On Some Combinatorial Questions in Finite-Dimensional Spaces

I. Bárány
Mathematical Institute of the Hungarian Academy of Sciences
1053 Budapest, Reáltanoda u. 13-15, Hungary

and
V. S. Grinberg

Am'anskij per. $1 / 3 \mathrm{kc} .9$
310003 Kharkov, U.S.S.R.

Submitted by Richard A. Bruadi

Abstract

Bounds are given for supinf $\left\|\Sigma_{i=1}^{p} v_{i}\right\|$, where sup is taken over all set systems V_{1}, \ldots, V_{p} of $R^{\prime \prime}$ with $0 \in \bigcap_{i=1}^{p} \operatorname{conv} V_{i}$ and $\sup _{i \in v},\|v\|_{i} \leqslant 1$ for $i=1, \ldots, p$, and inf is taken over all possible choices $v_{i} \in V_{i}$ for $i=1, \ldots, p$. Another similar problem is considered. The bounds are sharp.

1. INTRODUCTION

In this paper we are concerned with the following question. Let a norm of R^{n} be given with unit ball B^{n}. Suppose $C_{i} \subseteq B^{n}$ and $0 \in \operatorname{conv} C_{i}$ for $i \in[p]$ (here and throughout the paper we write $[p]$ for the set $\{1, \ldots, p\}$). Questions: Are there elements $c_{i} \in C_{i}(i \in[p])$ such that $\left\|\Sigma_{1}^{p} c_{i}\right\|$ is less than a constant depending only on n and the norm (and not depending on p and the sequence $\left.C_{i}\right)$? Are there elements $c_{i} \in C_{i}(i \in[p])$ such that $\max _{q \in[p]}\left\|\sum_{i=1}^{q} c_{i}\right\|$ is less than a constant depending only on n and the norm? How large are these constants?

These questions came from other questions and facts. In 1963 Dvoretzky [3] asked what maxmin $\left\| \pm x_{1} \pm x_{2} \pm \cdots \pm x_{p}\right\|$ equals, where max is taken over all p-tuples $\left\{x_{1}, \ldots, x_{p}\right\}$ of the unit sphere of R^{n} and min is taken over all possible signs. Taking max over all p-tuples of B^{n} and putting $C_{i}=\left\{x_{i},-x_{i}\right\}$ ($i \in[p]$), we get a special case of our question. In 1976 Spencer [5] considered several "balancing games." In one of his games the first player picks a sequence x_{1}, x_{2}, \ldots from B^{n}, and then the second player picks $\varepsilon_{i}=1$ or -1
$(i=1,2, \ldots)$ so as to minimize $\sup _{q=1} \ldots\left\|\sum_{i=1}^{y} \varepsilon_{i} x_{i}\right\|$. Spencer showed that this supremum is less than a constant depending only on n and the norm. Our second theorem will generalize and sharpen Spencer's result. We remark that our theorems have interesting applications to some problems in the theory of plamning.

A few results of this paper cover some theorems of [1]. However the results here are stronger and the proof method of this paper is different. The idea of using the theory of linear inequalities comes from S. V. Sevast'yanov [4], who proved the Steinitz lemma with the help of this theory.

2. MAIN RESULTS

As we shall see, our theorems hold not only for norms but for "symmetric and/or non-symmetric seminorms" as well. A nonsymmetric seminorm is a $\operatorname{map} h: R^{n} \rightarrow R^{1}$ such that
(i) $h(x+y) \leqslant h(x)+h(y)\left(x, y \in R^{n}\right)$,
(ii) $h(\alpha x)=\alpha h(x)\left(x \in R^{n} ; \alpha \geqslant 0\right)$.

A symmetric seminorm satisfies (i) and, further,
(iii) $h(\alpha x)=|\alpha| h(x)\left(x \in R^{\prime \prime}, \alpha \in R^{1}\right)$.

We write $B^{n}=\left\{x \in R^{n}: h(x) \leqslant 1\right\}$.

Theorem 1. Let h be a nonsymmetric seminom. Suppose that $C_{i} \subseteq B^{n}$ and $0 \in \operatorname{conv} C_{i}(i \in[p])$. Then there exists $c_{i} \in C_{i}(i \subset[p])$ such that $h\left(\sum_{i=1}^{p} c_{i}\right)$ $\leqslant n$.

This theorem can be expressed in the following way. Put

$$
E(n, h)=\operatorname{supinf} h\left(\sum_{i=1}^{p} c_{i}\right),
$$

where sup is taken over all sequences of sets $C_{i} \subseteq B^{n}$ with $0 \in \operatorname{conv} C_{i}(i \in[p])$ and inf is taken over all choices $c_{i} \in C_{i}(i \in[p])$. Then the theorem states that $E(n, h) \leqslant n$ for every nonsymmetric seminorm h. Theorem 1 is sharp in the sense that with the $l_{1} \operatorname{norm}, E\left(n,\| \|_{1}\right)=n$. To see this consider $C_{i}=\left\{e_{i},-e_{i}\right\}$ ($i \in[n]$), where e_{i} is the i th basic vector of R^{n}. Then, clearly, for any choice $c_{i} \in C_{i}$ one has $\left\|\sum_{i=1}^{n} c_{i}\right\|_{1}=n$.

To prove the theorem we need a lemma. This lemma is a generalization of the well-known theorem of Caratheodory [2]. We write pos $C(\operatorname{lin} C$) for the cone (linear) hull of $C \subset R^{\prime \prime}$.

Lemma 1. Suppose $U, V_{i} \subset R^{n}(i \in[k])$, U consists of linearly independent vectors, and $v \in \operatorname{lin} U+\operatorname{pos} V_{i}$ for $i \in[k]$. Assume further, that $|U|+k=n$. Then there exist vectors $v_{i} \in V_{i}$ for $i \in[k]$ such that $v \in \operatorname{lin} U+\operatorname{pos}\left\{v_{1}, \ldots, v_{k}\right\}$.

Proof. For any choice v_{1}, \ldots, v_{k} with $v_{i} \in V_{i}(i \in[k])$ put $d\left(v_{1}, \ldots, v_{k}\right)=$ $\min \left\{\|v-x\|: x \in \operatorname{lin} U+\operatorname{pos}\left\{v_{1}, \ldots, v_{k}\right\}\right\}$, where \| \| stands for the Euclidean norm. By Carathéodory's theorem we may suppose that each V_{i} is finite. Then there exists a choice v_{1}, \ldots, v_{k} for which $d=d\left(v_{1}, \ldots, v_{k}\right)$ is minimal. We claim that $d=0$. This will prove the lemma.

Suppose, on the contrary, that $d>0$. Then there exists a (unique) $z \in \operatorname{lin} U$ $+\operatorname{pos}\left\{v_{1}, \ldots, v_{k}\right\}=D$ with $d=\|v-z\|$; this z is the projection of the point v onto the convex cone D. Thus putting $w=v-z$, the hyperplane $\langle w, x\rangle=0$ separates v and D, i.e., $\langle\boldsymbol{w}, v\rangle>0,\langle\boldsymbol{u}, z\rangle=0,\langle w, u\rangle=0$ for $u \in U$, and $\left\langle w, v_{i}\right\rangle \leqslant 0$ for $i \in[k]$.

Clearly z can be expressed as $z=u+\sum_{i=1}^{k} \gamma_{i} v_{i}$, where $u \in \operatorname{lin} U$ and $\gamma_{i} \geqslant 0$; moreover, this representation can be chosen so that $\gamma_{j}=0$ for some $j \in[k]$. This is true either because D is n-dimensional, and consequently the minimum of $\|v-x\|$ for $x \in D$ is attained on the boundary of D, or because D lies in a hyperplane, and then any point of D can be expressed with some $\gamma_{i}=0$. Suppose, without loss of generality, that $\gamma_{1}=0$. Now $v \in \operatorname{lin} U+\operatorname{pos} V_{1}$ implies that there is a $v_{1}^{\prime} \in V_{1}$ such that $\left\langle w, v_{1}^{\prime}\right\rangle>0$.

Now we prove that $d\left(v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right)<d$. Indeed, for $t \in[0,1], z+t\left(v_{1}^{\prime}-z\right)$ $\in \operatorname{lin} U+\operatorname{pos}\left\{v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right\}$, and

$$
\begin{aligned}
d^{2}\left(v_{1}^{\prime}, v_{2}, \ldots, v_{k}\right) & \leqslant\left\|v-\left[z+t\left(v_{1}^{\prime}-z\right)\right]\right\|^{2} \\
& =\left\|(v-z)-t\left(v_{1}^{\prime}-z\right)\right\|^{2} \\
& =d^{2}-2 t\left\langle w, v_{1}^{\prime}-z\right\rangle+t^{2}\left\|v_{1}^{\prime}-z\right\|^{2}
\end{aligned}
$$

and this is less than d^{2} if $t>0$ is sufficiently small, because $\left\langle w, v_{1}^{\prime}-z\right\rangle=$ $\left\langle w, v_{1}^{\prime}\right\rangle>0$.

Proof of Theorem 1. We suppose again that every C_{i} is finite. Consider the following optimization problem:

$$
\begin{array}{lll}
\text { maximize } & \sum_{i=1}^{p} \gamma_{i} & \\
\text { subject to } & 0 \leqslant \gamma_{i} \leqslant 1, & i \in[p], \\
& c_{i} \in C_{i}, & i \in[p], \\
& \sum_{i=1}^{p} \gamma_{i} c_{i}=0 . &
\end{array}
$$

The maximum is clearly attained for some system $\bar{\gamma}_{i}(i \in[p])$ with $\bar{c}_{i} \in C_{i}$. We choose this system so that $A_{01}=\left\{i: 0<\bar{\gamma}_{i}<1\right\}$ will be minimal. Put further $A_{1}=\left\{i: \bar{\gamma}_{i}=1\right\}$ and $A_{0}=\left\{i: \bar{\gamma}_{i}=0\right\}$.

First we claim that the vectors $\bar{c}_{i}\left(i \in A_{01}\right)$ are linearly independent. Suppose they are not; then $\Sigma_{i \in A_{i n}} \alpha_{i} \bar{c}_{i}=0$ and $\Sigma_{i \in A_{i n}} \alpha_{i} \geqslant 0$ (say) for some (not all zero) numbers α_{i}. Put $\alpha_{i}=0$ for $i \notin A_{01}$ and $\gamma_{i}=\bar{\gamma}_{i}+t \alpha_{i}$. Choosing here $t>0$ appropriately (i.e. so that $\gamma_{i} \in[0,1]$ for each $i \in[p]$, and $\gamma_{i}=0$ or 1 for some $i \in A_{01}$), we have a system with $\Sigma_{1}^{\mu} \gamma_{i} \bar{c}_{i}=0,0 \leqslant \gamma_{i} \leqslant 1$, and $\Sigma_{1}^{\mu} \gamma_{i} \geqslant \Sigma_{1}^{\mu} \bar{\gamma}_{i}$, but with a smaller set $A_{01}^{\prime}=\left\{i: 0<\gamma_{i}<1\right\}$.

If $c \in R^{n}$ we write $(c ; 1)$ for the vector in R^{n+1} whose j th component equals that of c for $j \in[n]$ and l for $j=n+1$. If $C \subset R^{\prime \prime}$ we use $(C ; 1)$ as a shorthand for the set $\{(c ; 1): c \in C\}$.

Secondly we claim that $\left|A_{01} \cup A_{0}\right| \leqslant n$. Suppose, on the contrary, that $\left|A_{01} \cup A_{0}\right| \geqslant n+1$; then because of $\left|A_{01}\right| \leqslant n$, there is a set $A \subseteq A_{0}$ with $\left|A_{01} \cup A\right|=n+1$. Put $U=\left\{\left(\bar{c}_{j} ; 1\right): j \in A_{01}\right\}$ and $V_{i}=\left(C_{i} ; 1\right)$ for $i \in A$. Now we can apply the lemma (even if $A_{01}=\varnothing$) with $t=(0 ; 1$), because

$$
(0 ; 1) \in \operatorname{pos} V_{i} \subseteq \operatorname{lin} U+\operatorname{pos} V_{i} \quad \text { for each } \quad i \in A
$$

and $\left|A_{01} \cup A\right|=n+1$. This yields coefficients β_{i} for $i \in A_{01} \cup A$ with $\beta_{i} \geqslant 0$ if $i \in A$, and vectors $c_{i} \in C_{i}(i \in A)$ such that

$$
\sum_{i \in A_{01}} \beta_{i}\left(\bar{c}_{i} ; 1\right)+\sum_{i \in A} \beta_{i}\left(c_{i} ; 1\right)=(0 ; 1)
$$

Put now $\beta_{i}=0$ if $i \notin A \cup A_{01}$, and $c_{i}=\bar{c}_{i}$ if $i \notin A$. Then for some small $t>0$, $\gamma_{i}=\bar{\gamma}_{i}+t \beta_{i}$ satisfies

$$
0 \leqslant \gamma_{i} \leqslant 1 \quad \text { and } \quad \sum_{i=1}^{p} \gamma_{i} c_{i}=0,
$$

but $\Sigma \gamma_{i}=\Sigma \bar{\gamma}_{i}+t>\sum \bar{\gamma}_{i}$, a contradiction.
So $\left|A_{01} \cup A_{0}\right| \leqslant n$, and consequently $\left|A_{1}\right| \geqslant p-n$. This implies that $\Sigma_{1}^{p} \bar{\gamma}_{i}$ $\geqslant p-n$.

Now we prove that $\overline{c_{i}} \in C_{i}$ is the choice whose existence is claimed in the theorem. Indeed,

$$
\sum_{i=1}^{p} c_{i}=\sum_{i=1}^{p} \bar{c}_{i}-\sum_{i=1}^{p} \dot{\gamma}_{i} c_{i}=\sum_{i=1}^{p}\left(1-\bar{\gamma}_{i}\right) c_{i}
$$

and

$$
h\left(\sum_{i=1}^{p} \bar{c}_{i}\right) \leqslant \sum_{i=1}^{p}\left(1-\bar{\gamma}_{i}\right) \leqslant p-(p-n)=n .
$$

For symmetric seminorms we can weaken the assumptions of Theorem 1. For $A, B \subseteq R^{n}$ put $A+B=\{a+b: a \in A, b \in B\}$.

Theorem 2. Let h be a symmetric seminom, and suppose that $C_{i} \subset B^{n}$ for $i \in[p]$ and $0 \in \sum_{i=1}^{p}$ conv C_{i}. Then there exist vectors $c_{i} \in C_{i}(i \in[p])$ such that

$$
h\left(\sum_{i=1}^{p} c_{i}\right) \leqslant n .
$$

Proof. The condition means that the system with unknowns $\alpha_{i}(x)$ given by

$$
\begin{aligned}
& \sum_{i=1}^{p} \sum_{x \in C_{i}} \alpha_{i}(x) x=0, \\
& \sum_{x \in C_{i}} \alpha_{i}(x)=1 \text { for } \quad i \in[p], \\
& \alpha_{i}(x) \geqslant 0 \quad \text { for } \quad i \in[p], \quad x \in C_{i}
\end{aligned}
$$

has at least one solution, so that the solution set of this system is nonempty and, of course, convex compact. Take any extreme point $\bar{\alpha}_{i}(x)$ and put $a_{i}=\left|\left\{x \in C_{i} ; \bar{\alpha}_{i}(x)>0\right\}\right|$. (Again we suppose that each C_{i} is finite.) It is evident that the number of slack inequalities in this point, $\Sigma_{i=1}^{p} a_{i}$, is at most $n+p$, and $a_{i} \geqslant 1(i \in[p])$. Now let c_{i} be any element of C_{i} for which $\bar{\alpha}_{i}\left(c_{i}\right)=\max \left\{\bar{\alpha}_{i}(x): x \in C_{i}\right\}(i \in[p])$. Clearly $\bar{\alpha}_{i}\left(c_{i}\right) \geqslant 1 / a_{i}$. Now

$$
\begin{aligned}
\sum_{i=1}^{p} c_{i} & =\sum_{i=1}^{p}\left(c_{i}-\sum_{x \in C_{i}} \bar{\alpha}_{i}(x) x\right) \\
& =\sum_{i=1}^{p}\left(\left[1-\bar{\alpha}_{i}\left(c_{i}\right)\right] c_{i}-\sum_{\substack{x \in C_{i} \\
x \neq c_{i}}} \bar{\alpha}_{i}(x) x\right)
\end{aligned}
$$

so using the inequality $1-1 / a_{i} \leqslant\left(a_{i}-1\right) / 2$, which is true for $a_{i}=1,2, \ldots$, we get

$$
\begin{aligned}
h\left(\sum_{i=1}^{p} c_{i}\right) & \leqslant \sum_{i=1}^{p}\left(\left[1-\bar{\alpha}_{i}\left(c_{i}\right)\right]+\sum_{\substack{x \in C_{i} \\
x \neq c_{i}}} \bar{\alpha}_{i}(x)\right)=2 \sum_{i=1}^{p}\left[1-\bar{\alpha}_{i}\left(c_{i}\right)\right] \\
& \leqslant 2 \sum_{i=1}^{p}\left(1-\frac{1}{a_{i}}\right) \leqslant \sum_{i=1}^{p}\left(a_{i}-1\right) \leqslant n .
\end{aligned}
$$

We have seen that for the l_{1} norm of $R^{n}, E\left(n,\| \|_{1}\right)=n$. This, of course, does not mean that one cannot do better for other norms. For instance, for the Euclidean norm we have $E\left(n,\| \|_{2}\right) \geqslant \sqrt{n}$, this lower bound being reached here when $p=n$ and $C_{i}=\left\{e_{i},-e_{i}\right\}(i \in[n])$. V. V. Grinberg has informed us that he has proved $E\left(n,\| \|_{2}\right) \leqslant \sqrt{n}$ (unpublished). From the point of view of applications it would be interesting to know more about $E\left(n,\| \|_{\infty}\right)$.

We finish this section with open questions. Suppose we are given another seminorm h^{\prime} of $R^{\prime \prime}$, and further, that the unit balls of both seminorms h and h^{\prime} are compact. Put

$$
E\left(n, h, h^{\prime}\right)=\operatorname{supinf} h^{\prime}\left(\sum_{i=1}^{p} c_{i}\right)
$$

where sup and inf are taken over the same sets as in the definition of $E(n, h)$. Clearly

$$
E\left(n, h, h^{\prime}\right) \leqslant E(n, h) \sup \left\{h^{\prime}(x): x \in B^{n}\right\},
$$

but we think that in general one can do better. In connection with this there is a striking question due to J . Komlós (private communication). He asks whether there is a universal constant c, such that for any n and p and any set of vectors $\left\{x_{1}, \ldots, x_{p}\right\} \subset R^{n}$ with $\left\|x_{i}\right\|_{2} \leqslant 1 \quad(i \in[p])$, one can find signs $\varepsilon_{1}, \ldots, \varepsilon_{p}=1$ such that $\left\|\sum_{i=1}^{p} \varepsilon_{i} x_{i}\right\|_{\infty} \leqslant c$.

3. A VARIANT PROBLEM

In this section we shall prove the following theorem.

Theorem 3. Let h be a symmetric seminorm of R^{n} with unit hall B^{n}. Suppose $C_{i} \subset B^{n}$ and $0 \in \operatorname{conv} C_{i}$ for $i=1,2, \ldots$. Then there exist elements $c_{i} \in C_{i}(i=1,2, \ldots)$ such that

$$
h\left(\sum_{i=1}^{p} c_{i}\right) \leqslant 2 n \quad \text { for } \quad p=1,2, \ldots
$$

We need the following simple lemma.

Lemma 2. Suppose $v \in \Sigma_{i=1}^{n+1} \operatorname{conv} V_{i}$, where $V_{i} \subset R^{n}$ for $i \in[n+1]$. Then there exist an index $j \in[n+1]$ and element $v_{j} \in V_{i}$ such that $v \in \operatorname{conv} V_{1}$ $+\cdots+\operatorname{conv} V_{i-1}+v_{i}+\operatorname{conv} V_{i+1}+\cdots+\operatorname{conv} V_{n+1}$.

Proof of the lemma. The solution set of the system with unknowns $\alpha_{i}(x)$ $\left(i \in[n+1], x \in V_{i}\right)$

$$
\begin{aligned}
& \sum_{i=1}^{n+1} \sum_{x \in C_{i}} \alpha_{i}(x) x=0, \\
& \sum_{x \in C_{i}} \alpha_{i}(x)=1 \quad \text { for } \quad i \in[n+1], \\
& \alpha_{i}(x) \geqslant 0 \quad \text { for } \quad i \in[n+1], \quad x \in V_{i}
\end{aligned}
$$

is convex, compact, and, in view of the assumption, nonempty. Then at the extreme point $\bar{\alpha}_{i}(x)$ at most $2 n+1$ inequalities are strict. In each V_{i} there is at least one element $v \in V_{i}$ with $\bar{\alpha}_{i}(v)>0$. This implies that for some $j \in[n+1]$ and $v_{i} \in V_{i}, \bar{\alpha}_{i}\left(v_{i}\right)=1$, and then, of course, $\bar{\alpha}_{j}(v)=0$ if $v \in V_{i} \backslash\left\{v_{i}\right\}$. This proves the lemma.

Proof of Theorem 3. First we shall construct a sequence $A_{0} \subset A_{1} \subset A_{2}$ $\subset \cdots$ with $A_{i} \subset[i+n]$ and $\left|A_{i}\right|=i$, and choose an element $c_{i} \in C_{i}$ for each $i \in \cup_{j=d}^{\infty} A_{j}$ such that putting $B_{i}=[j+n] \backslash A_{j}$,

$$
\begin{equation*}
0 \in \sum_{i \in A_{i}} c_{i}+\sum_{i \in B_{j}} \operatorname{conv} C_{i} . \tag{*}
\end{equation*}
$$

This is done by induction on j.
$j=0$. Put $A_{i} \neq \varnothing$; then $B_{i}=[n]$ and $\left(^{*}\right)$ is fulfilled.
$j \rightarrow j+1$. Write $D=B_{i} \cup\{j+n+1\}$. In view of $\left(^{*}\right.$) and the assumption of the theorem we have

$$
-\sum_{i \in A_{i}} c_{i} \in \sum_{i \in D} \operatorname{conv} C_{i},
$$

and $|D|=n+1$. Thus by the lemma there is an index $i_{0} \in D$ and an element $c_{i_{0}} \in C_{i_{0}}$ such that

$$
-\sum_{i \in A_{i}} c_{i} \in c_{i_{0}}+\sum_{i \in D \backslash\left\{i_{0}\right\}} \operatorname{conv} C_{i} .
$$

Putting $A_{i+1}=A_{j} \cup\left\{i_{0}\right\}$, we are through: $c_{i_{0}}$ is just the element needed.

Now the sequence whose existence is claimed in the theorem is "almost" defined, for there are at most n natural numbers not belonging to $\bigcup_{i=1}^{\infty} A_{i}$. For these indices i let c_{i} be an arbitrary element of C_{i}. Let us put $p=i+n$; then

$$
\sum_{i=1}^{p} c_{i}=\sum_{i \in A_{i}} r_{i}+\sum_{i \in B_{i}} c_{i}
$$

and by $\left(^{*}\right) \Sigma_{i \in A,} C_{i} \in-\Sigma_{i \in B_{i}} \operatorname{conv} C_{i}$. But $c_{i} \in B^{n}$ and $-\operatorname{conv} C_{i} \subset B^{n}$ for $i \in B_{j}$ and $\left|B_{j}\right|=n$, whence

$$
\sum_{i=1}^{p} c_{i} \in \sum_{i \in B_{i}} c_{i}+\sum_{i \in B_{1}}-\operatorname{conv} C_{i} \subset 2 n B^{n}
$$

If $p<n$, then $h\left(\sum_{i=1}^{p} c_{i}\right) \leqslant p<n$.
Again, Theorem 3 can be expressed as $F(n, h) \leqslant 2 n$ where $F(n, h)=$ $\operatorname{supinf} \sup _{p=1,2 \ldots} h\left(\sum_{i=1}^{p} c_{i}\right)$; here the first sup is taken over all sequences $C_{i} \subset B^{n}, 0 \in \operatorname{conv} C_{i}(i=1,2, \ldots)$, and inf is taken over all choices $c_{i} \in C_{i}$ ($i=1,2, \ldots$). With some additional effort we can prove here $F(n, h) \leqslant 2 n-1$. On the other hand the best lower bound known to the authors is $n \leqslant$ $F\left(n,\| \|_{1}\right)$. This lower bound is reached by the same construction as in Theorem 1.

Finally we present an example showing that $F(2, h)$ [and so $F(n, h)$] is not bounded in general when h is nonsymmetric. To this end let $h(x, y)=$ $\max \{0,-x,-y\}$ for $(x, y) \in R^{2}$ be the nonsymmetric seminorm, and put $C_{i}=\left\{a_{i}, b_{i}\right\}$, where $a_{i}=\left(-1,2^{i}\right)$ and $b_{i}=\left(2^{-i},-1\right)$ for $i=1,2, \ldots$. Clearly $h\left(a_{i}\right)=h\left(b_{i}\right)=1$ and $0 \in \operatorname{conv} C_{i}$. In this case $h\left(\sum_{i=1}^{p} c_{i}\right)$ tends to infinity as $p \rightarrow \infty$ for any choice $c_{i} \in C_{i}$. Indeed, if $c_{i}=a_{i}$ for infinitely many indices i, then the first component of $\sum_{i=1}^{p} c_{i}$ tends to $-\infty$, and if $c_{i}=a_{i}$ for finitely many times only, then the second component of the sum tends to $-\infty$.

From this example it is not difficult to show that for any $N>0$ there exist a nonsymmetric seminorm h of R^{2} with compact unit ball B and sets $C_{i} \subset B$ for $i \in[p]$ with $0 \in \operatorname{conv} C_{i}$ such that for any choice $c_{i} \in C_{i}(i \in[p])$,

$$
\max _{1 \leqslant k \leqslant p} h\left(\sum_{i-1}^{k} c_{i}\right) \geqslant N .
$$

REFERENCES

1 I. Bárány, System of representatives for sets whose convex hull contains zero, in Proceedings of the Conference on Algebraic Methods in Graph Theory, Szeged, 1978, to appear.

2 L. Danzer, B. Grünbaum, and V. Klee, Helly's theorem and its relatives, in Proceedings of Symposia in Pure Mathematics, Vol. 7. Convexity, Amer. Math. Soc., Providence. RI. 1963, pp. 101-180.
3 A. Dvoretzky, Problem, in Proceedings of Symposia in Pure Mathematics, Vol. 7. Convexity, Amer. Math. Soc., Providence, RI, 1963, p. 496.
4 S. V. Sevast'yanov, On approximate solutions of scheduling problems, Methody Discretnogo Analiza (Novosibirsk) 32:66-75 (1978).
5 J. Spencer, Balancing games, J. Combinatorial Theory Ser. B 23:68-74 (1977).

