hypergraph on n vertices and with at least eðn
k
Þ
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edges. Then H contains at least

Idnktm

copies (not necessarily induced) of KkðtÞ: In particular, if e is fixed and n is sufficiently

large, then H contains at least one KkðtÞ:

Lovász’s colored Helly theorem: Another key ingredient in our proof is the
following result of Lovász [9] (see [3] for a proof). We formulate it using the
hypergraph language.

Theorem 2.4. Let H ¼ ðV ;EÞ be a complete ðd þ 1Þ-partite ðd þ 1Þ-uniform

hypergraph with classes V1;y;Vdþ1: Let ðCv : vAVÞ be a family of convex sets

indexed by the vertices of H, and such that
T

vAe Cva| for every edge eAE: Then there

is an iA½d þ 1� with
T

vAVi
Cva|:

We will only need a special case of this result, namely when each jVij ¼ 2; for
which we give a simple proof right now: Write uðiÞ; vðiÞ for the two elements of Vi

ði ¼ 1;y; d þ 1Þ: We have to show that CuðiÞ-CvðiÞ is nonvoid for some i: Assume

the contrary; then CuðiÞ and CvðiÞ are separated by a hyperplane Li; i ¼ 1;y; d þ 1:

For each of the 2dþ1 edges of E let xe be a point in
T

vAe Cv: These points have to lie

in distinct cells determined by the hyperplanes Li; because xe is on the same side of Li

as the corresponding set CuðiÞ or CvðiÞ is. However, d þ 1 hyperplanes subdivide Rd

into at most 2dþ1 � 1 cells—a contradiction.
We are also going to rely on the weaker fractional Helly theorem for convex lattice

sets noted by Alon et al. [1]:

Theorem 2.5. For every dX1 and every aAð0; 1� there exists b ¼ bðd; aÞ40 with the

following property. Let F1;y;Fn be convex lattice sets in Zd such that
T

iAI Fia| for

at least að n
2dÞ index sets ID½n� of size 2d : Then there exists a point contained in at least

bn sets among the Fi:

Proof (Sketch). We may assume that the Fi are finite (by intersecting them with a

large box, say). We choose a vector aARd with no rational dependence among the

coordinates and for x; yAZd we define xpy iff /a; xSp/a; yS: Let us write h ¼ 2d :

For every h-element ID½n� with FI ¼
T

iAI Fia|; let xI ¼ min FI (the first point

underp). For every I there is an ðh � 1Þ-element J ¼ JðIÞ with xI ¼ min FJ : Indeed,

letting HI ¼ fxAZd : xoxIg; the family fFi : iAIg,fHIg has empty intersection,
and since the Helly number of convex lattice sets is h; some subfamily of h sets has
empty intersection. The sets in this subfamily other than HI determine J:
There are at most ð n

h�1Þ possible JðIÞ and aðn
h
Þ different I ; and so, for suitable b40;

some J is assigned to at least bn different I : Each such I has exactly one ieJ; and the
bn sets Fi with these indices all contain min FJ : &
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3. Proofs

The main part of our proof of Theorem 1.1 is the following result, a (weak) integer
analogue of the colored Helly Theorem 2.4:

Proposition 3.1 (Colored Helly theorem for convex lattice sets). For any integers

dX1 and rX2 there exists an integer t with the following property. Let H0 ¼ ðV0;E0Þ
be a complete ðd þ 1Þ-uniform ðd þ 1Þ-partite hypergraph Kdþ1ðtÞ and let ðFv : vAV0Þ
be a family of convex lattice sets in Zd indexed by the vertices of H0 such thatT

vAe Fva| for every edge eAE0: Then there is a set R of r vertices in one of the classes

of H0 with
T

vAR Fva|:

Proof of the fractional Helly theorem (Theorem 1.1) from Proposition 3.1. The idea is

to use Proposition 3.1 with r ¼ 2d and the Erd +os–Simonovits theorem (Theorem 2.3)
to verify the assumptions of the weaker fractional Helly Theorem 2.5 dealing with

2d-tuples instead of ðd þ 1Þ-tuples.
Let F1;F2;y;Fn be convex lattice sets as in Theorem 1.1, i.e. with at least að n

dþ1Þ
intersecting ðd þ 1Þ-tuples. We may assume that n is sufficiently large, for otherwise
bnp1; and a point in a single set will do.

Let H be the hypergraph with vertex set ½n� and edge set E ¼
feAð ½n�

dþ1Þ :
T

iAe Fia|g: Applying Theorem 2.3 to H; with k ¼ d þ 1; e ¼ a; and t

as in Proposition 3.1 (for r ¼ 2d), we see that H contains at least dnðdþ1Þt copies of

Kdþ1ðtÞ for some d ¼ dðd; t; aÞ40: By Proposition 3.1, each such copy contributes at
least one intersecting r-tuple of the sets Fi: On the other hand, any given intersecting

r-tuple is contributed by at most nðdþ1Þt�r copies (this is the number of choices for the
vertices not belonging to the considered r-tuple). It follows that the family
F1;F2;y;Fn has at least dðn

r
Þ intersecting r-tuples. By the fractional Helly Theorem

2.5 with r-tuples, at least bn among the Fi have a common point. &

Towards the proof of Proposition 3.1: For each edge eAE0; let ze be a
lattice point in the intersection

T
vAe Fv: These ze remain fixed throughout the

proof.

For a vertex vAV0; let us put Zv ¼ fze : eAE0; vAeg and Gv ¼ convðZvÞ-Zd : To
prove the proposition, it suffices to show that given any system ðze : eAE0Þ of lattice
points, there is an r-tuple R of vertices in one of the classes of H0 such thatT

vAR Gva|: Indeed, if we start with the given convex lattice sets Fv as in the

proposition, choose the points ze in the appropriate intersections, and construct the
Gv; then we have GvDFv:
In the proof, we are going to construct successively smaller and smaller

subhypergraphs of our initial H0 (they are all going to be complete ðd þ 1Þ-partite
hypergraphs). If H ¼ ðV ;EÞ is one of these subhypergraphs, we extend the

notation introduced above and write ZvðHÞ ¼ fze : eAE; vAeg and GvðHÞ ¼
convðZvðHÞÞ-Zd :
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Further, let us say that the ith class of H is ðr; 2Þ-disjoint if among any r of the sets
convðZvðHÞÞ; where v are vertices from the ith class of H; there are two that are

disjoint. Note that this condition is about the convex hulls in Rd ; not only about
lattice points.
Proposition 3.1 easily follows from the colored Helly theorem (Theorem 2.4) and

the following lemma.

Lemma 3.2. For every integers d; r; and s there exists an integer S ¼ Sðd; r; sÞ
with the following property. Let i0A½d þ 1�; let H ¼ Kdþ1ðSÞ; and for each eAEðHÞ;
let a lattice point zeAZd be given. Then at least one of the following two possibilities

occur:

(i) there is a set R of r vertices in the i0th class of H such that
T

vAR GvðHÞa|; or

(ii) there is a subhypergraph H 0 ¼ Kdþ1ðsÞ of H such that the i0th class of H 0 is ðr; 2Þ-
disjoint.

The proof of Proposition 3.1 from this lemma is quite short. We start with our

hypergraph H0 ¼ Kdþ1ðtÞ with t enormously large. We apply the lemma with H ¼
H0 and i0 ¼ 1: This either yields r intersecting sets among the GvðH0Þ or a smaller
complete ðd þ 1Þ-partite hypergraph H1 with the first class being ðr; 2Þ-disjoint. This
H1 is still huge and we apply the lemma again with i0 ¼ 2; which yields either r

intersecting sets among the GvðH1Þ or a still smaller H2 with the second class ðr; 2Þ-
disjoint, too. We continue in this manner with i0 ¼ 3; 4;y; d þ 1: If the t we started
with was sufficiently large and if we never encountered case (i) in the lemma, i.e. r

intersecting sets, then we would end up with Hdþ1 being a Kdþ1ðrÞ and with each of
the classes being ðr; 2Þ-disjoint. Since the classes now have size r; this simply means
that each class Vi contains two elements, call them uðiÞ and vðiÞ; such that

convðZuðiÞðHdþ1ÞÞ-convðZvðiÞðHdþ1ÞÞ ¼ |: But this contradicts the special case of
Theorem 2.4.
It remains to prove Lemma 3.2. For simpler notation we assume i0 ¼ 1: We are

given H ¼ Kdþ1ðSÞ and the lattice points ze; eAEðHÞ: Let us choose (arbitrarily) a
subset Ṽ1 of s vertices from the first class of H: We form H̃0 by restricting the first

class of H to Ṽ1 (so H̃0 is a Kdþ1ðs;S;S;y;SÞÞ: Let R1;R2;y;Rm be the

enumeration of all r-element subsets of Ṽ1; m ¼ ðs
r
Þ: We are going to form

subhypergraphs H̃1;y; H̃m of H̃0; where H̃k is a Kdþ1ðs; sk; sk;y; skÞ and s0 ¼
S4s14?4sm ¼ s: So the first class remains unchanged while vertices are being

deleted from all the other classes. The final H̃m is the desired H 0 as in case (ii) of the
lemma, but in each of the steps, we can also possibly encounter case (i) and finish.

For passing from H̃k to H̃kþ1; we are going to apply Corollary 2.2 to the sets

Zv ¼ ZvðH̃kÞ; vARk: Note that the points of each Zv are indexed by the edges of H̃k

that contain v: Since H̃k is a Kdþ1ðs; sk; sk;y; skÞ; the set I ¼ fe\fvg : eAEðH̃kÞg is
the same for all vARk and it is the edge set of a KdðskÞ: So we can think of each Zv as
being indexed by I :
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Corollary 2.2 provides either a lattice point in
T

vARk
convðZvÞ; and then case (i) of

Lemma 3.2 holds, or a smaller I 0DI such that, for some v1; v2ARk; the restrictions Z0
v

of the Zv to I 0 satisfy convðZ0
v1
Þ-convðZ0

v2
Þ ¼ |: Since jI 0j contains at least a 2�d -

fraction of the edges of a KdðskÞ; by the Erd +os–Simonovits Theorem 2.3 there is an
integer skþ1; much smaller than sk but still large, such that I 0 can be further restricted

to I 00CI 0 that is the edge set of a Kdðskþ1Þ: The edge set of the next hypergraph H̃kþ1
now consists of all edges of H̃k whose restriction to the last d classes lies in I 00;

equivalently, it is fe00,fvg : e00AI 00; vAṼ1g: This H̃kþ1 is a Kdþ1ðs; skþ1; skþ1;y; skþ1Þ
and the r-tuple Rk now has two sets with disjoint convex hulls. This finishes the proof
of Lemma 3.2, and Proposition 3.1 is proved as well. &

Remark. Our proof of the fractional Helly theorem for convex lattice sets does not

use much of the geometric properties of Zd ; but still it relies on the special case of the
colored Helly Theorem 2.4 and on the intermixing Lemma 2.1. It would be
interesting to clarify what axioms are sufficient for the validity of these two
statements, say in the context of abstract convexity spaces.

4. Colored ðp; qÞ-theorems

The colored Helly Theorem 2.4 and the Alon–Kleitman method for proving ðp; qÞ-
theorems can be combined to prove a colored ðp; qÞ theorem for convex sets in Rd :

Theorem 4.1. For every integers dX1 and pX1; there exists a T ¼ Tðd; pÞ such that

the following holds. Let C1;y;Cdþ1 be finite families of convex sets in Rd ; and suppose

that whenever we select, for each iA½d þ 1�; sets Ci1;Ci2;y;CipACi; there are

j1; j2;y; jdþ1A½p� with
Tdþ1

i¼1 Ci;jia|: Then tðCiÞpT for at least one iA½d þ 1�:

Proof (Sketch). Let nnðFÞ denote the fractional matching number of a set system

F : nnðFÞ is the maximum of
P

FAF wðFÞ for w :F-½0; 1� being a function

satisfying
P

FAF : xAF wðFÞp1 for every xA
S
F: Alon and Kleitman proved that

for any system C of convex sets in Rd ; tðCÞ is bounded by a function of d and nnðCÞ;
and so it suffices to show that, in our situation, nnðCiÞ is bounded for some iA½d þ 1�:
Let wi :Ci-½0; 1� be a weight function for which nnðCiÞ is attained. Since the Ci

are finite, we may assume that the values of w are rational. We write wiðCÞ ¼ nC

mi
;

where mi is a common denominator of the wiðCÞ; and we form a new system C0
i; by

putting nC copies of C into C0
i for each CACi: Let ni ¼

P
CACi

nC ¼ jC0
ij; it suffices to

show that for some i; there exists a point x common to at least bni sets of C
0
i; for

some b ¼ bðd; pÞ40 (since then 1X
P

CACi : xAC wiðCÞXbni

mi
¼ bnnðCiÞ; and so

nnðCiÞp1
bÞ:

It is enough to verify the assumptions of the fractional Helly theorem of

Katchalski and Liu for some C0
i; i.e. to show that there are at least að ni

dþ1Þ intersecting
ðd þ 1Þ-tuples. We consider the ðd þ 1Þ-uniform ðd þ 1Þ-partite hypergraph H with
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the vertices in the ith class corresponding to the sets of C0
i and the edges

corresponding to intersecting ðd þ 1Þ-tuples of sets from distinct classes.
Let s be large compared to d and p but fixed, and consider sets U1;y;Udþ1; where

Ui is an arbitrary subset of s vertices in the ith class. We claim that each such
selection contributes a ðd þ 1Þ-tuple of vertices in one of the Ui whose sets intersect;
if we verify this, double counting shows that one of the classes of H has at least
að ni

dþ1Þ intersecting ðd þ 1Þ-tuples as needed.
If some Ui contains d þ 1 copies of the same set of Ci; then we have a (rather

trivial) intersecting ðd þ 1Þ-tuple. Otherwise, we select U 0
iDUi consisting of at least

s
dþ1 distinct sets. By the condition of the theorem, for any choice of p-element

WiCU 0
i ; there is an edge in

S
i Wi: Double counting and the Erd +os–Simonovits

Theorem 2.3 show that there is a Kdþ1ðd þ 1Þ in the subhypergraph induced in H by
the U 0

i : The colored Helly Theorem 2.4 then yields an intersecting ðd þ 1Þ-tuple in
one of the U 0

i as required. &

A similar colored ðp; qÞ-theorem can be proved for convex lattice sets, by the same

method. As shown in [1], tðFÞ is again bounded by a function of d and nnðFÞ for
any finite system F of convex lattice sets in Zd : The final application of the colored
Helly Theorem 2.4 in the proof is replaced by an application of Proposition 3.1 (and

we need a Kdþ1ðtÞ subhypergraph instead of Kdþ1ðd þ 1ÞÞ:
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