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A NOTE ON SYLVESTER’S FOUR-POINT PROBLEM

I. BÁRÁNY

Abstract

Let p(n,K) be the probability that a random sample of n points, chosen uniformly
from a convex body K⊂Rd is in convex position. In this paper the order of magnitude of
p(n,K) is determined as n goes to infinity.

1. Background

In the 1864 April issue of the Educational Times J. J. Sylvester [9] posed
an innocent looking question that read: “Show that the chance of four points
forming the apices of a reentrant quadrilateral is 1/4 if they be taken at
random in an indefinite plane.” It was understood within a year that the
question is ill-posed. In Sylvester’s words: “This problem does not admit of a
determinate solution”. The culprit is, as we all know by now, the “indefinite
plane” since there is no natural probability measure on it.

What can be the next move? Modify the question. That is exactly what
Sylvester did. Let K be a convex set in the plane, and choose four points
from K randomly, independently, and uniformly. What’s the chance, P(K),
that the four points form the apices of a reentrant quadrilateral, or, in more
recent terminology, that their convex hull is a triangle? Further, for whatK
is the probability P(K) the largest and the smallest? This question became
known later as “Sylvester’s four-point problem”. It took fifty years to find
the answer: Blaschke [3] showed that for all convex compact bodies K⊂R2

P(disk)5P(K)5P(triangle).

The solution uses the technique of symmetrization and “shaking down” that
have become standard tools since.

Sylvester’s question and its solution determined the direction of research
for a long while. Many papers have been written starting with the setting:
let Xn = {x1, . . . , xn} random, independent, uniform sample of n points from
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some fixed d-dimensional convex body K, and let Kn be their convex hull.
Kn is the so called random polytope, or polygon when d= 2. Sylvester’s four-
point problem is then to determine the probability that K4 is a triangle.

More generally, define, in the style of Sylvester’s original question, p(n,K)
as the probability that Xn is in “convex position”, that is, no xi is in the
convex hull of the others. Sylvester’s four-point question is just the comple-
mentary probability when n= 4: P(K) = 1− p(4,K). Hostinsky [6], Miles
[7], Buchta [5], and others considered the problem of determining p(n,Bd),
where Bd is the euclidean unit ball in dimension d. An asymptotic result in
this direction (from [2]) is that p(n,Bd) tends to one when n<d−12d/2 and
tends to zero when n>d2d/2 (as d goes to infinity).

In a different development it was observed that, when K is fixed and n
goes to infinity, the random polytope Kn gets closer and closer to K. So the
natural questions are: How well Kn approximates K in various measures of
approximation? How many vertices, edges, facets does Kn have? This type
of questions have been studied since Blaschke [3], and Rényi and Sulanke [8]
in infinitely many papers. For a comprehesive survey see [10].

2. Back to Sylvester

Let us return to the planar case. It is clear that p(n,K) is extremely
small when n is large. But how small is this extremely small? I have recently
proved (cf. [1]) that for all convex K ⊂R2 with VolK = 1

(1) lim
n→∞

n2 n
√
p(n,K) =

e2

4
A3(K),

where A(K) is the affine perimeter of a unique convex subset K0 of K. The
distinguishing property of K0 is that its affine perimeter is the largest among
all convex subsets of K. (The affine perimeter is the integral of the cubic
root of the curvature along the boundary.)

The aim of this note is to extend (1) to higher dimensions in the following
weak sense.

Theorem. Assume K ⊂ Rd (d = 2) is a convex body with VolK = 1.
Then for all n=n0 we have

(2) c1<n
2
d−1 n
√
p(n,K)<c2,

where n0, c1 and c2 are positive constants depending only on d.
This is the first step towards the stronger conjecture from [1], namely,

that
lim
n→∞

n
2
d−1 n
√
p(n,K) = c(d)A

d+1
d−1 (K)

which looks hopeless at the moment. (Here A(K) is the same constant as in
(1): the supremum of the affine surface areas of all convex subsets of K but
we will not need this.)
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3. The proof

In what follows c and bi (i= 0, 1, 2, 3) denote constants that depend only
on d. We start with a simple fact.

Lemma. Assume C,D are convex bodies in Rd with C ⊂D. Then

p(n,C)5
(

VolD
VolC

)n
p(n,D).

Proof. Let Xn be random n-sample from D. Then
p(n,D) = P[Xn convex]=P[Xn convex and Xn⊂C]

= P[Xn convex |Xn⊂C] P[Xn⊂C]

=
(

VolC
VolD

)n
p(n,C). �

Using this lemma we show next that it suffices to prove the theorem in
the special case when K coincides with B =Bd, the euclidean unit ball of
Rd. Note first that p(n,K) is invariant under nondegenerate linear transfor-
mations. By the well-known theorem of Fritz John, every convex body K
can be sandwiched between concentric ellipsoids: E1⊂K⊂E2 with blow-up
factor at most d. So we may assume that K is sandwiched between B and
dB. By the lemma

d−dnp(n,B)5 p(n,K)5 ddnp(n,B),

as d−d 5VolB/VolK 5 1.
Next we prove the upper bound in (2) assuming K =B. Write C for the

metric space of all convex subsets of B equipped with the Hausdorff metric.
According to an important result of Bronshtein (see [4]), for every ε> 0, there
is an ε-net {C1, . . . , CN}⊂C with N 5 exp{c ε− d−1

2 }. That is, for every D∈C
there is a Cj with Hausdorff distance at most ε from D. In particular, the
boundary of D is contained in ∂Cj + εB for some j ∈{1, . . . ,N}.

Now consider n-tuples (x1, . . . , xn)∈Kn =K×· · ·×K that are in convex
position. As D = conv{x1, . . . , xn} ∈ C, the previous observation applies to
D and gives

{(x1, . . . , xn)∈Kn : in convex position}⊂
N⋃
1

(∂Cj + εB)n.

As p(n,B) is just the product measure of the left-hand side above (with
VolB scaled to 1) we get

p(n,B)5meas{
N⋃
1

(∂Cj + εB)n}

5
N∑
1

meas{(∂Cj + εB)n}5N max
j

meas{(∂Cj + εB)n}.
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Observe now that meas{(∂Cj + εB)n} = (Vol(∂Cj + εB))n and
Vol(∂Cj + εB) 5 Vol(∂B + εB) 5 b0ε for some constant b0 depending only
on d. Choosing ε=n−

2
d−1 gives N 5 ecn and so n

√
p(n,B)5 ecb0n−

2
d−1 giv-

ing the upper bound in (2).
For the lower bound define A=A(ε) as the annulus B \ (1− ε)B, where

ε=4n−
2
d−1 with 4, a small positive constant to be chosen later. For x∈A

define
G(x) = {y ∈A :∠x0y5 arccos(1− ε)}.

Note that, for x, y ∈A, x∈G(y) if and only if y ∈G(x). For x∈A let C(x)
be the cap cut off from B by the hyperplane orthogonal to, and passing
through, x. Clearly, C(x)⊂G(x).

Now pick the points x1, . . . , xn by induction with the following rule.

Assuming x1, . . . , xk have been chosen, take xk+1 uniformly from A\
k⋃
1
G(xi)

(and independently of the previous choices).
We claim that the points x1, . . . , xn are in convex position. The proof is

simple: as C(xi)⊂G(xi) for all i, C(xi) contains none of the other xj . Thus
xi is separated from the other points by the bounding hyperplane of C(xi).

We estimate next the volume of A\
k⋃
1
G(xi). It is evident that VolG(x)5

b1ε
d+1

2 .

Vol(A \
k⋃
1
G(xi))=VolA−

k∑
1

VolG(xi)= b2ε− kb1ε
d+1

2

= b2ε−nb1ε
d+1

2 = b24n−
2
d−1 − b14

d+1
2 n1− d+1

d−1

=n−
2
d−1

(
b24− b14

d+1
2

)
= b3n−

2
d−1 ,

if the constant 4 is chosen small enough.
Assuming again that Vol is scaled so that VolB= 1 we have

p(n,B)=
n−1∏

0

Vol(A \
k⋃
1
G(xi))=

(
b3n
− 2
d−1

)n
,

finishing the proof. �
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