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MATHEMATICS OF OPERATIONS RESEARCH 
Vol. 23, No. 4, November 1998 
Printed in U.S.A. 

MATRICES WITH IDENTICAL SETS OF NEIGHBORS 

IMRE BARANY AND HERBERT SCARF 

Given a generic m by n matrix A, a lattice point h in Z" is a neighbor of the origin if the 
body {x :Ax s b }, with bi = max { 0, aih }, i = 1, ..., m, contains no lattice point other than 0 
and h. The set of neighbors, N(A), is finite and O-symmetric. We show that if A' is another matrix 
of the same size with the property that sign aih = sign a' h for every i and every h E N(A), then 
A' has precisely the same set of neighbors as A. The collection of such matrices is a polyhedral 
cone, described by a finite set of linear inequalities, each such inequality corresponding to a 
generator of one of the cones Ci = pos (h E N(A): aih < 0 }. Computational experience shows 
that Ci has "few" generators. We demonstrate this in the first nontrivial case n = 3, m = 4. 

1. Introduction. Test sets for integer programming were introduced by Graver 
(1975) and Scarf (1986). They provide a way of telling if a feasible solution z E Z" is 
optimal or not by checking, for each h in the test set, whether z + h is feasible and yields 
an improved value of the objective function. 

The test set of Scarf, the set of neighbors of the origin, is associated with a matrix A 
of size m by n, and is applied to the class of problems of the form 

min alz 
(1.1) 

subject to aiz - bi (i = 2, ..., m), z E Zn 

in which a single row of A becomes the objective, and the remaining rows are used, with 
arbitrary bi, to form the constraints. 

For each lattice point h E /n, the smallest body of the form 

(1.2) Kb = {x E Rn: Ax - b} 

containing 0 and h is given by bi = max { 0, aih }, for i = 1, 2, ..., m. We designate this 
body by (0, h). The lattice point h E /n (h * 0) is defined to be a neighbor of the origin 
if (0, h) contains no lattice points in its interior. The collection of such neighbors is 
denoted by N(A). Note that in this definition the special role of ai as the objective function 
has disappeared. 

In the next section we introduce various conditions on A to ensure that N(A) is a test 
set for the integer programs (1.1), or that N(A) is nonempty and finite. Finiteness of 
N(A) is proved in quantitative form (Theorem 3). Our main result (Theorem 1) char- 
acterizes matrices with identical sets of neighbors (and identical sign-pattern of Ah for 
each neighbour). It turns out that this collection of matrices C(A) is a polyhedral set 
determined by the cones 

(1.3) Ci = pos{h E N(A): aih < 0} 
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BARANY AND SCARF 

where A is a generic (cf. ?2) matrix. C(A) has a product structure since the rows of the 
matrices in it vary in the interior of C*, the polar of Ci, independently of each other. 

Computational experience and some theoretical results (cf.. Remark in ?2) indicate that 
Ci has "few" generators. We demonstrate this (Theorem 2) in the first nontrivial case n 
= 3, m = 4. We also show that the generators form the Hilbert basis of the cone Ci. The 

proof is based on properties of the neighbors and of 3-dimensional lattices. 

2. Results. We assume throughout that the rank of A is n. Notice first that N(A) is 
symmetric about the origin. This follows from (0, h) - h = (0, -h). 

Next, we need to formulate various conditions on the matrix A. A convenient way to 
do so is to consider the dual feasible region 

D(A) = {y E R" :yA = 0, y : 0}. 

The first condition we need is 

(Al) There is y E D(A) with yi > 0 (Vi). 

This is equivalent to saying that Kb is bounded for every b, or that 0 E int conv { a,.... 
am }. We will show (Claim 1 in ?3) that (Al) implies that N(A) is nonempty and, further, 
that it is a test set for the integer programs ( 1.1). 

Condition (Al) implies that there exists a nonzero vector in D(A) with n + 1 or fewer 
positive components. Our next condition, a weak form of nondegeneracy of A, says 

(A2) every nonzero y E D(A) has at least n + 1 positive components, 

which is the same as saying that 0 is not in the convex hull of any n rows of A. We will 
show in Theorem 3 that, under (Al) and (A2), N(A) is finite in a quantitative form. 

Finiteness of N(A) was proved in White (1983) and in Bairany, et al. (1995) under the 
stronger condition "all n by n minors of A are nonsingular." 

In general, the set of neighbors need not form a minimal test set for the integer programs 
(1.1); a proper subset of N(A) may also be a test set. The reason for this ambiguity is 
that we may have two bodies (0, h) and (0, h'), with distinct lattice points h and h', 
which are identical, free of interior lattice points, but with h' on the boundary of the first 
body and h on the boundary of the second. In this case, removal of either one of these 
points h or h' results in a smaller test set. As we shall see, this is more a problem of 
exposition than substance, aside from a lower dimensional set of matrices. 

The matrix A is called generic if it satisfies conditions (Al) and (A2) and 

(A3) aih = 0 for every i and every h E N(A). 

For a generic matrix A, N(A) is the unique minimal test set for ( 1.1). Notice that generic 
matrices form a dense set in the collection of matrices satisfying (Al) and (A2): any 
such matrix with algebraically independent entries is automatically generic. 

Now let A be a generic matrix and C(A) the collection of matrices A' satisfying, for 
every i and every h E N(A) 

(2.1) sign a' h = sign aih. 

As we shall see the closure of C(A) is a polyhedral cone. This follows from 
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MATRICES WITH IDENTICAL SETS OF NEIGHBORS 

THEOREM 1. Let A be a generic matrix and A' E C(A). Then A' is also generic and 
has precisely the same set of neighbors as A. 
This, of course, shows that C(A) = C(A'). Theorem 1 says, in other words, that elements 
of C(A) are characterized by conditions (cf. (2.1)) 

a' E int C*, i = 1, .. ., m 

where C* is the polar of the cone Ci defined in (1.3). Thus C(A) has a product structure: 

any choice a; E int C* (i = 1, .. ., m, the a' are chosen independently!) gives rise to 
a generic matrix A' = [al, ..., a' ]T E C(A). 

Write now Gi for the set of generators of the cone Ci. Each Gi is finite and 

C* = {x : gx - 0, g E Gi } 

is a (minimal) polyhedral description of C* and of C(A). The simpler the structure of 
the Gi, the simpler this polyhedral description becomes. 

We have investigated the structure of N(A) on several examples, mainly in dimension 
3, 4, and 5. The computational experiments provided beautiful pictures and insightful 
examples, and showed structural properties of the neighbors. The experiments led to the 

conjecture that the cones Ci have "few" generators. We prove this in the first nontrivial 
case. 

THEOREM 2. If A is a generic 4 by 3 matrix, then the cone Ci has either three orfour 
generators and they form the Hilbert basis of Ci. 

We recall from Schrijver (1986) that H C 7 n is a Hilbert basis of the pointed polyhedral 
cone C C R" if every z E C n Zn is a nonnegative integral combination of some elements 
of H and H is minimal (to containment) with respect to this property. It is known that 
the Hilbert basis exists and is unique. 

Before proceeding to the proofs some remarks are in place here. 

REMARK 1. Most frequently, test sets are considered when the corresponding matrix 
A is integral (Lovasz 1989, Sturmfels and Thomas 1994, and others). These matrices 
often lie on the boundary of the decomposition (given by Theorem 1) of the set of matrices 

satisfying (Al). For matrices on the boundary of a cell C the set of neighbors need not 
be a minimal test set. 

REMARK 2. In the 4 by 3 case the number of generators of Ci, I Gi , is bounded 

independently of A (according to Theorem 2). There is a series of examples (with n = 3 
and m = 5) showing I Gi is not bounded by a function of n and m alone. However, as 
A. Barvinok (1995) pointed out, a deep result of R. Kannan (1990) shows that I Gi is 
polynomial in the size of A. We mention further that, in the 4 by 3 case, in every 
computational example the generators formed a parallelogram whenever there were four 
of them. 

REMARK 3. The cones Ci play a role in another question as well. Sturmfels and Tho- 
mas (1994) considered integer programs of the form min { cx : Ax ' b, x E "n } with c 
and b varying while A is a fixed national (or integral) matrix. They show that there is a 
fan, i.e., a subdivision of Rn into cones K,,... , Kk with nice intersection properties, such 
that for every b E Rm and every ci, c' E int Ki, the integer programs 

min{cix:Ax b, x E n} and 

min{c 'x : Ax =_ b, x E Zn} 
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have the same solution. It can be shown (using the results of this paper) that for any 
particular ci E int Ki, Ki is the polar of pos {h E N(A,) : cih < } where A, = [ci, al, 

. . ,am]T. 

REMARK 4. There is yet another case where the cones Ci come up. Given a generic 
m x n matrix A and b E Rm the set Kb of the form (1.3) is a maximal lattice free convex 
body if n" n int Kb = 4 but Z n int K = ) for every convex body K properly containing 
Kb. Every facet of Kb contains exactly one lattice point in its relative interior. Associating 
this set of lattice points with the maximal lattice free convex body Kb gives rise to a 
simplicial complex K(A) depending only on A (see Bairany et al. (1994) and Bairany et 
al. ( 1995) for the precise definition). The proof of Theorem 1 shows that for A' E C(A), 
the simplicial complexes K(A) and K(A') coincide. 

3. N(A) is nonempty and finite. We show first that, under condition (Al), N(A) is 

nonempty in the following stronger form. 

CLAIM 1. If A satisfies (Al), then every set Kb with 0 E Kb and I|" n K\bl - 2 
contains a neighbor of A. 

PROOF. Suppose 0, z E Z" n Kb, z * 0. We construct a (finite) sequence z = z0, Zl, 
..., z so that zi E int(0, zi-1), (0, zi) C (0, zi-1) (i = 1, ..., ) and zl E N(A). 

Assume zi has been constructed. If n n int(0, zi) = 4, set I = i and stop. Otherwise 
pick any zi,+l cE n n int(0, z ) and continue. The algorithm stops since, in view of (Al), 
Kb is bounded and zo, l, .. . Z, all belong to (0, Zo) C Kb. D 

The claim implies that N(A) * ) and, further, that N(A) is a test set for the integer 
programs (1.1). Now we turn to the proof of finiteness of N(A). 

As N(A) does not change if ai is multiplied by a positive number we may and do 
assume that Ila,il = 1 for all i. Define 

(3.1) d = min ( det Bl : B is a nonsingular n x n minor of A}. 

THEOREM 3. If A satisfies (Al) and (A2), then for every h E N(A) 

2 

(3.2) Ilhll . 
d 

PROOF. We are indebted to Martin Henk for a remark simplifying our original proof 
of this theorem. 

Fix h E N(A), (0, h) is bounded (by (Al)) and int(0, h) * 4 because of (A2). 
Consider the ball B inscribed in (0, h) that has the largest radius p, let its center be c. 

Z" n B = ) implies, via a simple induction, that p - -n. 
Write I for the set of indices i { 1, ... , m} for which the hyperplane {x : ai x = bi } 

is tangent to B. (Here bi = max { 0, ah }.) For i E I the equation of this hyperplane can 
be written as 

(3.3) ai(x- c) = p. 

The corresponding inequalities represent the "active" constraints on the largest in- 
scribed ball. The simple necessary condition for the maximality of p is 0 E conv {ai i 
E I}. Then condition (A2) implies 0 E int conv{ ai : i E I} which shows, in turn, that 
the polyhedron 
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P = {x: aix < bi, i E I} 

is bounded (and, further, that B is unique but we won't need this). Clearly (0, h) C P. 
A vertex v, of P, is the solution of n equations of the form (3.3). Write M for the matrix 

whose rows are the ai of these n equations. Further, let M' be the matrix obtained from 
M by replacing its jth column by the all-one column. We get for the jth component of v 
-c 

det Mi 
(v-c)j=p detM 

The denominator here is nonzero since otherwise the corresponding equations do not 
determine a vertex. Expanding the numerator along the all-one column and using Ilaill 
< 1 we get I(v - c)i \ < pnld. By (3.1) 

liv - cll - pninld < n2/2d. 

But diam(O, h) < diam P < n2/d because the diameter of P occurs between two of its 
vertices. D 

4. Proof of Theorem 1. We start the argument by taking A' to be identical with A 
in rows 2, ..., m and differing only in row 1. By assumption sign a h = sign alh for 

every h E N(A). 

CLAIM 2. N(A') C N(A). 

PROOF. Let h' E N(A'). There is no loss in generality in assuming that alh' < 0 
since if this were not true we could select the neighbor -h' E N(A'). 

Assume h' is not a neighbor of A. Then by Claim 1 of the previous section there is an 
h E N(A) with h E int(0, h')A, so that 

alh < max{0,alh'} = 0, 

aih < max{O,aih'} = max{O,a'h'}, i= 2, ..., m. 

We show now that h E int(0, h')A' contradicting the assumption that h' E N(A'). 
We certainly have a' h = aih < max{ 0, a h' } for i = 2, ..., m. In order to dem- 

onstrate a h < max {0, a h' } it suffices to show that a [h < 0. But since h E N(A) we 
have sign a[h = sign alh < 0. ] 

Write now A(t) = tA + (1 - t)A' and al(t) = tal + (1 - t)a[. We use a homotopy 
argument for 

LEMMA 1. A(t) is generic for every t E [O, 1]. 
We show first how this implies Theorem 3. A' = A (1) is generic by Lemma 1. Further, 

sign a' h = sign aih for every i and every h E N(A') since N(A') C N(A) by Claim 2. 
Claim 2 applies again with the roles of A and A' interchanged showing N(A) = N(A'). 

To finish the proof of Theorem 1 we repeat the same argument for every row in A. 1 

PROOF OF LEMMA 1. Set 

t* = min {t 0 : A (t) is not generic }. 

867 

This content downloaded from 144.82.108.120 on Sat, 19 Oct 2013 05:27:33 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


BARANY AND SCARF 

where the existence of the minimum and t* > 0 are easily justified. Assume, by way of 
contradiction, that t* - 1. Clearly sign a1 (t)h = sign alh for every h E N(A) and every 
t E [0, 1]. Thus A(t) satisfies condition (A3) for every t E [0, 1]. Claim 2 implies, 
further, N(A(t)) C N(A) for every t C [0, t*). 

We can reformulate conditions (Al) and (A2) for A (t) as 

(Al') 0 E intconv{a1(t),a2, ...,am}, 

(A2') 0 m conv{ any n of them}. 

These conditions are true for t E [0, t*) but one of them fails at t*. If (Al') fails, then 
0 appears on the boundary of conv{ al (t*), a2, ..., am }. By Caratheodory's theorem, 0 
is in the relative interior of the convex hull of some of these vectors, including, of course, 
al (t*). Renaming these vectors suitably we get 

(4.1) 0 G relint conv{a(t*), a2, . . .., ak 

where k < n and we assume, further, that a2, .. ., ak are linearly independent. 
If (A2') fails at t*, then 0 is in the convex hull of some n or fewer of the rows of 

A(t*). We conclude again, that (4.1) holds with k - n and a2, .., ak linearly 
independent. 

CLAIM 3. There are n + 1 - k rows of A(t) which we can take to be ak+1, . . . an+ 
so that for all t C [O, t*) 

(4.2) 0 E int conv{al(t), a2,..., an+}. 

Again, we show first how Lemma 1 follows from here. Claim 3 and (Al') imply that 
the cone 

C(t) = {x E Rn : a,(t)x < O, a2x < 0, ..., anX < 0} 

is simplicial and nonempty. Then 

min{an+lz:zE C (t) n Z"} 

is reached at some h(t) E C(t) n Zn. Since h(t) is a neighbor for the matrix [a, (t), a2, 
..., an+1]T, it is a neighbor for A(t) as well. By Claim 2, h(t) E N(A). As N(A) is 
finite, there is a sequence t, - t* (as [ -- oo) so that h(t,) = h E N(A) for all ,. Thus 
al(t*)h < 0, a2h < 0, ..., akh < 0 showing that the hyperplane {x: hx = 0} strictly 
separates 0 from {al(t*), a2, ..., a }. This contradicts (4.1) and finishes the proof of 
Lemma 1. 0 

The proof of Claim 3 is technical but rather straightforward: We are going to find ak+l, 
.... an+l by projecting along the subspace L = lin{a2, .. ., ak } = lin{a, (t*), a2,..., 
ak }. Let x denote the orthogonal projection of x E R" onto L-, the orthogonal complement 
of L. Set Q(t) = conv{a (t), k+,, ... .., am}. (Al) implies 

O E relint Q(t) for t E [0, t*). 

The halfline {-Xa-i(t) : X _ 0} intersects the boundary of Q(t) (which is a convex 
polytope in L') at -X(t)ai(t). This point belongs to a facet F(t) of Q(t). Since al(t) 
is not on this facet and since da (t) changes linearly with t, F(t) is constant on an interval 
[t', t*). By Caratheodory's theorem there are linearly independent vertices of F(t), which 
we take to be 41k+, . . , p, such - (t)l (t) E conv{k+, . . ., ap} implying 
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p 

(4.3) -al(t)= I ai(t)a; 
i=k+ 1 

with ai (t) continuous on [t', t* ], positive on [t', t*), and 0 at t*. The linear independence 
of kl, ..., a'p shows p - n + 1. 

Lifting (4.3) back to R" we get 

p 

-al(t) = 1(t) + ai,(t)a, 
k+l 

where l(t) E L so that l(t) = 5k ai (t)a, with uniquely determined and continuous (since 
l(t) is continuous) coefficients a i(t). We then have 

p 

(4.4) 0 = al(t) + ai (t)ai. 
2 

Here ai (t) > O for i > k, and a (t) > 0 for i = 2, ..., k on [t", t*) as well since a, (t*) 
> 0 as follows from (4.1). 

(4.4) shows 0 E relint conv({al(t) ..., ap} when t E [t", t*). By (A2')p = n + 1 
and 0 E int conv{al(t), ..., ap+ }. By (A2'), again, this holds for all t E [0, t*). D 

5. Few generators. From now on we work with the 4 x 3 case. The arguments of 
the next two sections provide a proof of Theorem 2. 

Shallcross (1992) has given a complete characterization of the neighbors in this case. 
Although we do not use this characterization explicitly, it provides considerable insight. 
Claims 1 and 2 below can be found in Shallcross (1992) as well. 

With a slight change of notation let ao, a,, a2, a3 be the rows of A. We assume again 
that A is generic. Define H?, H+, H- as the set of x E R3 with aix = 0, >0, <0 
respectively. 

We are interested in the neighbors N = {h E N(A) : aoh <0 }. They lie in cones of 
the type Ho n H- n H f n H3 which we denote by C12: the index shows which of the 
Hi go with + superscript. By condition (Al) Ho n H- n H2 n H3 = 0. So the cones 
in question are Cl, C2, C3, C12, C23, C31, and C123. 

Observe that the cones C1, C2, C3, and C123 contain exactly one neighbor, to be denoted 
by si, s2, s3, and so, respectively. To see this note that, for instance s2 is the unique solution 
to the integer program 

min{a2x : aix < 0, i = 0, 1, 3, x E 23}. 

Since multiplying at by a positive number does not change the neighbors we may assume 
that aoso = -1 and aisi = 1 (i = 1, 2, 3). Set 

Q= {xER3 : laixl - 1, i 0, 1, 2,3}. 

CLAIM 1. N(A) C Q. 

PROOF. Assume h E N(A) but h Xk Q, aoh > 1, say. As h is a neighbor, there is no 
integer other than 0 and h satisfying aix -s max {aih, 0} for all i. But -so satisfies all 
these inequalities since ao( -s) = 1 < aoh and ai (-so) < 0 when i = 1, 2, 3. D 

Recall now the definition of C = pos N and write D = C U (-C). We know from 
Theorem 1 that ao can be moved without changing N(A) as long as Ho does not meet C. 
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CLAIM 2. Q\D contains no lattice point. 

PROOF. Assume to the contrary that there is a point z E z3 n Q\D. Move ao along 
ao(t) = ao + ta until Ho(t) passes through the first such lattice point z. This happens at 
t = to, say. Since z is not a neighbor, it is in one of the cones C12, C23, or C31, say C12. 
But as Ho(t) passes through z, it will be in the cone Ho(t) n Ht n Hj n H3, which 
contains the unique neighbor -53. So z = -S3, a contradiction. D 

CLAIM 3. If u and v are generators of C, then u - v a Q. 

PROOF. If u - v E Q then, by Claim 2, u - v is either in C or in -C. Assuming u 
- v E C, u E v + C, so u = v + c for some c E C. But then u is not a generator of C. 

D 
Now if u, v E C n Q belong to the same cone C12, C23, or C31, then automatically u 

- v E Q. This shows that C can have at most seven generators, one in each of the cones 
Ci, Cij, C123. The trivial observation so E pos {sl, S2, s3 implies that C has at most six 
generators. The next claim takes this number down to four. 

CLAIM 4. If SI and 52 are generators of C, then C has no generator in C12. 

PROOF. Assume h E N n C12 is such a generator. We will show that ai(s, + s2) 
c max {aih, 0 } for i = 0, 1, 2, 3 contradicting h E N. First, for i = 0 or i = 3 

ai(sl + s2) < 0 = max{aih, 0}. 

By Claim 3, sl - h i Q. Now a3(s1 - h) < 1 clearly, and al(s, - h) = 1 - alh E (0, 
1) since h E Q. Further, a0 can be moved without changing N so that Ho almost contains 
sl and h. This follows from Theorem 2 and the fact that sl and h are consecutive generators 
of C. Then ao(sl - h) is between -1 and 1. Consequently, a2(s1 - h) < -1. So we get 
a2(s1 + S2 - h) = a2s2 + a2(si - h) < O, i.e., 

a2(s1 + 52) < a2h = max{a2h, 0}. 

One proves al(sl + s2) < alh = max{alh, 0} the same way. ] 

h23 h23 

H1 

h23 

FIGURE 1. 
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The figure presents the remaining six cases in the plane aox = -1; the three lines are 
the traces of the planes Hl, H2, H3. 

6. The structure of the generators. 

CLAIM 1. If u, v are generators of C, then u, v form a basis of the lattice Z3 

n lin{u, v}. 

PROOF. By Claim 2 of the previous section there is no integer in the triangle [0, u, 
-v] other than its vertices. Consequently [0, u, -v, u - v] is a lattice parallelogram. D 

Here and in what follows we write [a, b, c, d] for the convex hull of a, b, c, d E R3. 
We say that [a, b, c, d] is special if it contains no lattice point other than a, b, c, d. The 
notation and terminology are extended to triangles and segments as well. 

CLAIM 2. If u, v, w are consecutive generators of C, then [0, u, v, -w] and [0, -u, 
v, w] are special simplices. 

PROOF. This is true because of the previous claim and because the simplices in ques- 
tion are contained in Q\D. D 

LEMMA 2. If O, a, b, c E 3 are not coplanar and the simplices [0, a, a + b, a + c] 
and [0, c, a + c, b + c] are special, then so are [a + b + c, b + c, c, b], [a + b + c, 
a + b, b, a]. Moreover, all lattice points in T = {aa + pb + yc : 0 < a, 3, y < 1} are 
of the form a(a + c) + fb for some a, fi E (0, 1). 

PROOF. The first statement follows simply by reflection through '(a + b + c). The 
second needs more meditation. 

Obviously, a and c generate the lattice z3 n lin { a, c }. Then we can pick z E T n z3 
so that a, c, z form a basis of Z3 . Thus 

b = hla + X2c + X3Z 

with X, an integer. In fact X3 > 1 since X3 = 1 would mean that a, b, c form a basis of 
Z3 and then Z3 n int T = 0. Since z E T and X3Z = b - Xla - X2c, X1 < 0 and X2 < 0. 

Clearly z E pos {a, b, c} and the conditions concerning special simplices imply z 
E pos{a + b, b + c, c + a, b}. This cone is the union of pos{a + b, b + c, b} and 
pos{a + b, b + c, c + a}. 

If z E pos{a + b, b + c, b, then we have, with i > 0, 

X3z = /l(a + b) + /12(b + c) + /3b 

= (/1 + /12 + /13)b + lala + Yi2c = b - Xla - X2c. 

So pi = -Xi (i = 1, 2) are positive integers and pl + /2 + Y3 = 1 with /3 > 0 which is 

impossible. 
Therefore we have z E pos {a + b, b + c, c + a}, and again with positive /, 

X3Z = b - X\a - X2c = lj(a + b) + t12(b + c) + /3(c + a). 

The solution is ,/i = ?(1 - Xi + X2) and /2 = ( 1 + hi - .2) which is possible with 

positive tpi and integer hi if and only if X, = X2. This proves the lemma. O 
We return now to the proof of Theorem 3. Write G for the set of generators of C. If 

a, b, c are consecutive generators of C, then [0, a, b, -c] and [0, -a, b, c] are special 
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(by Claim 2). Then so are [c, a + c, b + c, 0] and [a, 0, a + b, a + c] (by translation) 
and Lemma 3 applies. 

Consider first the case G I = 3. Then a, b, c are consecutive generators in every order 
and, by Lemma 3, each integer in T is of the form a(a + b + c). So we have 

COROLLARY. If C has three generators a, b, c with Idet(a, b, c) = h > 1, then T 
n Z3 = {k(a + b + c)/X fork 1, ..., X - 1}. 

We are to check the first four cases of the figure separately. 

CASE 1. G = {s, s2, S3}. If sI + s2 t Q, then a3(s, + S2) < -1 must hold since 
aosl and aos2 can be taken almost equal to zero. So if sl + s2 3 Q then a3(sl + s2 + 53) 

< 0. Similarly, 52 + s3 t Q and s3 + sI 5 Q, respectively, imply al(sl + s2 + s3) < 0 
and a2(sl + 52 + 53) < 0. Since ao(s5 + s2 + 53) < 0 automatically, and ai(sl + s2 + S3) 

< 0 for i = 0, 1, 2, 3 contradicts (Al) we must have either sl + s2 E Q or s2 + s3 c Q 
or S3 + Si E Q. Assume, say, sl + s2 E Q. Then the interior of the segment [-s3, si + s2] 
lies in Q\D so the segment is special. But then S3 + [-s3, s5 + S2] = [0, S1 + s2 + S3], 
is also special and the corollary implies det(sl, S2, 53) = +1. 

CASE 2. G = {S1, 52, h23}. Then sl + h23 C Q and the segment [-S2, S1 + h23] 
E Q\D. The same argument as above shows that det(s,, s2, h23) = -1. 

CASE 3. G = {SI, h12, h23 }. Again sl + h23 C Q and the segment [-h12, sl + h23] 
Q \D, and we repeat the above argument. 

CASE 4. G = {hl2, h23, h31 }. We are done again if h12 + h23 E Q. If none of h12 
+ h23, h23 + h31, and h3l + h12 is in Q, then h12 + h23 + h31 E C123 as one can easily 
check. Let z = (h12 + h23 + h31)/X be the first integral point on the diagonal of T, 
where, of course, EC Z and assume X - 2. Then 

1 = laosol laozl = - lao(h12 + h23 + h3l)l. 

But since ao can be moved so that aohl2 and aoh31 are almost zero, we get 

1 1 1 
1 Iaoh231 I -aoso0 = - 

Assume now that C has four generators a, b, c, d in this order. The relative interiors 
of the cones pos {a, c } and pos {b, d } intersect so we have 

aa + yc = pb + 6d 

with a, /, y, 6 > 0 and we may assume, by multiplying if necessary, that the smallest 
coefficient is equal to one. 

We show first that either a = y or /3 = 6. By symmetry we may assume that / is 
maximal among a, /, y, 6. Either 3 = 6 and we are done or /3 > 6 and we get 

(6.5) b+d=( I 
- b)b A + c 

and this point is in T since all the coefficients on the right hand side are between 0 and 
1. So Lemma 3 shows that a = y. 

Claim 2 applies to a, b, c and b, c, d and c, d, a and d, a, b showing that [0, a, b, 
-c], [0, b, -c, -d], and [0, -c, -d, a] [0, -d, a, b] are special. This implies that 
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their union, [0, a, b, - c, - d] is also special which imposes a restriction. Namely, by a 
theorem in Scarf (1986), these five points must lie on two consecutive lattice hyperplanes, 
H1, H2, say. If four of them lie in one of the hyperplanes, then they have to be a, b, - c, 
- d as otherwise three of the generators would lie in a hyperplane through the origin. But 
then a, b, c, d are the vertices of a (special) parallelogram and they clearly form the 
Hilbert basis of C. We may assume now that the split is two-three and 0 E H1. By 
symmetry it is enough to consider three cases. 

CASE 1. 0, a, b E H1 and -c, -d E H2. Then a, b generate z3 n lin{a, b}. 
Consequently a, b, c and a, b, d form a basis of 73. Further, lin{a, b } contains c - d. 
So c - d = xa + yb with integer x and y. This gives c + (-x)a = yb + d but this is the 
same (apart from a multiplier) as the linear dependence (6.1) where, as we just proved, 
either a = y or p = 6. Soeitherx = -1 and y > 0ory = 1 andx < 0. 

In the first case a + c = yb + d, and therefore det(a, b, d) = det(b, c, d). So both 
a, b, d and b, c, d form a basis of Z3 and then they are the Hilbert bases of the cones 
pos{a, b, d} and pos{b, c, d}, respectively, whose union is C. In the second case c 
+ (-x) a = b + d and the same argument works. 

CASE 2. 0, a, -c E HI and b, -d E H2. Then a, -c generate Z3 n lin{a, -c}. 
Consequently a, b, c and a, c, d form a basis of 23. Then they are the Hilbert bases of 
the cones pos {a, b, c } and pos {a, c, d }, respectively, whose union is C. 

CASE 3. 0, a E H1 and b, -c, -d E H2. Then b, -c, -d, and consequently b, c, 
d, form a basis of Z3. Moreover, b + c, b + d form a basis of Z3 n H1 so a = x(b + c) 
+ y(b + d) with integral x and y. Then a + (-x)c = (x + y)b + yd which is the same 
(apart from a multiplyer) as (6.1). But a = y or , = 6 holds as well. That is possible 
only if x = -1. Then det(a, b, d) = det(b, c, d) and, again, a, b, d and b, c, d form a 
basis of the lattice, and they are the Hilbert bases of pos {a, b, d} and pos{b, c, d}, 
respectively, whose union is C. D 
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