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2 I. BARANY AND V. S. GRINBERC 

( i = 1,2,. . ) so as to minimize sup, 1, llC~‘~,,~,x, I). Spencer showed that this 
s~lpremmn is less than a constant depending only on n ad the norm. Our 
second theorem will generalize and sharpen Spencer’s result. We remark that 
onr theorems have interesting applications to some problems in the theory of 
planning. 

.A few resldts of this paper cover some theorems of [l]. However the 
resldts here are stronger and the proof method of this paper is different. The 
idea of using the theory of linear inequalities comes from S. V. Sevast’yanov 
(A], who proved the Steinitz lemma with the help of this theory. 

2. MAIN RESULTS 

As we shall see, our theorems hold not only for norms but for “symmetric 
and/or non-symmetric seminorms” as well. A nonsymmetrie seminorm is a 
map h : R” + R’ such that 

(i) Iz(x+y)~/~(s)+lz(y) (x, yER”), 
(ii) /z(cyx)=cd(x) (sER”: a>()). 

.4 symmetric seminorm satisfies (i) and, further, 

(iii) 12(nx)=Iajh(x) (x_ER”, aER’). 

We write H” = {sEN”: /7(s)< 1). 

where sup is taken over all sequences of sets (,: c B” with 0 E conv 0; ( i E [ p]) 
and inf is taken over all choices (*i E c, ( i E [p]). Then the theorem states that 
E:( 12, 12)~ n for every nonsymmetric seminorm 11. Theorem 1 is sharp iI1 the 
sense that with the I, norm, E( n, /I 1) ,) = II. To see this consider C’, = (c,, - ci) 
(i E [ n]), where c, is the ith basic vector of R”. Then, clearly. for any choice 
(‘, tc, one has llZ:‘,,(‘, I/ 1 --I. 

To prove the theorem we need a lemma. This lemma is a generalization of 
the well-known theorem of CarathCodory 121. \f ?e write pos (1 (lin C) for the 
cone (linear) lid of CC R”. 
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LEMMA 1. Suppose U, V, CR” (i E [ k]), U consists of linearly indepen- 

dent vectors, and uElinU+posV, foriE[k]. Assunle further, that IUl-I-k=n. 

Th?n there exist vectors vi ~yfi)r iE[k] such that tl~linU+pos{v,,.. ., uk}. 

Proof. For any choice vl,. . . , ukwith oi EV (iE[k]) put d(u,,...,c,)= 
min{IIo-rII:xElill~r+pos(u,,..., uk}}, where II 1) stands for the Euclidean 
norm. By Carathkodory’s theorem we may suppose that each Vj is finite. Then 
there exists a choice Us,..., vk for which cl=d(u,,..., ok) is minimal. We 
claim that d=O. This will prove the lemma. 

Suppose, on the contrary, that d>O. Then there exists a (unique) ~Elinc7 
$_pos(u,,..., ck)=D with d=\lv-~11; this z is the projection of the point D 
onto the convex cone D. Thus putting ~G=U -2, the hyperplane (tu, x) =O 
separates o and D, i.e., (u;,u)>O, (t(;,:)=O, (t~‘,u)=O for UEU, and 
(w, oi) GO for iE[k]. 

Clearly z can be expressed as Z=U + XfZlyi vi, where ZJ Elin U and y, 20; 
moreover, this representation can be chosen so that yi =O for some jE[ k]. 

This is true either because D is ndimensional, and consequently the minimum 
of (I u-x (I for x E D is attained on the boundary of D, or because D lies in a 
hyperplane, and then any point of D can be expressed with some yi =O. 
Suppose, without loss of generality, that y1 =O. Now v Elin US posV, implies 
that there is a 0;~ V, such that (w, 0;) >O. 

Now we prove that d( vi, v2,. . . , v,)td. Indeed, for tE[O,l], z+t(v; -z) 
ElinU+pos{v;,v, ,..., ok}, and 

cPyv;,a,,..., vk)~llo-[z+t(v;-_=)]l/2 

and this is less than d2 if t >O is sufficiently small, because (u), U; --z ) = 
(w,ui) >o. n 

Proof of Theorem 1. We suppose again that every C, is finite. Consider 
the following optimization problem: 

maximize i yi 
i=l 

subject to 0 < yi < 1, idPI> 

c, EC,, @PI, 

ii1 Yi’i =O* 
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For symmetric seminorms we can weaken the assumptions of Theorem 1. 
For A, RcR” put A+R== (cl+h: UEA, ~EH}. 

Proof. The condition means that the system with unknowns a;( x’ ) given 

bY 

5 I: q(x)x=O, 
t-1 SEC,‘, 

a,( r)>O for iE[p], XEC, 

has at least one solution, so that the solution set of this system is nonempty 
and, of course, convex compact. Take any extreme point (ui( X) and put 
(1 i =\{xEC,: cT,( x)>O)/. (Again we suppose that each Ci is finite.) It is 
evident that the number of slack inequalities in this point, C~=I~~,, is at most 
n+p, and ui > 1 (i E[ p]). ci be element 

(iE[p]). Clearly 6i(c,)>l/cri. Now 

’ II 

+ 

l-zi(ci)]ci- 2 Z,(X)X , 
I -- I .XEC 

.I#<; 
I 

so using the inequlity 1 - l/o i < ((1, - 1)/2, which is true for N ) = 1,2,. . . , 

we get 
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We have seen that for the I, norm of R”, El( n. /I II I )=!I. This, of course, 

does not mean that one cannot do better for other J~OI~W. For instance, fol 

the Euclidean ~mrm we have E( n, /I I( 2 ) > v5, this lower Ix~~ind being reached 

here when p = n a~rd C’, = {c,, -ci} ( i E [ n]). V. V. Grinberg has informed IIS 

that he has proved I?( n, II II ,)~$i (unprlhlished). From the point of view of 

applications it wo~~ld be interesting to know more abollt t;( II, I/ II 2 ). 

We finish this section with open questions. Suppose we are given anothel 

seminorm h’ of R”, ~JKI further, that the unit 1~11s of Imth seminorn~s II and Ir’ 
are compact. Put 

where sup and inf are taken over the same sets as in the definition of E( n , 11). 

Clearly 

but we think that in general one ~a11 do better. In connection with this there 

is a striking question due to J. Kornlhs (private commllnication). He asks 

whether there is a universal constant (‘, such that for any n and p and ally set 
of vectors {xl,...,X,} CR" with 1) xi I/ 2 G 1 (i E [p]), one call find sigms 

cl,. . , tp = 1 such that llX:c I~,x, II x <c(‘. 

:3. A VAHIANT L’HOBLEM 

In this section we shall prove the following theorem. 

1' 
h 

i 1 2 ci G2n for p=1,2,... 
!=I 

We need the following simple lemma. 

LEMM.4 2. Suppose v E B~~/conv V,, where y CR” for i E [ n + 11. Then 

there exist an index j E [ n+ l] and element vi E I( such that v Econv V, 
+ . . . +conv&, +vj +convy+, + ’ +convV,,, I. 
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Proof of &P letnmc~. The solution set of the system with unknowns (Y,( x ) 
(iE[n+l], XEV,) 

x lYi(X)‘l for iE[n+l], 
I t ( :, 

a,(x)a for iE[n+l], xEV 

is convex, compact, and, in view of the assumption, nonempty. Then at the 
extreme point (Y,( x ) at most 2n+ 1 inequalities are strict. In each Vi there is at 
least one element 0 E V, with Zi( v) > 0. This implies that for some j E [n + l] 
and USER, Ei(ui)=l, and then, of course, Z&u)=0 if UE~ \{ui}. This 
proves the lemma. n 

Proof of Theorem 3. First we shall construct a sequence A, CA, CA, 

C . . . with Ai C [ jtn] and (Ai ( = j, and choose an element ci E Ci for each 
in UpdAi such that putting Bi=[j+n]\Ai, 

OE 2 ci+ 2 convc,. (*> 
IEA, 1 EB, 

This is done by induction on i. 

j= 0. Put Ai # o ; then Hi = [ n] and (*) is fulfilled. 
j-ii-l. Write D = Ri U {j-t II + I}. In view of (*) and the assumption of 

the theorem we have 

and JD] =n+ 1. Thus by the lemma there is an index i,ED and an element 
cic,~Ci,, such that 

- 2 CiEc++ 2 conv C, . 
iEA, iED\ 

Putting A,, I = A i U {i,}, we are through: c,,, is just the element needed. 
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Now the sequence whose existence is claimed in the theorem is “almost” 
defined, for there are at most n natural numbers not belonging to U ,?zC,~i,. 

For these indices i let ci be an arbitrary elenlent of (1. Let us plt p=j+ r/: 
the11 

1) 
2 c, = 2 I‘, + z f’, ) 

I -I I( .\, , in ri, 

and by (*) Ci&, E --P,cn 
/ 
COnv C,. Allt f’, E H” alld -conv C, CH” for i EH, 

aild / B1 ) = II, wheilce 

If p<n, then h(Zp,,c,)<p<~ n 

Again, Theorem 3 can be expressed as F( n, 12) ~2 n where F( n, h) = 
supinf sup, = 1,2,, h(8yx lci): here the first sup is taken over all sequences 
c, CB”, 0Ec011vC, (i=l,Z ,... ), and inf is taken over all choices ci EC, 

(i=l,2,.. .). With some additional effort we can prove here F(n, h)<2n-1. 
On the other hand the best lower bound known to the authors is n< 
F( n, I/ 1) I). This lower bound is reached by the same construction as in 
Theorem 1. 

Finally we present a11 example showing that F(2, h) [and so I:( II, h )] is 
not bounded in general when Iz is norlsynmletric. To this end let h( s. y ) = 
Illax { 0, - x, - y) for (x. y) ER2 I)e the nonsymmetric seminorm. arid pirt 
(1 = { Cl,, h, }) \\hxe (I, =( ~ 1,2’) and /1, =(2 1, - 1) for i= 1,2,. . Clearly 
h ( m , ) = h( II, ) = 1 and 0 E COllV c:, . In this ease h(Xf’, Ic’, ) teds to infinity as 
13 - x for any choice (1, EC,. Indeed, if C, =(I, for infinitely many indices i. 
then the first component of If’= ,c‘~ tencls to - x, and if (‘, ==(I, for finitely 
many times only, then the second component of the s111m tends to ~ “/c;. 

From this example it is not difficult to show that for any S>O there exist 
a notlsymmetric senCnorm II of R2 with compact unit ball H and sets C’, CH 
for i E [ p] with 0 E COIW (:, such that for any choice (,I E C, ( i E [p J ), 
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