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COVERING LATTICE POINTS BY SUBSPACES

Imre Bárány (Budapest–London), Gergely Harcos (Princeton),
János Pach (Budapest–New York) and Gábor Tardos (Budapest)

Dedicated to Professor András Sárközy on the occasion of his 60th birthday

Abstract

We find tight estimates for the minimum number of proper subspaces needed
to cover all lattice points in an n-dimensional convex body C, symmetric about the
origin 0. This enables us to prove the following statement, which settles a problem
of G. Halász. The maximum number of n-wise linearly independent lattice points in
the n-dimensional ball rBn of radius r around 0 is O(rn/(n−1)). This bound cannot
be improved. We also show that the order of magnitude of the number of different
(n− 1)-dimensional subspaces induced by the lattice points in rBn is rn(n−1).

1. Introduction and statement of results

This paper was inspired by the following question of G. Halász. What is the
maximal cardinality of a subset S of rBn ∩ Zn such that all n-element subsets of S
are linearly independent? (Here Bn denotes the unit ball around the origin in Rn.)
As any system of proper subspaces that cover rBn∩Zn provides an upper bound on
the above quantity, we would like to determine the size of the smallest such covering
system. We look at these questions from a somewhat broader perspective.

We introduce the following notations. Let C ⊆ Rn be a convex compact body
symmetric with respect to the origin. For 1 ≤ i ≤ n, let λi denote the i-th successive
minimum of C. That is,

λi = min{λ|dim(λC ∩ Zn) ≥ i}.
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Let g(C) denote the minimum number of proper subspaces covering C ∩Zn, and let
h(C) denote the maximum number of points that can be chosen from C ∩Zn so that
they are in general position, i.e., no n of them are linearly dependent. Clearly, we
have h(C) ≤ (n− 1)g(C).

The following two theorems, providing a lower bound on h(C) and an upper
bound on g(C), respectively, give fairly tight estimates for these quantities.

Theorem 1. If λn ≤ 1 then

h(C) ≥ 1− λn
16n2

min
0<m<n

(λm . . . λn)−
1

n−m .

Theorem 2. If λn ≤ 1 then

g(C) ≤ c2nn2 logn min
0<m<n

(λm . . . λn)−
1

n−m ,

where c is an absolute constant.

In Halász’ question, C is the n-dimensional ball, rBn, of radius r > 1 around
the origin, whose successive minima satisfy λ1 = λ2 = . . . = λn = 1/r. Thus, in this
case, Theorems 1 and 2 immediately imply that the correct orders of magnitude of
both g(rBn) and h(rBn) are O(rn/(n−1)).

Remark 1. If λn > 1, then g(C) = 1 and hence h(C) < n. If λn < 1 − ε,
by Theorems 1 and 2 the values of g(C) and h(C) are determined by the successive
minima of C up to a constant factor depending on ε and the dimension n. For
λn = 1 no such approximation is possible. For arbitrary large x > 1, consider the
convex bodies

Cx = [−x, x]n−1 × [−1, 1]

and
C′x = conv({−xei, xei|1 ≤ i < n} ∪ {−en, en}),

where (e1, . . . , en) is the standard basis of Zn. Both bodies have the same sequence
of successive minima: λi = 1/x for i < n and λn = 1. However, g(Cx) ≥ 2x and
h(Cx) ≥ x/2, while g(C′x) = 2 and h(C′x) = n.

Remark 2. The integer lattice Zn plays no particular role in the above the-
orems. Our inequalities are preserved by affine transformations, therefore they hold
for n-dimensional lattices in general.

For any r ≥ 1, let Hr denote the set of all (n − 1)-dimensional subspaces
(hyperplanes through 0) which contain n − 1 linearly independent lattice points
from the ball of radius r centered at the origin.

Theorem 3. There exist suitable positive constants c1 and c2, depending only
on n, such that

c1r
n(n−1) ≤ |Hr| ≤ c2rn(n−1),
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provided that r is large enough.

Let r ≥ 1. Theorem 3 can be used to bound

sr =
1
|Hr|

∑
H∈Hr

|H ∩ rBn ∩ Zn|,

the average number of lattice points in rBn in the hyperplanes belonging to Hr.

Corollary. The average sr is bounded by a constant depending on the di-
mension n.

Remark 3. Analyzing the dependence of c1 on n one can show that sr ≤
2n

3+O(n2 logn).

In Section 2, we essentially show that within C ∩Zn one can represent a finite
projective space over a relatively small prime (see Lemma). To establish Theorem
1, we combine this result with a well known construction of P. Erdős (see [11,
Appendix]).

Section 3 contains the proof of Theorem 2. This proof is also constructive: in
most cases, to cover C ∩Zn we take all subspaces perpendicular to an integer vector
in a body homothetic to the polar of C.

The proofs of Theorem 3 and the Corollary are given in Section 4.

The related (but different) problem of covering the lattice points within a
convex body by affine subspaces was first investigated by K. Bezdek and T. Hausel
[2]. They only considered 1-codimensional subspaces, i.e. hyperplanes (as we do
here). Their work was sharpened and extended to the general case by I. Talata [14].
The estimates in these two papers are given in terms of the dimension n and the
lattice width of the convex body.

2. Proof of Theorem 1

The proof is based on the following

Lemma. Let λn < 1 and suppose that p is an integer satisfying

1 < p <
1− λn

8n2
min

0<m<n
(λm . . . λn)−

1
n−m .

Then, for any v ∈ Rn, there exist an integer 1 ≤ j < p and a lattice point
w ∈ Zn with jv + pw ∈ C.

Proof of Lemma. Find linearly independent vectors vi ∈ λiC ∩ Zn for i =
1, . . . , n. Any vector x ∈ Rn can be uniquely written in the form x =

∑n
i=1 aivi +
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∑n
i=1 bivi with ai ∈ Z and bi ∈ (−1/2, 1/2]. Here

∑n
i=1 aivi ∈ Zn and

n∑
i=1

bivi ∈ conv
{

vi
2pλi

,− vi
2pλi

∣∣∣1 ≤ i ≤ n} ⊆ C
2p
,

whenever
∑n
i=1 λi|bi| ≤ 1/(2p). Thus, the density d of the periodic set

S =
C
2p

+ Zn

is at least the probability that for independent uniform random numbers bi ∈ [0, 1/2]
we have

∑n
i=1 λibi ≤ 1/(2p). This inequality is satisfied if λibi ≤ ε/(2pn) for all

i < n and λnbn < (1− ε)/(2p), where ε = (1− λn)/2. Thus, we have

d ≥ min
(

1,
1− ε
pλn

) n−1∏
i=1

min
(

1,
ε

pnλi

)
.

This lower bound on d takes the form

Am =
∏

m≤i<n

ε

pnλi

or
Bm =

1− ε
pλn

∏
m≤i<n

ε

pnλi
,

where 1 ≤ m ≤ n is an appropriate integer (the product is empty in case m = n).
We claim that each of these values is larger than 1/p, so we have d > 1/p.

The inequality Bm > 1/p is equivalent to

pn−m <
(1− ε)εn−m
nn−mλm . . . λn

.

This is true, by the choice of ε, for m = n, and, by our bound on p, otherwise. The
inequality Am > 1/p is equivalent to

Cm = pn−m−1λm . . . λn−1 <
( ε
n

)n−m
.

If m = n, this is true, because p > 1. Suppose m < n, and use our bound on p to
get

Cm <
1
pλn

( ε

4n2
)n−m

.

If λn ≥ 1/2 then pλn ≥ 1, hence the desired inequality follows. If λn < 1/2 then
ε > 1/4, hence the previous inequality yields

Cm <
1
pλn

( ε
n

)n−m+1

.

On the other hand, using the monotonicity of the sequence (λi), we obtain

Cm ≤ pn−m−1λn−mn < (pλn)n−m.
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Taking a weighted geometric mean of the last two bounds, we get

Cm <

{
1
pλn

( ε
n

)n−m+1
} n−m
n−m+1 {

(pλn)n−m
} 1
n−m+1 =

( ε
n

)n−m
,

as required. This proves Am > 1/p and hence d > 1/p.
Consider the periodic sets S + jv/p for j = 0, . . . , p− 1. Each of these p sets

has density d > 1/p thus two of these sets must intersect. We have

j1v

p
+
u1
2p

+ w1 =
j2v

p
+
u2
2p

+ w2,

for some 0 ≤ j1 < j2 < p, some u1, u2 ∈ C and some w1, w2 ∈ Zn. For 1 ≤ j =
j2 − j1 < p and w = w2 − w1 ∈ Zn, we have

jv + pw =
u1 − u2

2
∈ C,

verifying the statement of the Lemma. �
Now it is easy to finish the proof of Theorem 1. Let p be the largest prime

number satisfying the condition in the Lemma. If such a prime does not exist,
then the statement of the theorem is trivial. The points of the discrete moment
curve (used by Erdős in connection with Heilbronn’s triangle problem [11]), vi =
(1, i, i2, . . . , in−1) for integer values 0 ≤ i < p (and v∞ = (0, . . . , 0, 1) ∈ Zn) are n-
wise linearly independent over the p-element field. By the Lemma, we have integers
1 ≤ ji < p and integer vectors wi with v′i = jivi+pwi ∈ C. Clearly, the vectors v′i are
integer vectors, and they are n-wise linearly independent over the p-element field,
and hence over the reals. This shows h(C) > p, and an application of Chebyshev’s
theorem on prime numbers concludes the proof.

3. Proof of Theorem 2

Let C0 denote the polar body of C, i.e.,

C0 = {x ∈ Rn : ux ≤ 1 for all u ∈ C}.

Denote by µ1 ≤ · · · ≤ µn the successive minima of C0. It is known that

1 ≤ λiµn−i+1 ≤ c1n logn (i = 1, . . . , n)

where c1 is an absolute constant. The lower bound is a classical inequality of Mahler
[10], the upper one has been recently proved by Banaszczyk [1].

Fix any integer 0 < m < n, for the rest of the argument. It follows that

(1) 1 ≤ (λm . . . λn)(µ1 . . . µn−m+1) ≤ (c1n logn)n−m+1.

For technical reasons, we will consider any increasing sequence

0 < ν1 < · · · < νn−m+1
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such that no ratio νi/νj (i 6= j) is rational and

µi ≤ νi (i = 1, . . . , n−m+ 1).

Let
wi ∈ µiC0 ∩ Zn (i = 1, . . . , n−m+ 1)

be linearly independent vectors, and consider some sets of integer vectors of the
form

D+
α =

{
n−m+1∑
i=1

aiwi : ai ∈ [0, α/νi] ∩ Z
}
,

Dα =

{
n−m+1∑
i=1

aiwi : ai ∈ [−α/νi, α/νi] ∩ Z
}
,

where α is a non-negative parameter to be specified later. Clearly, Dα is the union
of 2n−m+1 isometric copies of D+

α satisfying

Dα ⊆ (n−m+ 1)αC0 ∩ Zn.
Also, the difference of any two vectors from D+

α lies in Dα. Let f(α) be the number
of points in the first set, i.e.,

f(α) =
∣∣D+

α

∣∣ =
n−m+1∏
i=1

(⌊
α

νi

⌋
+ 1
)
.

Notice that f(α) is an increasing, right continuous function which changes by a
factor of at most 2 at its points of discontinuity, i.e., for any α > 0,

(2) f(α) ≤ 2f(α−).

Also, f(0) = 1 and

(3) f(α) ≥
n−m+1∏
i=1

α

νi
.

We claim that, whenever

(4) f(α) > 2(n−m+ 1)α+ 1

holds, every lattice point in C is perpendicular to some non-zero element of Dα.
To see this, fix any u ∈ C ∩ Zn and consider all the scalar products uv where
v ∈ D+

α . These scalar products are integers, whose absolute values do not exceed
(n−m+ 1)α. Therefore, (4) implies the existence of two distinct v1, v2 ∈ D+

α with
uv1 = uv2. Hence, the non-zero vector v = v1 − v2 ∈ Dα is perpendicular to u. We
established that (4) implies

(5) g(C) ≤ |Dα| ≤ 2n−m+1f(α).

By the right continuity of f(α), there is a minimum α such that

f(α) ≥ 16(n−m+ 1)
n−m+1

n−m (ν1 . . . νn−m+1)
1

n−m .
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By (3), this α satisfies

α ≤ 4(n−m+ 1)
1

n−m (ν1 . . . νn−m+1)
1

n−m .

In particular, we have
4(n−m+ 1)α ≤ f(α).

The inequality 0 < λm ≤ · · · ≤ λn ≤ 1 combined with (1) guarantees that

1 ≤ µ1 . . . µn−m+1 ≤ ν1 . . . νn−m+1,

whence also
32 ≤ f(α).

The last two estimates on f(α) show that (4) is satisfied. In particular, α > 0,
therefore (5) combined with (2) yields

g(C) ≤ 2n−m+2f(α−) < 2n−m+6(n−m+ 1)
n−m+1

n−m (ν1 . . . νn−m+1)
1

n−m .

Taking the infimum of the right hand side over all admissible choices of the sequence
0 < ν1 < · · · < νn−m+1, we get

g(C) ≤ 2n−m+6(n−m+ 1)
n−m+1

n−m (µ1 . . . µn−m+1)
1

n−m

≤ 2n−m+7n(µ1 . . . µn−m+1)
1

n−m .

Combining this with (1), we obtain

g(C) ≤ 2n−m+7n(c1n logn)
n−m+1

n−m (λm . . . λn)
−1
n−m

≤ 2n+7c21n
2 logn

{
2−m(n logn)

1
n−m

}
(λm . . . λn)

−1
n−m .

Here
2−m(n logn)

1
n−m ≤ max

{
(n logn)2/n, 2−n/2n logn

}
is bounded from above by an absolute constant, hence we can see that

g(C) ≤ 2ncn2 logn(λm . . . λn)
−1
n−m ,

where c is some absolute constant. Minimizing over all integers 0 < m < n, Theorem
2 follows.

4. Proof of Theorem 3

The upper bound follows at once by noting that

|Hr| ≤
(
|rBn ∩ Zn|
n− 1

)
=
(
O(rn)
n− 1

)
= O(rn(n−1)).

For any primitive integer vector v, let L(v) stand for the (n− 1)-dimensional
lattice Zn ∩ v⊥ orthogonal to v, with determinant detL(v) = |v|. Write λ1(v) ≤
· · · ≤ λn−1(v) for the successive minima of L(v), i.e.,

λi(v) = min{λ|dim(λBn ∩ L(v)) ≥ i}.
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Denote by ωn the volume of the unit ball Bn. According to Minkowski’s second
fundamental theorem, we have

(6) λ1(v) . . . λn−1(v) ≤ 2n−1ω−1n−1|v|.

Define a set V by

V = {v ∈ Zn : v is primitive and |v| ≤ ρ},

where ρ will be specified later.

Claim. If ρ is large enough, there are at least ωnρn/10 elements v ∈ V such
that λ1(v) ≥ Dρ 1

n−1 , where D > 0 is a suitable constant depending on n.

Before proving the Claim, we show how it implies the lower bound in Theorem
3. By (6), whenever λ1(v) ≥ Dρ 1

n−1 , we have

λn−1(v) ≤ 2n−1ω−1n−1|v|(Dρ
1

n−1 )−(n−2) ≤ 2n−1ω−1n−1D
−(n−2)ρ

1
n−1 .

So, for at least ωnρn/10 elements v ∈ V , L(v) contains n− 1 linearly independent
lattice points from the ball of radius r = 2n−1ω−1n−1D

−(n−2)ρ
1

n−1 . From here ρ can
be expressed as a function of r, and the lower bound in Theorem 3 follows.

Proof of Claim. We shall assume throughout this argument that ρ is suffi-
ciently large in terms of n. The inequality λ1(v) ≤ Dρ 1

n−1 is equivalent to the exis-
tence of a primitive u ∈ Zn with vu = 0 and |u| ≤ Dρ 1

n−1 . In other words, v ∈ L(u)
for some primitive u with |u| ≤ Dρ

1
n−1 . For any primitive u with |u| ≤ Dρ

1
n−1 , we

estimate the number of corresponding vectors v.

Using (6) we can see that λn−1(u) ≤ 2n−1ω−1n−1Dρ
1

n−1 = o(ρ) which implies
that L(u) contains a lattice parallelotope of nonzero volume and of diameter o(ρ).
Therefore the number of corresponding vectors v is at most

|L(u) ∩ ρBn| ≤ 2vol(ρBn−1)/ detL(u) = 2ωn−1ρn−1/|u|.

Hence the total number of v ∈ V with λ1(v) ≤ Dρ 1
n−1 is at most

2ωn−1ρn−1
∑

|u|≤Dρ
1

n−1

1
|u| ≤ 4ωn−1ωnDn−1ρn,

as can be shown by a straightforward calculation. The total number of points in V
is at least 1

2ζ(n)ωnρ
n. Thus, the number of v ∈ V with λ1(v) ≥ Dρ 1

n−1 is at least(
1

2ζ(n)
− 4ωn−1Dn−1

)
ωnρ

n,

which is larger than ωnρn/10 if the constant D is chosen properly. �
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Proof of Corollary. We have∑
H∈Hr

|H ∩ rBn ∩ Zn| = |Hr|+
∑

06=v∈rBn∩Zn
|{H ∈ Hr|v ∈ H}|

≤ |Hr|+ |rBn ∩ Zn|n−1

≤ |Hr|+ ωn−1n (r +
√
n)n(n−1),

where the first inequality follows from the fact that H ∈ Hr is spanned by v and
other n− 2 independent vectors in rBn ∩ Zn. By Theorem 3 we have

sr =
1
|Hr|

∑
H∈Hr

|H ∩ rBn ∩ Zn| ≤ 1 + c−11 ωn−1n (1 +
√
n/r)n(n−1),

where the right-hand side is bounded by a function of n as required. �

5. Epilogue

Halász’ question studied in this paper is related to the following famous prob-
lem of Littlewood and Offord [9]. Given k not necessarily distinct complex numbers,
v1, v2, . . . , vk, whose absolute values are at least 1, at most how many of the 2k

subset sums
∑
i∈I vi, I ⊆ {1, 2, . . . , k} can belong to the same open ball of unit

diameter?
Erdős [3] proved that for reals the best possible upper bound was

(
k
bk/2c

)
. G.

O. H. Katona [6] and D. Kleitman [7] independently settled the original question by
showing that the same bound is valid for complex numbers. Shortly after, Kleitman
[8] managed to generalize this theorem to systems of vectors of absolute value at
least 1 in any Euclidean space Rn. In all cases, the upper bound is attained when
all vectors (numbers) coincide.

Erdős and Moser considered the similar problem of how many subset sums
of k distinct numbers can coincide. A. Sárközy, E. Szemerédi [12] found the order
of magnitude of this number and later R. Stanley [13] found the exact answer. G.
Halász [5] considered the similar problem of how many subset sums can coincide
under various assumptions assuring that the k vectors are quite different. J. Griggs
and G. Rote [4] investigated the following problem of this type. Given k n-wise
linearly independent vectors v1, v2, . . . , vk ∈ Rn, at most how many of the 2k subset
sums

∑
i∈I vi, I ⊆ {1, 2, . . . , k} can coincide? Denoting this function by fn(k),

they obtained that

fn(k) > Cn
2k

k3n/2−1
,

and it is implicit in Halász [5] that

fn(k) < C′n
2k

kn/2+bn/2c
.

(Here Cn and C′n are positive constants depending only on the dimension n.) The
orders of magnitude of these two bounds differ already in 3-space (n = 3).
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Note that the construction of Griggs and Rote [4] can be regarded as the
special case of our construction at the end of Section 2, when C is a box of the form
[0, 1]× [0, x]n−1.

Halász observed that the construction in [4] can be extended to give the follow-
ing result. Let hn(r) denote the maximum number of n-wise linearly independent
lattice points that can be chosen in rBn. Let r(k) be the smallest r for which
hn(r) ≥ k. Then

fn(k) > C′′n
2k

kn/2rn(k)
.

This would improve on the previous lower bound, provided that r(k) = o(k(n−1)/n),
or, equivalently,

lim
r→∞

hn(r)
rn/(n−1)

=∞.

However, the results in this paper show that this is not the case.

Besides András Sárközy three other Hungarian mathematicians mentioned in
this section – Gábor Halász, Gyula Katona and Endre Szemerédi – have recently
turned or will turn sixty, as well. We congratulate also them with this note.

We further thank J. Matoušek for useful discussions and comments.
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