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ABSTRACT

Bounds are given for supinfl|S?”. ,v,ll, where sup is taken over all set systems
Vi.....V, of R* with 0€ M¥_ convV, and sup, . lvl|<1 for i=1,...,p, and inf is

taken over all possible choices v; €V, for i=1,...,p. Another similar problem is
considered. The bounds are sharp.

1. INTRODUCTION

In this paper we are concerned with the following question. Let a norm of
R"™ be given with unit ball B". Suppose C;, CB" and O€conv ; for iE[p]
(here and throughout the paper we write [p] for the set {1,..., p}). Ques-
tions: Are there elements ¢; €C; (i€[p]) such that ||Z0¢; || is less than a
constant depending only on n and the norm (and not depending on p and the
sequence C;)? Are there elements ¢; €C; (i €[p]) such that max ., 127_ ¢l
is less than a constant depending only on n and the norm? How large are
these constants?

These questions came from other questions and facts. In 1963 Dvoretzky
(3] asked what maxminl|=x, ==x, & - -- ==x_[| equals, where max is taken
over all p-tuples {x,,..., x,} of the unit sphere of R" and min is taken over all
possible signs, Taking max over all p-tuples of B" and putting C, = {x,, —x,}
(i €[ p]), we get a special case of our question. In 1976 Spencer [5] considered
several “balancing games.” In one of his games the first player picks a
sequence xy, Xy,... from B", and then the second player picks ¢, =1 or —1
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(i=1,2,...) 50 as to minimize sup, .., 129 1 g;x,;Il. Spencer showed that this
supremum is less than a constant depending only on n and the norm. Our
second theorem will generalize and sharpen Spencer’s result. We remark that
our theorems have interesting applications to some problems in the theory of
planning.

A few results of this paper cover some theorems of [1]. However the
results here are stronger and the proof method of this paper is different. The
idea of using the theory of linear inequalities comes from S. V. Sevast'yanov
(4], who proved the Steinitz lemma with the help of this theory.

2. MAIN RESULTS

As we shall see, our theorems hold not only for norms but for “symmetric
and /or non-symmetric seminorms’ as well. A nonsymmetric seminorm is a
map h: R" — R! such that

() hix+y)<sh(x)+h(y) (x,yER"),
(i) Max)=ah(x) (xER" a=0).

A symmetric seminorm satisfies (1) and, further,
(iii) h(ax)=|a|h(x) (xER", a €R").
We write B* = {x€R": h(x)=<1)}.

TueoreMm 1. Let h be a nonsymmetric seminorm. Suppose that C; CB”"
and 0€conv C, (i €[ p)). Then there exists ¢, €C, (i €[p]) such that h(Z¥. ¢;)
=n.

This theorem can be expressed in the following way. Put

»
E(n, h)=supinf h( > e ),

i—1

where sup is taken over all sequences of sets C; CB" with 0 Econv C, (i E][p])
and inf is taken over all choices ¢; €C, (i €[p]). Then the theorem states that
E(n, h)<n for every nonsymmetric seminorm A. Theorem 1 is sharp in the
sense that with the I, norm, E(n, |l 1I;)=n. To see this consider C; = {¢;, —¢;}
(i€[n]), where ¢, is the ith basic vector of R". Then, clearly, for any choice
¢, €C; one has |12} ¢, 11, =n.

To prove the theorem we need a lemma. This lemma is a generalization of
the well-known theorem of Carathéodory [2]. We write pos C (linC) for the
cone (linear) hull of CCR".
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Lemma 1. Suppose U,V. CR" (i€]k]), U consists of linearly indepen-
dent vectors, and v €linU+ posV, for i €[k]. Assume further, that |U|+k=n.
Then there exist vectors v, €V, for i €[ k] such that v €linU+pos{vy,..., v,}.

Proof. For any choice vy,..., v, with v, €V, (i E[k]) put d(v,,..., v,)=
min{/lo—xll: x€linU+pos{v,,..., v, }}, where || || stands for the Euclidean
norm. By Carathéodory’s theorem we may suppose that each V; is finite. Then
there exists a choice vy,..., v, for which d=d(v,,...,v;) is minimal. We
claim that d=0. This will prove the lemma.

Suppose, on the contrary, that d>>0. Then there exists a (unique) z€1linU
+pos{v,,..., v} =D with d=|lv—2z]l; this z is the projection of the point v
onto the convex cone D. Thus putting w=v -2z, the hyperplane {(w,x}) =0
separates v and D, ie., (w,0) >0, (w,z) =0, (w,u) =0 for u€U, and
(w, v,y =<0 for icfk].

Clearly z can be expressed as z=u-+25_,v,v,, where u €linU and v; >0;
moreover, this representation can be chosen so that y,=0 for some jE&[k].
This is true either because D is n-dimensional, and consequently the minimum
of lv—x|l for x& D is attained on the boundary of D, or because D lies in a
hyperplane, and then any point of D can be expressed with some ¥y, =0.
Suppose, without loss of generality, that y, =0. Now v €linU~+ pos V, implies
that there is a ©{€ V| such that (w, v}) >0.

Now we prove that d(v7], vy,..., v)<<d. Indeed, for t€[0,1], z+#(v] —z)
€linU~+pos{v}, vy,..., v}, and

dz(v’l,02,,..,vk)éllv~[z+t(0’l-:)]l|2
=ll(v—z)—t{vy—=)lI?
=d?—2t(w, v} —z) +t*v] —z)2,

and this is less than d® if >0 is sufficiently small, because (w,v;—z) =
(w, v}) >0. n

Proof of Theorem I. We suppose again that every C, is finite. Consider
the following optimization problem:

P
maximize E Yi
i=1
subject to 0=y, <1, ie[p],
0, €C,, i€[pl,
p
2 v =0,

i=1
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The maximum is clearly attained for some system ¥, (i €[ p]) with ¢,€C,. We
choose this system so that A, ={i:0<<¥, <1} will be minimal. Put further
={i:¥,=1} and A, ={i: y,=0}.

First we claim that the vectors ¢; (i€A,,) are linearly independent.
Suppose they are not; then X, 4 a;¢; =0 and X, a; =0 (say) for some (not
all zero) numbers «,. Put a; =0 for i€A, and v, =7, +ta,. Choosing here
t>0 appropriately (i.e. so that vy, €[0,1] for each i€ [p], and v, =0 or 1 for
some i €A, ), we have a system with 20y,¢;, =0, 0<y, <1, and Vv, =3Py,
but with a smaller set Ay, = {i:0<<y, <<1}.

If cER" we write (¢;1) for the vector in R"*! whose jth component

equals that of ¢ for j&€[n] and 1 for j=n+1. If CCR" we use (C:1) as a
shorthand for the set { e 1) ceCl.
Ay UA[<n. Suppose, on the contrary, that
AmUAOl>n+l then because of |Ag [<n, there is a set ACA, with
[Ag UA|=n+1 Put U={(¢;;1):{€A,} and V,=(C;; 1) for iEA. Now we
can apply the lemma (even if A,, = &) with v =(0; 1), because

(0:1)EposV, ClinU+posV, foreach i€A

Ay UA|=n+1. This yields coefficients B, for i€A,, UA with 8, =0 if
€A, dlld vectors ¢, EC; (i€A) such that

S B+ S Ble:1)=(0:1).

iEAy, ieA

Put now B, =0if igAUA,, and ¢; =¢, if i€A. Then for some small (>0,
v, =7, + B, satisties

0<y,

1

P
<l and 3 v =0,
i=1

but 2y, =2, +t>2}7 a contradiction

So |[Ay UA
= =p-—n.

Now we prove that ¢; €C, is the choice whose existence is claimed in the
theorem. Indeed,

A|=p—n. This implies that EV¥,

and
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For symmetric seminorms we can weaken the assumptions of Theorem 1.
For A, BCR"put A+B={a+h:a€A, hEB}.

TuEOREM 2. Let h be a symmetric seminorm, and suppose that C, CB"
for i€[p) and 0€EP_ conv C,. Then there exist vectors c; €C; (i €[ p)) such
that

Proof. The condition means that the system with unknowns «,(x) given

by

Z 2 a;(x)x=0,

i=1xe(

gl

2 a(x)=1 for ic€|p],
xeC;

al{x)=0 for i€lp], rEC,
has at least ane solution, so that the solution set of this system is nonempty
and, of course, convex compact. Take any extreme point &{x) and put
a;,=|{x€C: a(x)>0}[. (Again we suppose that each C, is finite.) It is
evident that the number of slack inequalities in this point, Z¥_,a;, is at most
n+p, and a; =1 (i€[p]). Now let ¢; be any element of C, for which
a,(c)=max{a(x): x€C} (i€]p]). Clearly a(c¢,)=1/a,. Now

i:ﬁl i ﬁl ( o

P=

1

DRI

xe(,

I

2 ([1_61‘(01‘)]":‘” 2 C_‘,'(x)x),
i=1 rEC,

so using the inequality 1—1/a, <(a,—1)/2, which is true for ¢, =1,2,...,
we get

h(épj)gﬁl([l-a,.(c,)p » Zx‘,.(x)):2§ [1-&(c)]

i= x€EC i=1
XFE
P 1 P
<22(1~Z—)<2(a,.—1)<n. |
i=1 i i=1
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We have seen that for the /|, norm of R", E(n,|| 1I,)=n. This, of course,
does not mean that one cannot do better for other norms. For instance, for
the Fuclidean norm we have E(n, |l [;)=vn, this lower bound being reached
here when p=n and C, ={e¢,, —¢;} (i€[n)). V. V. Grinberg has informed us
that he has proved E(n,ll |l3)<vn (unpublished). From the point of view of
applications it would be interesting to know more about E(n, I |l ).

We finish this section with open questions. Suppose we are given another
seminorm A’ of R”, and further, that the unit balls of both seminorms h and '
are compact. Put

e
E(n,h, h’):supinfh’( > }
i1

where sup and inf are taken over the same sets as in the definition of E(n, h).
Clearly

E(n,h,h)<E(n, h)sup{h'(x): x€B"},

but we think that in general one can do better. In connection with this there
is a striking question due to J. Komlés (private communication). He asks
whether there is a universal constant ¢, such that for any n and p and any set
of vectors {x,,...,x,} CR" with lix;ll; <1 (i€[p]), one can find signs
£y,-.-5 &, = 1 such that |Z7_ e,x Il <c.

3. A VARIANT PROBLEM

In this section we shall prove the following theorem.

TueorEM 3. Let h be a symmetric seminorm of R" with unit ball B".
Suppose C, CB" and 0&convC, for i=1,2,.... Then there exist elements
¢ €C (i=1,2,...) such that

P
h( Zq)<2n for p=12,....
i=1

We need the following simple lemma.

LemMa 2. Suppose v €37 'convV,, where V;, CR" for i€[n-+1]. Then

there exist an index j€[n+1] and element v;€V, such that v&convV,
+ - +convV_ +u +eonvV + - +eonvV, .
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Proof of the lemma. The solution set of the system with unknowns a;(x)
(i€[n+1], xEV)

n+1

2 2 afx)x=0,

i=1 xe(,

> oa(x)=1 for i€[n+1],

a(x)=0 for i€[n+1], x€V,

is convex, compact, and, in view of the assumption, nonempty. Then at the
extreme point a,(x) at most 2n+1 inequalities are strict. In each V] there is at
least one element v €V, with &,(v)>>0. This implies that for some jE[n+1]
and v,€V,, a,(v;)=1, and then, of course, a;(v)=0 if vEV,\{v;}. This
proves the lemma.

Proof of Theorem 3. First we shall construct a sequence A, CA, CA,
C .-+ with A;C[j+n] and |A;|=j, and choose an element c;EC; for each
i€ UX A, such that putting B, =[j+n]\ A,

oe Y ¢+ Y conv C,. (*)

€A, B,

This is done by induction on j.

j=0. Put A; 5= @; then B, =[n] and (*) is fulfilled.
j—i+ 1. Write D=B,U{j+n+1}. In view of (*) and the assumption of
the theorem we have

- > € Y conv(,

ieA; ieD

and |Dj=n+1. Thus by the lemma there is an index i,€D and an element
¢; EGC,;, such that

- ¢ Ec;, + > convC,.
i€A, i€D\ {ip)

Putting A; | =A; U {4,}, we are through: ¢, is just the element needed.
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Now the sequence whose existence is claimed in the theorem is “almost”
defined, for there are at most n natural numbers not belonging to U,i“A,..
For these indices i let ¢; be an arbitrary element of C,. Let us put p=j+n:
then

})
z“i: 2 ot 2 Ci»
il

A, i¢ B

and by (*) Z,c4 ¢, € = Z,zp conv . But ¢; €B" and —conv C, CB" for i€ B,
= A, B
and | B;|=n, whence

P
See X e+ 2 —convC C2nB"
i—1 ieB, ie B

If p<<n, then A(Z"_ c,)<p<n. |

Again, Theorem 3 can be expressed as F(n, h)<<2n where F(n, h)=
supinfsup, -, 5 h(2F. ¢;); here the first sup is taken over all sequences
C,CB", 0econv(C,; (i=1,2,...), and inf is taken over all choices ¢,€C,
(i=1,2,...). With some additional effort we can prove here F(n, h)<<2n—1.
On the other hand the best lower bound known to the authors is n<
F(n,ll Il). This lower bound is reached by the same construction as in
Theorem 1.

Finally we present an example showing that F(2, ) [and so F(n, h)] is
not bounded in general when h is nonsymmetric. To this end let h(x, y)=
max{0, —x, —y) for (x.y)ER? be the nonsymmetric seminorm, and put
C,=la, b}, where ¢, =(— 12"y and b, =27, —1) for i=1,2,.... Clearly
h(a,)=h(h;)=1 and OEconv C,. In this case h(ZV_,c;) tends to infinity as
p— oo for any choice ¢; €C,. Indeed, if ¢; =a, for infinitely many indices i.
then the first component of 27_ ¢, tends to —sc, and if ¢; =« for finitely
many times only, then the second component of the sum tends to — .

From this example it is not difficult to show that for any N>>0 there exist
a nonsymmetric seminorm h of R* with compact unit ball B and sets C; CB
for i €[ p] with 0 € conv C; such that for any choice ¢; €C; (i €[ p]),

k
max Iz( > q)z\‘,
i-1

1<k=p
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