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Abstract

A set of the form Cn Z‘l, where C<=RY is convex and Z¢ denotes the integer lattice, is called
a convex lattice set. It is known that the Helly number of d-dimensional convex lattice sets is
2¢. We prove that the fractional Helly number is only d 4 1: For every d and every ae(0, 1]
there exists f>0 such that whenever Fi,...,F, are convex lattice sets in 74 such that
Nic; Fi#0 for at least a(,,) index sets I={1,2,...,n} of size d+ 1, then there exists a
(lattice) point common to at least fin of the F;. This implies a (p,d + 1)-theorem for every
p=d+ 1; that is, if & is a finite family of convex lattice sets in Z¢ such that among every p sets
of #, some d + 1 intersect, then . has a transversal of size bounded by a function of d and p.
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1. Introduction

Let Z9 denote the integer lattice in the d-dimensional Euclidean space RY. A
subset F=Z? is called a convex lattice set if there is a convex set C<R? with
F = CnZ*. In this paper, we investigate Helly-type (and Gallai-type) properties of
convex lattice sets.

The well-known theorem of Helly states that if € is a finite family of convex sets in
RY such that any d + 1 or fewer of the sets of .Z intersect, then % #0; we say that
the d-dimensional convex sets have Helly number d + 1. It is known that the Helly
number of convex lattice sets in Z¢ is much larger, namely 2¢ [4] (for the lower

bound, consider the family of all the (2¢ — 1)-point subsets of {0,1}9). Our results
show that this large Helly number can be regarded as a “local anomaly’ and that the
relevant number for other, more global Helly-type properties is only d + 1.

The behavior of integer points in convex bodies is a central topic in integer
programming. The Helly number of convex lattice sets, and the Radon number of
the corresponding convexity space, have been studied in connection with integer
programming, geometry of numbers, crystallographic lattices, computational
complexity in lattices, and indivisibilities in economy (see [4,10,11]).

Technically, our main result is a fractional Helly theorem. For convex sets in R,
the fractional Helly theorem proved by Katchalski and Liu [8] asserts the following
(here and in the sequel, we use the notation [n] = {1,2, ...,n}): For every d>1 and
every o€(0,1] there exists a ff = fi(d,a)>0 with the following property. Let
Cy, ..., C, be convex sets in RY such that (,_; C;#0 for at least (%) index sets
I=[n] of size (d + 1). Then there exists a point contained in at least fin of the C;. The
best possible value of f(d,a)is 1 — (1 — ac)l/(d“) [7] and, in particular, f—1 asa— 1.

Alon et al. [1] observed that the method of Katchalski and Liu [8] and the fact that
the Helly number for convex lattice sets is 2¢ immediately imply a fractional Helly
theorem for convex lattice sets with 2¢-tuples instead of (d + 1)-tuples. (For the
reader’s convenience, we sketch the proof at the end of Section 2.) It is conjectured in
[1] that a fractional Helly theorem with d + 1 actually holds. Here, we confirm this
conjecture:

Theorem 1.1 (Fractional Helly theorem for convex lattice sets). For every d =1 and
every a.€(0, 1] there exists a = p(d, o) >0 with the following property. Let F\, ..., F,
be convex lattice sets in Z* such that ;. Fi#0 for at least o, ) index sets I < [n] of
size (d 4 1). Then there exists a point contained in at least fin sets among the F;.

Here we cannot expect f tending to 1 with o — 1, since the Helly number is larger
than d + 1.

The method of the proof combines Ramsey-theoretic arguments with results in
convexity.

By an ingenious method, Alon and Kleitman [2] established a conjecture of
Hadwiger and Debrunner from 1957, the so-called (p,¢)-theorem: Let p,q,d be
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integers with p>¢>d + 1>2. Then there exists a number HD(p, ¢, d) such that the
following holds: Let % be a finite family of convex sets in R? satisfying the (p, q)-
condition; that is, among any p sets of %, there are ¢ sets with a nonempty
intersection. Then (%) <HD(p, q,d). Here ©(%) denotes the transversal number of a
set system 7, i.e. the smallest cardinality of a set X = |J.# such that Fn X #0 for
every Fe 7.

The Alon—Kleitman proof uses many tools from combinatorial convexity, but as
was observed in [1], the crucial ingredient in the proof is the fractional Helly
theorem, and all the other tools can be derived from it on a quite general abstract
level. In particular, the results of [1] show that Theorem 1.1 implies a (p, ¢)-theorem
for convex lattice sets for every p=¢>d + 1. Since we do not try to optimize the
constants, it is sufficient to state the theorem for ¢ = d + 1.

Theorem 1.2 ((p, g)-theorem for convex lattice sets). Let p and d be integers with
p=d + 1=2. Then there exists a number THD(p, d) such that any finite family F of

convex lattice sets in Z9 satisfying the (p,d + 1)-condition has ©(F)<IHD(p,d).

This result has been known for d = 2 [1]. It was derived from a Gallai-type result
of Hausel [6]: If 7 is a finite family of convex lattice sets in Z> such that every 3 sets
of Z intersect, then 7(#)<2. For p = ¢ =d + 1, Theorem 1.2 yields an analogous
statement for Z¢, with the transversal number being at most THD(d + 1,d). The
bound for this number obtained from our proof is enormous (although primitively
recursive). It would be interesting to find a proof with significantly better bounds
(Hausel’s proof seems neither to generalize to higher dimensions nor to provide a
fractional Helly theorem).

Further generalizations of the Alon—Kleitman (p, ¢)-theorem and of Theorem 1.2,
somewhat complicated-looking but perhaps useful, are proved in Section 4.

2. Tools

Intermixed sets: The main property of convex lattice sets used in the proof of
Theorem 1.1 is captured in the following definition and lemma. Let r>1 be an
integer, let ¢>0 be a real number, let Z,Z,, ..., Z, =R be finite sets or multisets,
and let Z denote their disjoint union. Call Z|, 72, ..., Z, e-intermixed if every
halfspace y with |y nZ|>¢|Z| intersects each of Zi, ..., Z,.

Lemma 2.1 (Intermixing lemma). If Z,,Z,, ..., Z. < Z¢ are finite sets of lattice points
that are (1/h)-intermixed, where h = 24, then (M= conv(Z))) NZ#0.

Proof. This is like an argument for bounding the Radon number for lattice convex
sets ([12]; also see [10]) using the already mentioned fact that the Helly number of
convex lattice sets is 1 = 2¢.
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Letn=|Z|and set k = |71 ]. Let # = {conv(Y): Y<=Z, |Y|>n—k}. Every h
subsets of Z of cardinality n — k have a common point, because their complements
together cannot cover all of Z. By the Helly theorem for convex lattice sets, there is
an integer point ze (..

Suppose that z¢conv(Z;). Then there is a halfspace y containing z but no point of
Z;. At the same time, we have |ynZ|>k, for otherwise |Z\y|>n —k, and so
conv(Z\y)eZ . So 7y contains at least k4 1 points of Z but no point of Z;, and it
follows that Zy, ..., Z, are not (1/h)-intermixed. O

We are actually going to use the following consequence of the intermixing
lemma:

Corollary 2.2. Let Z,,2Z,, ...,Z,,CZ‘] be finite sets or multisets. Assume, moreover,
that they are indexed by the same index set I, that is, Z; = {zj; : ieI}. Then at least one
of the following are true:

() all the convex hulls have a common integer point, ie. (i, conv(Z;) nZ4 #0,
or

(i) there are a subset I'1 with |I'|=279|1| and two indices ji,j,€[r] such that
conv(Zj )nconv(Z) =0, where Z;={z;:iel'} (and the convex hulls are
in RY).

Proof. If the Z; are 2 %-intermixed, then the intermixing lemma implies (i).
If they are not 2~ %-intermixed, there is a halfspace y containing at least 2=/r|/|
points of (JZ; and disjoint from some Z;. Choose a j, with
lynZ;,|=>L2791|=279]1|. Letting I' = {iel:z;, ey}, we obtain the situation as
in (if). O

Hypergraphs: 1t is convenient to formulate some of the subsequent arguments in
terms of k-partite hypergraphs. A k-uniform hypergraph is a pair H = (V| E), where
V = V(H) is the vertex set, and the edge set E = E(H)< () is a system of k-element
subsets of V. A k-uniform hypergraph is k-partite if V' can be partitioned into
disjoint sets (classes) V7, Va, ..., Vi such that each edge contains exactly one point
from each class.

A k-uniform k-partite hypergraph H as above is called complete if all the possible
edges are present; i.e. E(H) = {{v1,...,v0x}:v1€ V1, ...,vx € Vi}. Let KX(t1, 12, ..., 1)
denote a complete k-uniform k-partite hypergraph with classes of sizes ¢, 2, ..., t,
respectively, and let K¥(¢) = K*(t,t, ..., t). We need the following theorem of Erdds
and Simonovits [5] about super-saturated hypergraphs.

Theorem 2.3. For any positive integers k and t and any ¢>0 there exists 6 >0 with the
following property. Let H be a k-uniform hypergraph on n vertices and with at least &(})
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edges. Then H contains at least
| on' ]

copies (not necessarily induced) of K*(t). In particular, if ¢ is fixed and n is sufficiently
large, then H contains at least one K*(t).

Lovdsz’s colored Helly theorem: Another key ingredient in our proof is the
following result of Lovasz [9] (see [3] for a proof). We formulate it using the
hypergraph language.

Theorem 24. Let H = (V,E) be a complete (d+ 1)-partite (d+ 1)-uniform
hypergraph with classes Vi, ...,Vyi1. Let (C,:veV) be a family of convex sets
indexed by the vertices of H, and such that (,., C,#0 for every edge e€ E. Then there
is an i€d 4 1] with (), C,#0.

vee

We will only need a special case of this result, namely when each |V;| =2, for
which we give a simple proof right now: Write u(i), v(i) for the two elements of V;
(i=1,...,d+1). We have to show that C,; n C,y; is nonvoid for some i. Assume
the contrary; then C,; and C,; are separated by a hyperplane L;, i =1, ...,d + 1.
For each of the 27! edges of E let x, be a point in (., C,. These points have to lie
in distinct cells determined by the hyperplanes L;, because x, is on the same side of L;
as the corresponding set C,(;) or Cy; is. However, d + 1 hyperplanes subdivide RY
into at most 297! — 1 cells—a contradiction.

We are also going to rely on the weaker fractional Helly theorem for convex lattice
sets noted by Alon et al. [1]:

Theorem 2.5. For every d>1 and every o€ (0, 1] there exists f = p(d, o) >0 with the
following property. Let F\, ..., F, be convex lattice sets in Z such that Nics Fi#0 for
at least o(}y) index sets I < [n) of size 2. Then there exists a point contained in at least
Pn sets among the F;.

Proof (Sketch). We may assume that the F; are finite (by intersecting them with a
large box, say). We choose a vector ae R? with no rational dependence among the
coordinates and for x,yeZd we define x<y iff (a,x> <<{a,y). Let us write h = 2¢.
For every h-element /< (n] with F; = (., F;#0, let x; = min F; (the first point
under <). For every [ there is an (7 — 1)-element J = J(I) with x; = min F;. Indeed,
letting H; = {xeZ’: x<x;}, the family {F;:iel} U{H;} has empty intersection,
and since the Helly number of convex lattice sets is /, some subfamily of / sets has
empty intersection. The sets in this subfamily other than H; determine J.

There are at most (,",) possible J(I) and «(}) different /, and so, for suitable f>0,
some J is assigned to at least fn different 7. Each such I has exactly one i¢J, and the
Pn sets F; with these indices all contain min F,;. [
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3. Proofs

The main part of our proof of Theorem 1.1 is the following result, a (weak) integer
analogue of the colored Helly Theorem 2.4:

Proposition 3.1 (Colored Helly theorem for convex lattice sets). For any integers
d=1 and r=2 there exists an integer t with the following property. Let Hy = (Vy, Ep)
be a complete (d + 1)-uniform (d + 1)-partite hypergraph K (t) and let (F,:ve V})
be a family of convex lattice sets in Z¢ indexed by the vertices of Hy such that
Nyce Fo #0 for every edge e€ Ey. Then there is a set R of r vertices in one of the classes
of Hy with (,. g F, #0.

Proof of the fractional Helly theorem (Theorem 1.1) from Proposition 3.1. The idea is
to use Proposition 3.1 with » = 27 and the Erdés-Simonovits theorem (Theorem 2.3)
to verify the assumptions of the weaker fractional Helly Theorem 2.5 dealing with
24_tuples instead of (d + 1)-tuples.

Let Fy, Fy, ..., F, be convex lattice sets as in Theorem 1.1, i.e. with at least a(,",)
intersecting (d + 1)-tuples. We may assume that # is sufficiently large, for otherwise
pn<1, and a point in a single set will do.

Let H be the hypergraph with vertex set [#] and edge set E =

{ee(d[fﬁl): Nic. Fi#0}. Applying Theorem 2.3 to H, with k=d +1, e =0o, and ¢
as in Proposition 3.1 (for r = 29), we see that H contains at least dn(?*1* copies of
K¥*1(t) for some 6 = (d, t,a) > 0. By Proposition 3.1, each such copy contributes at
least one intersecting r-tuple of the sets F;. On the other hand, any given intersecting
r-tuple is contributed by at most 7+~ copies (this is the number of choices for the
vertices not belonging to the considered r-tuple). It follows that the family
F\,F,, ..., F, has at least 6(7) intersecting r-tuples. By the fractional Helly Theorem

2.5 with r-tuples, at least fn among the F; have a common point. [

Towards the proof of Proposition 3.1: For each edge e€kEj, let z, be a
lattice point in the intersection (,., F,. These z, remain fixed throughout the
proof.

For a vertex ve Vy, let us put Z, = {z,:e€ Ey,vee} and G, = conv(Zv)mZd. To
prove the proposition, it suffices to show that given any system (z. : e€ Ey) of lattice
points, there is an r-tuple R of vertices in one of the classes of H, such that
Myer Go#0. Indeed, if we start with the given convex lattice sets F, as in the
proposition, choose the points z, in the appropriate intersections, and construct the
G,, then we have G, = F,.

In the proof, we are going to construct successively smaller and smaller
subhypergraphs of our initial Hy (they are all going to be complete (d + 1)-partite
hypergraphs). If H = (V,E) is one of these subhypergraphs, we extend the
notation introduced above and write Z,(H) = {z,:e€E,vee} and G,(H) =
conv(Z,(H))nZ".

vee
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Further, let us say that the ith class of H is (r,2)-disjoint if among any r of the sets
conv(Z,(H)), where v are vertices from the ith class of H, there are two that are
disjoint. Note that this condition is about the convex hulls in R?, not only about
lattice points.

Proposition 3.1 easily follows from the colored Helly theorem (Theorem 2.4) and
the following lemma.

Lemma 3.2. For every integers d, r, and s there exists an integer S = S(d,r,s)
with the following property. Let ige[d + 1], let H = K*'(S), and for each ec E(H),
let a lattice point z,€ Z% be given. Then at least one of the following two possibilities
occur:

() there is a set R of r vertices in the iyth class of H such that (,.g G,(H)#90, or
(i) there is a subhypergraph H' = K% (s) of H such that the iyth class of H' is (r,2)-
disjoint.

The proof of Proposition 3.1 from this lemma is quite short. We start with our
hypergraph Hy = K9*!(¢) with ¢ enormously large. We apply the lemma with H =
H, and iy = 1. This either yields r intersecting sets among the G,(Hy) or a smaller
complete (d 4 1)-partite hypergraph H; with the first class being (r, 2)-disjoint. This
H; is still huge and we apply the lemma again with iy = 2, which yields either r
intersecting sets among the G,(H;) or a still smaller H, with the second class (r,2)-
disjoint, too. We continue in this manner with iy = 3,4, ...,d + 1. If the ¢ we started
with was sufficiently large and if we never encountered case (i) in the lemma, i.e. r
intersecting sets, then we would end up with Hy, being a K“*!(r) and with each of
the classes being (r,2)-disjoint. Since the classes now have size r, this simply means
that each class V; contains two elements, call them u(i) and v(i), such that
conv(Zy;y(Has1)) nconv(Zy; (Hqy1)) = 0. But this contradicts the special case of
Theorem 2.4.

It remains to prove Lemma 3.2. For simpler notation we assume iy = 1. We are
given H = K"1(S) and the lattice points z,, ee E(H). Let us choose (arbitrarily) a
subset V| of s vertices from the first class of H. We form H, by restricting the first
class of H to V, (so Hy is a K%(s,S,S,...,S)). Let R|,R,,...,R, be the
enumeration of all r-element subsets of ¥y, m = (f). We are going to form
subhypergraphs H,, ..., H, of H,, where Hj is a K%t'(s,sx,st, ..., 5¢) and sy =
S>s5;> - >5, =s. So the first class remains unchanged while vertices are being
deleted from all the other classes. The final H,, is the desired H’ as in case (ii) of the
lemma, but in each of the steps, we can also possibly encounter case (i) and finish.

For passing from Hj to Hj.i, we are going to apply Corollary 2.2 to the sets
Z, = Zv(ﬁk), ve Ry.. Note that the points of each Z, are indexed by the edges of Hy
that contain v. Since Hy is a K%*'(s, s, s, ..., sr), the set I = {e\{v} :ec E(Hy)} is
the same for all ve Ry, and it is the edge set of a K"(sk). So we can think of each Z, as
being indexed by 1.
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Corollary 2.2 provides either a lattice point in (), g conv(Z,), and then case (i) of
Lemma 3.2 holds, or a smaller I’ = I such that, for some vy, v, € Ry, the restrictions Z;,
of the Z, to I’ satisfy conv(Z] ) nconv(Z] ) = 0. Since |I'| contains at least a 277-
fraction of the edges of a K¥(s), by the Erdds-Simonovits Theorem 2.3 there is an
integer i1, much smaller than s; but still large, such that I’ can be further restricted
to I” = I that is the edge set of a K9 (s;.1). The edge set of the next hypergraph Hy
now consists of all edges of H; whose restriction to the last d classes lies in I”;
equivalently, itis {e” U {v}:e"eI",ve V1}. This Hiyis a K (s, Sty Skets -oes Skt
and the r-tuple R, now has two sets with disjoint convex hulls. This finishes the proof
of Lemma 3.2, and Proposition 3.1 is proved as well. [

Remark. Our proof of the fractional Helly theorem for convex lattice sets does not
use much of the geometric properties of Z¢, but still it relies on the special case of the
colored Helly Theorem 2.4 and on the intermixing Lemma 2.1. It would be
interesting to clarify what axioms are sufficient for the validity of these two
statements, say in the context of abstract convexity spaces.

4. Colored (p, g)-theorems

The colored Helly Theorem 2.4 and the Alon—Kleitman method for proving (p, ¢)-
theorems can be combined to prove a colored (p, q) theorem for convex sets in RY:

Theorem 4.1. For every integers d=1 and p=1, there exists a T = T(d, p) such that

the following holds. Let €, ..., %41 be finite families of convex sets in R?, and suppose

that whenever we select, for each ie[d+ 1], sets Cy,Cp,...,Cp€%b;, there are

J1sJ2s «evsJas1 E [p] with ﬂ?jll Cij;#0. Then 1(¢;)<T for at least one ie[d + 1].

Proof (Sketch). Let v¥(#) denote the fractional matching number of a set system
F v¥(F) is the maximum of ) ,_,w(F) for w:Z# —[0,1] being a function
satisfying > e 7. .cp W(F) <1 for every xe [JZ. Alon and Kleitman proved that
for any system % of convex sets in R?, 1(%) is bounded by a function of d and v*(%),
and so it suffices to show that, in our situation, v*(%;) is bounded for some i€ [d + 1].

Let w;: 4;—10, 1] be a weight function for which v¥*(%;) is attained. Since the €;
are finite, we may assume that the values of w are rational. We write w;(C) =<,
where m; is a common denominator of the w;(C), and we form a new system %", by
putting n¢ copies of C into % for each Ce%;. Let n; = ZCE% nc = |€; it suffices to
show that for some i, there exists a point x common to at least fin; sets of %", for
some f=p(d,p)>0 (since then 1> - ¢ . ccwi(C)=pl=pv*(%:), and so
V(%) <D).

It is enough to verify the assumptions of the fractional Helly theorem of
Katchalski and Liu for some %, i.e. to show that there are at least «( /") intersecting

d+1
(d + 1)-tuples. We consider the (d + 1)-uniform (d + 1)-partite hypergraph H with
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the vertices in the ith class corresponding to the sets of %' and the edges
corresponding to intersecting (d + 1)-tuples of sets from distinct classes.

Let s be large compared to d and p but fixed, and consider sets Uy, ..., Uz, where
U; is an arbitrary subset of s vertices in the ith class. We claim that each such
selection contributes a (d + 1)-tuple of vertices in one of the U; whose sets intersect;
if we verify this, double counting shows that one of the classes of H has at least
a(,,) intersecting (d + 1)-tuples as needed.

If some U; contains d + 1 copies of the same set of %;, then we have a (rather
trivial) intersecting (d + 1)-tuple. Otherwise, we select U; = U; consisting of at least

S

717 distinct sets. By the condition of the theorem, for any choice of p-clement

W;c U], there is an edge in J; W;. Double counting and the Erdds—Simonovits
Theorem 2.3 show that there is a K“*!(d + 1) in the subhypergraph induced in H by
the U]. The colored Helly Theorem 2.4 then yields an intersecting (4 + 1)-tuple in
one of the U/ as required. [J

A similar colored (p, ¢)-theorem can be proved for convex lattice sets, by the same
method. As shown in [1], t(#) is again bounded by a function of d and v*(#) for

any finite system Z of convex lattice sets in Z¢. The final application of the colored
Helly Theorem 2.4 in the proof is replaced by an application of Proposition 3.1 (and
we need a K%+!(¢) subhypergraph instead of K%*!(d + 1)).
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