On Some Combinatorial Questions in Finite-Dimensional Spaces

I. Bárány Mathematical Institute of the Hungarian Academy of Sciences 1053 Budapest, Reáltanoda u. 13-15, Hungary

and

V. S. Grinberg Arm'anskij per. 1/3 kv. 9 310003 Kharkov, U.S.S.R.

Submitted by Richard A. Brualdi

ABSTRACT

Bounds are given for $\sup \inf \|\sum_{i=1}^{p} v_i\|$, where \sup is taken over all set systems V_1, \ldots, V_p of \mathbb{R}^n with $0 \in \bigcap_{i=1}^{p} \operatorname{conv} V_i$ and $\sup_{v \in V_i} \|v\| \leq 1$ for $i=1,\ldots,p$, and inf is taken over all possible choices $v_i \in V_i$ for $i=1,\ldots,p$. Another similar problem is considered. The bounds are sharp.

1. INTRODUCTION

In this paper we are concerned with the following question. Let a norm of \mathbb{R}^n be given with unit ball \mathbb{B}^n . Suppose $C_i \subseteq \mathbb{B}^n$ and $0 \in \operatorname{conv} C_i$ for $i \in [p]$ (here and throughout the paper we write [p] for the set $\{1, \ldots, p\}$). Questions: Are there elements $c_i \in C_i$ $(i \in [p])$ such that $\|\sum_{i=1}^{p} c_i\|$ is less than a constant depending only on n and the norm (and not depending on p and the sequence C_i)? Are there elements $c_i \in C_i$ $(i \in [p])$ such that $\max_{q \in [p]} \|\sum_{i=1}^{q} c_i\|$ is less than a constant depending only on n and the norm? How large are these constants?

These questions came from other questions and facts. In 1963 Dvoretzky [3] asked what $\max \min || \pm x_1 \pm x_2 \pm \cdots \pm x_p||$ equals, where max is taken over all *p*-tuples $\{x_1, \ldots, x_p\}$ of the unit sphere of \mathbb{R}^n and min is taken over all possible signs. Taking max over all *p*-tuples of \mathbb{B}^n and putting $C_i = \{x_i, -x_i\}$ $(i \in [p])$, we get a special case of our question. In 1976 Spencer [5] considered several "balancing games." In one of his games the first player picks a sequence x_1, x_2, \ldots from \mathbb{B}^n , and then the second player picks $\varepsilon_i = 1$ or -1

LINEAR ALGEBRA AND ITS APPLICATIONS 41:1-9 (1981)

© Elsevier North Holland, Inc., 1981

52 Vanderbilt Ave., New York, NY 10017

(i=1,2,...) so as to minimize $\sup_{q=1,...} \|\Sigma_{i=1}^q \varepsilon_i x_i\|$. Spencer showed that this supremum is less than a constant depending only on *n* and the norm. Our second theorem will generalize and sharpen Spencer's result. We remark that our theorems have interesting applications to some problems in the theory of planning.

A few results of this paper cover some theorems of [1]. However the results here are stronger and the proof method of this paper is different. The idea of using the theory of linear inequalities comes from S. V. Sevast'yanov [4], who proved the Steinitz lemma with the help of this theory.

2. MAIN RESULTS

As we shall see, our theorems hold not only for norms but for "symmetric and/or non-symmetric seminorms" as well. A nonsymmetric seminorm is a map $h: \mathbb{R}^n \to \mathbb{R}^1$ such that

- (i) $h(x+y) \le h(x) + h(y) (x, y \in \mathbb{R}^n)$,
- (ii) $h(\alpha x) = \alpha h(x)$ ($x \in \mathbb{R}^n$; $\alpha \ge 0$).

A symmetric seminorm satisfies (i) and, further,

(iii) $h(\alpha x) = |\alpha| h(x)$ ($x \in \mathbb{R}^n, \alpha \in \mathbb{R}^1$).

We write $B^n = \{x \in \mathbb{R}^n : h(x) \leq 1\}$.

THEOREM 1. Let *h* be a nonsymmetric seminorm. Suppose that $C_i \subseteq B^n$ and $0 \in \operatorname{conv} C_i$ $(i \in [p])$. Then there exists $c_i \in C_i$ $(i \in [p])$ such that $h(\Sigma_{i=1}^p c_i) \leq n$.

This theorem can be expressed in the following way. Put

$$E(n,h) = \operatorname{supinf} h\left(\sum_{i=1}^{p} c_{i}\right),$$

where sup is taken over all sequences of sets $C_i \subseteq B^n$ with $0 \in \operatorname{conv} C_i$ $(i \in [p])$ and inf is taken over all choices $c_i \in C_i$ $(i \in [p])$. Then the theorem states that $E(n, h) \leq n$ for every nonsymmetric seminorm h. Theorem 1 is sharp in the sense that with the l_1 norm, $E(n, \| \cdot \|_1) = n$. To see this consider $C_i = \{e_i, -e_i\}$ $(i \in [n])$, where e_i is the *i*th basic vector of R^n . Then, clearly, for any choice $c_i \in C_i$ one has $\|\sum_{i=1}^n c_i\|_1 = n$.

To prove the theorem we need a lemma. This lemma is a generalization of the well-known theorem of Carathéodory [2]. We write pos C (lin *C*) for the cone (linear) hull of $C \subset \mathbb{R}^n$.

LEMMA 1. Suppose $U, V_i \subset \mathbb{R}^n$ $(i \in [k])$, U consists of linearly independent vectors, and $v \in \lim U + \operatorname{pos} V_i$ for $i \in [k]$. Assume further, that |U| + k = n. Then there exist vectors $v_i \in V_i$ for $i \in [k]$ such that $v \in \lim U + \operatorname{pos} \{v_1, \dots, v_k\}$.

Proof. For any choice v_1, \ldots, v_k with $v_i \in V_i$ $(i \in [k])$ put $d(v_1, \ldots, v_k) = \min\{||v-x||: x \in \lim U + pos\{v_1, \ldots, v_k\}\}$, where || || stands for the Euclidean norm. By Carathéodory's theorem we may suppose that each V_i is finite. Then there exists a choice v_1, \ldots, v_k for which $d = d(v_1, \ldots, v_k)$ is minimal. We claim that d=0. This will prove the lemma.

Suppose, on the contrary, that d>0. Then there exists a (unique) $z \in \lim U + pos\{v_1, \ldots, v_k\} = D$ with d = ||v-z||; this z is the projection of the point v onto the convex cone D. Thus putting w=v-z, the hyperplane $\langle w, x \rangle = 0$ separates v and D, i.e., $\langle w, v \rangle > 0$, $\langle w, z \rangle = 0$, $\langle w, u \rangle = 0$ for $u \in U$, and $\langle w, v_i \rangle \leq 0$ for $i \in [k]$.

Clearly z can be expressed as $z=u+\sum_{i=1}^{k}\gamma_i v_i$, where $u \in \lim U$ and $\gamma_i \ge 0$; moreover, this representation can be chosen so that $\gamma_i = 0$ for some $j \in [k]$. This is true either because D is *n*-dimensional, and consequently the minimum of ||v-x|| for $x \in D$ is attained on the boundary of D, or because D lies in a hyperplane, and then any point of D can be expressed with some $\gamma_i = 0$. Suppose, without loss of generality, that $\gamma_1 = 0$. Now $v \in \lim U + \text{pos } V_1$ implies that there is a $v'_1 \in V_1$ such that $\langle w, v'_1 \rangle > 0$.

Now we prove that $d(v'_1, v_2, ..., v_k) < d$. Indeed, for $t \in [0, 1]$, $z + t(v'_1 - z) \in \lim U + pos\{v'_1, v_2, ..., v_k\}$, and

$$d^{2}(v'_{1}, v_{2}, ..., v_{k}) \leq ||v - [z + t(v'_{1} - z)]||^{2}$$

= $||(v - z) - t(v'_{1} - z)||^{2}$
= $d^{2} - 2t\langle w, v'_{1} - z \rangle + t^{2} ||v'_{1} - z||^{2}$,

and this is less than d^2 if t>0 is sufficiently small, because $\langle w, v'_1 - z \rangle = \langle w, v'_1 \rangle > 0$.

Proof of Theorem 1. We suppose again that every C_i is finite. Consider the following optimization problem:

maximize
$$\sum_{i=1}^{p} \gamma_i$$

subject to $0 \leq \gamma_i \leq 1$, $i \in [p]$,
 $c_i \in C_i$, $i \in [p]$,
 $\sum_{i=1}^{p} \gamma_i c_i = 0$.

The maximum is clearly attained for some system $\overline{\gamma}_i$ $(i \in [p])$ with $\overline{c}_i \in C_i$. We choose this system so that $A_{01} = \{i: 0 < \overline{\gamma}_i < 1\}$ will be minimal. Put further $A_1 = \{i: \overline{\gamma}_i = 1\}$ and $A_0 = \{i: \overline{\gamma}_i = 0\}$.

First we claim that the vectors \bar{c}_i $(i \in A_{01})$ are linearly independent. Suppose they are not; then $\sum_{i \in A_{01}} \alpha_i \bar{c}_i = 0$ and $\sum_{i \in A_{01}} \alpha_i \ge 0$ (say) for some (not all zero) numbers α_i . Put $\alpha_i = 0$ for $i \notin A_{01}$ and $\gamma_i = \bar{\gamma}_i + t\alpha_i$. Choosing here t > 0 appropriately (i.e. so that $\gamma_i \in [0, 1]$ for each $i \in [p]$, and $\gamma_i = 0$ or 1 for some $i \in A_{01}$), we have a system with $\sum_{i=1}^{p} \gamma_i \bar{c}_i = 0$, $0 \le \gamma_i \le 1$, and $\sum_{i=1}^{p} \gamma_i \ge \sum_{i=1}^{p} \bar{\gamma}_i$, but with a smaller set $A'_{01} = \{i: 0 < \gamma_i < 1\}$.

If $c \in \mathbb{R}^n$ we write (c; 1) for the vector in \mathbb{R}^{n+1} whose *j*th component equals that of *c* for $j \in [n]$ and 1 for j=n+1. If $C \subset \mathbb{R}^n$ we use (C; 1) as a shorthand for the set $\{(c; 1): c \in C\}$.

Secondly we claim that $|A_{01} \cup A_0| \leq n$. Suppose, on the contrary, that $|A_{01} \cup A_0| \geq n+1$; then because of $|A_{01}| \leq n$, there is a set $A \subseteq A_0$ with $|A_{01} \cup A| = n+1$. Put $U = \{(\bar{c}_i; 1): i \in A_{01}\}$ and $V_i = (C_i; 1)$ for $i \in A$. Now we can apply the lemma (even if $A_{01} = \emptyset$) with v = (0; 1), because

$$(0;1) \in \operatorname{pos} V_i \subseteq \operatorname{lin} U + \operatorname{pos} V_i$$
 for each $i \in A$

and $|A_{01} \cup A| = n+1$. This yields coefficients β_i for $i \in A_{01} \cup A$ with $\beta_i \ge 0$ if $i \in A$, and vectors $c_i \in C_i$ $(i \in A)$ such that

$$\sum_{i \in A_{01}} \beta_i(\bar{c}_i; 1) + \sum_{i \in A} \beta_i(c_i; 1) = (0; 1).$$

Put now $\beta_i = 0$ if $i \notin A \cup A_{01}$, and $c_i = \bar{c}_i$ if $i \notin A$. Then for some small t > 0, $\gamma_i = \bar{\gamma}_i + t\beta_i$ satisfies

$$0 \leq \gamma_i \leq 1$$
 and $\sum_{i=1}^p \gamma_i c_i = 0$,

but $\Sigma \gamma_i = \Sigma \overline{\gamma}_i + t > \Sigma \overline{\gamma}_i$, a contradiction.

So $|A_{01} \cup A_0| \leq n$, and consequently $|A_1| \geq p-n$. This implies that $\sum_{i=1}^{p} \overline{\gamma}_i \geq p-n$.

Now we prove that $\bar{c}_i \in C_i$ is the choice whose existence is claimed in the theorem. Indeed,

$$\sum_{i=1}^{p} \bar{c}_{i} = \sum_{i=1}^{p} \bar{c}_{i} - \sum_{i=1}^{p} \bar{\gamma}_{i} \bar{c}_{i} = \sum_{i=1}^{p} (1 - \bar{\gamma}_{i}) \bar{c}_{i}$$

and

$$h\left(\sum_{i=1}^{p} \bar{c}_{i}\right) \leq \sum_{i=1}^{p} (1-\bar{\gamma}_{i}) \leq p-(p-n)=n.$$

For symmetric seminorms we can weaken the assumptions of Theorem 1. For $A, B \subseteq \mathbb{R}^n$ put $A + B = \{a+b : a \in A, b \in B\}$.

THEOREM 2. Let h be a symmetric seminorm, and suppose that $C_i \subset B^n$ for $i \in [p]$ and $0 \in \sum_{i=1}^{p} \operatorname{conv} C_i$. Then there exist vectors $c_i \in C_i$ $(i \in [p])$ such that

$$h\!\left(\sum_{i=1}^p c_i\right) \leq n.$$

Proof. The condition means that the system with unknowns $\alpha_i(x)$ given by

$$\sum_{i=1}^{p} \sum_{x \in C_i} \alpha_i(x) = 0,$$

$$\sum_{x \in C_i} \alpha_i(x) = 1 \quad \text{for} \quad i \in [p],$$

$$\alpha_i(x) \ge 0 \quad \text{for} \quad i \in [p], \quad x \in C_i$$

has at least one solution, so that the solution set of this system is nonempty and, of course, convex compact. Take any extreme point $\bar{\alpha}_i(x)$ and put $a_i = |\{x \in C_i : \bar{\alpha}_i(x) > 0\}|$. (Again we suppose that each C_i is finite.) It is evident that the number of slack inequalities in this point, $\sum_{i=1}^{p} a_i$, is at most n+p, and $a_i \ge 1$ ($i \in [p]$). Now let c_i be any element of C_i for which $\bar{\alpha}_i(c_i) = \max\{\bar{\alpha}_i(x) : x \in C_i\}$ ($i \in [p]$). Clearly $\bar{\alpha}_i(c_i) \ge 1/a_i$. Now

$$\sum_{i=1}^{p} c_i = \sum_{i=1}^{p} \left(c_i - \sum_{x \in C_i} \overline{\alpha}_i(x) x \right)$$
$$= \sum_{i=1}^{p} \left(\left[1 - \overline{\alpha}_i(c_i) \right] c_i - \sum_{\substack{x \in C_i \\ x \neq c_i}} \overline{\alpha}_i(x) x \right),$$

so using the inequality $1-1/a_i \leq (a_i-1)/2$, which is true for $a_i = 1, 2, ...$, we get

$$h\left(\sum_{\substack{i=1\\i\neq 1}}^{p} c_{i}\right) \leq \sum_{\substack{i=1\\i\neq i}}^{p} \left(\left[1-\overline{\alpha}_{i}(c_{i})\right]+\sum_{\substack{\substack{x\in C_{i}\\x\neq c_{i}}}} \overline{\alpha}_{i}(x)\right) = 2\sum_{\substack{i=1\\i\neq i}}^{p} \left[1-\overline{\alpha}_{i}(c_{i})\right]$$
$$\leq 2\sum_{\substack{i=1\\i\neq i}}^{p} \left(1-\frac{1}{a_{i}}\right) \leq \sum_{\substack{i=1\\i\neq i}}^{p} (a_{i}-1) \leq n.$$

I. BÁRÁNY AND V. S. GRINBERG

We have seen that for the l_1 norm of \mathbb{R}^n , $E(n, \| \|_1) = n$. This, of course, does not mean that one cannot do better for other norms. For instance, for the Euclidean norm we have $E(n, \| \|_2) \ge \sqrt{n}$, this lower bound being reached here when p = n and $C_i = \{e_i, -e_i\}$ $(i \in [n])$. V. V. Grinberg has informed us that he has proved $E(n, \| \|_2) \le \sqrt{n}$ (unpublished). From the point of view of applications it would be interesting to know more about $E(n, \| \|_{\infty})$.

We finish this section with open questions. Suppose we are given another seminorm h' of \mathbb{R}^n , and further, that the unit balls of both seminorms h and h' are compact. Put

$$E(n, h, h') = \operatorname{supinf} h' \left(\sum_{i=1}^{p} c_i \right).$$

where sup and inf are taken over the same sets as in the definition of E(n, h). Clearly

$$E(n,h,h') \leq E(n,h) \sup\{h'(x) : x \in B^n\},\$$

but we think that in general one can do better. In connection with this there is a striking question due to J. Komlós (private communication). He asks whether there is a universal constant c, such that for any n and p and any set of vectors $\{x_1, \ldots, x_p\} \subset \mathbb{R}^n$ with $||x_i||_2 \leq 1$ $(i \in [p])$, one can find signs $\varepsilon_1, \ldots, \varepsilon_p = 1$ such that $||\sum_{i=1}^p \varepsilon_i x_i||_{\infty} \leq c$.

3. A VARIANT PROBLEM

In this section we shall prove the following theorem.

THEOREM 3. Let h be a symmetric seminorm of \mathbb{R}^n with unit ball \mathbb{B}^n . Suppose $C_i \subset \mathbb{B}^n$ and $0 \in \operatorname{conv} C_i$ for $i=1,2,\ldots$. Then there exist elements $c_i \in C_i$ $(i=1,2,\ldots)$ such that

$$h\left(\sum_{i=1}^{p}c_{i}\right) \leq 2n$$
 for $p=1,2,\ldots$.

We need the following simple lemma.

LEMMA 2. Suppose $v \in \sum_{i=1}^{n+1} \operatorname{conv} V_i$, where $V_i \subset \mathbb{R}^n$ for $i \in [n+1]$. Then there exist an index $j \in [n+1]$ and element $v_j \in V_j$ such that $v \in \operatorname{conv} V_1$ $+ \cdots + \operatorname{conv} V_{i-1} + v_i + \operatorname{conv} V_{i+1} + \cdots + \operatorname{conv} V_{n+1}$.

Proof of the lemma. The solution set of the system with unknowns $\alpha_i(x)$ $(i \in [n+1], x \in V_i)$

$$\sum_{i=1}^{n+1} \sum_{x \in C_i} \alpha_i(x) x = 0,$$

$$\sum_{x \in C_i} \alpha_i(x) = 1 \quad \text{for} \quad i \in [n+1],$$

$$\alpha_i(x) \ge 0 \quad \text{for} \quad i \in [n+1], \quad x \in V_i$$

is convex, compact, and, in view of the assumption, nonempty. Then at the extreme point $\overline{\alpha}_i(x)$ at most 2n+1 inequalities are strict. In each V_i there is at least one element $v \in V_i$ with $\overline{\alpha}_i(v) > 0$. This implies that for some $j \in [n+1]$ and $v_i \in V_i$, $\overline{\alpha}_i(v_i) = 1$, and then, of course, $\overline{\alpha}_i(v) = 0$ if $v \in V_i \setminus \{v_i\}$. This proves the lemma.

Proof of Theorem 3. First we shall construct a sequence $A_0 \subset A_1 \subset A_2 \subset \cdots$ with $A_i \subset [i+n]$ and $|A_i| = i$, and choose an element $c_i \in C_i$ for each $i \in \bigcup_{i=d}^{\infty} A_i$ such that putting $B_i = [i+n] \setminus A_i$,

$$0 \in \sum_{i \in A_j} c_i + \sum_{i \in B_j} \operatorname{conv} C_i.$$
(*)

This is done by induction on *j*.

j=0. Put $A_j \neq \emptyset$; then $B_j = [n]$ and (*) is fulfilled.

 $j \rightarrow j+1$. Write $D = B_j \cup \{j+n+1\}$. In view of (*) and the assumption of the theorem we have

$$-\sum_{i\in A_i}c_i\in \sum_{i\in D}\operatorname{conv} C_i,$$

and |D|=n+1. Thus by the lemma there is an index $i_0 \in D$ and an element $c_{i_0} \in C_{i_0}$ such that

$$-\sum_{i\in A_i}c_i\in c_{i_0}+\sum_{i\in D\setminus\{i_0\}}\operatorname{conv} C_i.$$

Putting $A_{i+1} = A_i \cup \{i_0\}$, we are through: c_{i_0} is just the element needed.

Now the sequence whose existence is claimed in the theorem is "almost" defined, for there are at most n natural numbers not belonging to $\bigcup_{i=0}^{\infty} A_i$. For these indices i let c_i be an arbitrary element of C_i . Let us put p=j+n; then

$$\sum_{i=1}^{p} c_i = \sum_{i \in A_i} c_i + \sum_{i \in B_i} c_i,$$

and by (*) $\sum_{i \in A_i} c_i \in -\sum_{i \in B_i} \operatorname{conv} C_i$. But $c_i \in B^n$ and $-\operatorname{conv} C_i \subset B^n$ for $i \in B_i$ and $|B_i| = n$, whence

$$\sum_{i=1}^{p} c_i \in \sum_{i \in B_i} c_i + \sum_{i \in B_i} -\operatorname{conv} C_i \subset 2nB^n.$$

If p < n, then $h(\sum_{i=1}^{p} c_i) \leq p < n$.

Again, Theorem 3 can be expressed as $F(n,h) \leq 2n$ where F(n,h) =supinf $\sup_{p=1,2,...} h(\sum_{i=1}^{p} c_i)$; here the first sup is taken over all sequences $C_i \subset B^n$, $0 \in \operatorname{conv} C_i$ (i=1,2,...), and inf is taken over all choices $c_i \in C_i$ (i=1,2,...). With some additional effort we can prove here $F(n,h) \leq 2n-1$. On the other hand the best lower bound known to the authors is $n \leq F(n, \| \cdot \|_1)$. This lower bound is reached by the same construction as in Theorem 1.

Finally we present an example showing that F(2, h) [and so F(n, h)] is not bounded in general when h is nonsymmetric. To this end let $h(x, y) = \max\{0, -x, -y\}$ for $(x, y) \in \mathbb{R}^2$ be the nonsymmetric seminorm, and put $C_i = \{a_i, b_i\}$, where $a_i = (-1, 2^i)$ and $b_i = (2^{-i}, -1)$ for i = 1, 2, ... Clearly $h(a_i) = h(b_i) = 1$ and $0 \in \operatorname{conv} C_i$. In this case $h(\sum_{i=1}^p c_i)$ tends to infinity as $p \to \infty$ for any choice $c_i \in C_i$. Indeed, if $c_i = a_i$ for infinitely many indices i, then the first component of $\sum_{i=1}^p c_i$ tends to $-\infty$, and if $c_i = a_i$ for finitely many times only, then the second component of the sum tends to $-\infty$.

From this example it is not difficult to show that for any N>0 there exist a nonsymmetric seminorm h of \mathbb{R}^2 with compact unit ball B and sets $C_i \subset B$ for $i \in [p]$ with $0 \in \operatorname{conv} C_i$ such that for any choice $c_i \in C_i$ $(i \in [p])$,

$$\max_{1 \le k \le p} h\left(\sum_{i=1}^k c_i\right) \ge N.$$

REFERENCES

1 I. Bárány, System of representatives for sets whose convex hull contains zero, in *Proceedings of the Conference on Algebraic Methods in Graph Theory*, Szeged, 1978, to appear.

- 2 L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, in *Proceedings of Symposia in Pure Mathematics*, Vol. 7. Convexity, Amer. Math. Soc., Providence, RI, 1963, pp. 101–180.
- 3 A. Dvoretzky, Problem, in Proceedings of Symposia in Pure Mathematics, Vol. 7. Convexity, Amer. Math. Soc., Providence, RI, 1963, p. 496.
- 4 S. V. Sevast'yanov, On approximate solutions of scheduling problems, *Methody Discretnogo Analiza* (Novosibirsk) 32:66-75 (1978).
- 5 J. Spencer, Balancing games, J. Combinatorial Theory Ser. B 23:68-74 (1977).

Received 4 June 1980; revised 5 December 1980