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Abstract. We determine the maximal value of r with the following property. If the 
convex hull of a set in R 2 contains a unit circle B, then a subset of at most four 
points can be selected so that the convex hull of this subset contains the circle of 
radius r concentric with B. That the result is sharp is shown by the example when 
the original set is the set of vertices of a regular pentagon circumscribed around B. 

1. Introduction 

Steinitz proved [S] a long time ago that if the interior of the convex hull of a set 
X c R ~ contains  the point  p, then there is a subset Y c X, of cardinality at most 
2d, such that p e int conv Y. This result is made "quant i ta t ive"  in [BKP]  in the 
sense that, for every d > 2, there is a constant  c(d) with following property. If 
conv X contains  a closed ball of radius r with center p, then Y c X, [ YI < 2d, 
exists such that cony Y contains the ball of radius c(d)r with center p. It is shown 
in [ B K P ]  that, in fact, c(d) > d -2a. The aim of this paper is to find the best constant  
c(d) when d = 2. 

It turns out  that, as expected, the worst case is when cony X is a regular 
pentagon,  p is its center, and  the ball is the inscribed circle of conv X. 

* Imre B/tr~iny was partially supported by Hungarian National Science Foundation Grant Nos. 
1907 and 1909. Alad~ir Heppes was partially supported by Hungarian National Science Foundation 
Grant No. 2583. 
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To simplify the presentat ion we assume that  S ~ R 2 is finite, then P = c o n v  X 
is a convex polygon.  Let  B denote  the unit circle centered at the origin and assume 
B ~ P. rB is the circle of radius r concentric with B. Define 

r(X) = max  max{p: pB ~ cony Y}, 
Y~X,  IYI<4 

or, as in [ K M Y ] ,  define, more  generally, 

rk(X)= max  max{p:  p B c  cony Y}. 
Y=X, fYI<k 

When X is the set of  the vertices of  a regular (k + 1)-gon with inscribed ball B we 
get 

as k - * ~ .  

Theorem l .  

cos(2n/(k + 1)) (1 
rk(X) = r~' = cos(n/(k + 1)) = 

37~ 2 \ 

1)2](1/ + o(1)) 2 (k-~  

Under the above hypothesis 

cos 2n/5 3 -- x/r5 
r ( S )  = r4 (X)  >_ r~ - 

cos rr/5 2 
- 0.381966 . . . .  

Equality holds if and only if conv X is a regular pentagon with inscribed circle B. 

At the end of this paper  we indicate how to prove  the same result without  
assuming that  X is finite. 

I t  is proved in [ K M Y ]  that,  for all X c R 2 with B c conv X, 

2/g 2 
rk(X ) ~ 1 -- k~-. 

It  seems likely that, for every k > 4, r k ( S  ) >_ r~ with equality only when P is the 
regular  (k + 1)-gon. Theorem 1 proves  this for k = 4, i.e., r4(X ) > r* and, using 
the methods  of this paper,  we can extend this to k = 5: 

Theorem 2. I f  X c R 2 is finite and B ~ conv X, then 

rs(X ) >_ r* - 
cos 2n/6 1 

cos n/6 x/~"  

Equality holds if  and only if conv X is a regular hexa#on with inscribed circle B. 
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We can further show the val idi ty of the inequal i ty  rk(X ) > r* for the case when 

I X I  = k + 1: 

Theorem 3. l f  X c R 2 is a set o f  k + 1 points and B ~ conv X ,  then 

rk(X) >_ rL 

2. Proof of Theorem 3 

Let X = {aa . . . . .  ak+l} (where ak+i+l = ai) be the set of vertices of a convex 
(k + 1)-gon P with B c P, the vertices indexed in cyclic order.  Wri te  r = r~'. We 
show that  there is an i such that  

rB c int c o n v ( X \ { a l } )  

unless P is a regular  (k + 1)-gon circumscribed a round  B. 
If  some d iagonal  of P is disjoint  from rB, the s tatement  is tr ivially true, therefore 

we assume that,  for all i, 

aiai+ 2 n rB :/: ~j .  

Write  b~ and ci for the projec t ion  of the origin o onto  the line passing th rough  
alai + 1 and  alal + 2, respectively. Set 

O~ i = /__aiobi ,  

q)i = / - - a i o c i ,  

fli = L b l o a i +  l,  

I]1 i = L c l o a i +  2. 

These angles are taken to be signed. Fi rs t  we assume that  

o r  conv{aiai+lai+2},  i =  1 . . . . .  k +  1, 

consequently,  ~o i, ~ > 0. The  condi t ions  imply that  

and  Ibil = lail cos cti = tai+l[ c o s / / / ~  1 

So we have 

Ic~l = lall c o s  q~i = l a i+21  c o s  ~Oi ~ r. 

cos ~Oi < < r cos fli+l or  r  > arc cos(r cos i l l+0.  
lai+21 - 

(2.1) 

/, 
cos ~o i < 7~, < r cos ~i or  r > arc cos(r cos ~i), 

lai l  
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The second derivative of the function f(t)  = arc cos(r cos t) is positive when 
t e ( -  1r/2, n/2). So f ( t )  is convex and the Jensen inequality implies that 

k + l  k + l  

4re = ~ (tp i + 0r) >- ~ (arc cos(r cos ~) + arc cos(r cos ill+l)) 
1 1 

> 2(k + 1) arc cos r cos 2(k + 

= 2 ( k + l )  a rccos  C O S k + l  

Thus equality holds in all the inequalities above. This proves the claim under 
assumption (2.1). 

Suppose now that assumption (2.1) does not hold for some "exceptional" values 
of i. We show the existence of another (k + 1)-gon P' containing B that has fewer 
exceptional i values. Further, P' has the property that if the convex hull of a 
k-subset of X contains pB, then there are k vertices of P' such that their convex 
hull contains pB. 

Let i = 1 be an exceptional value, i.e., o e int conv{ala2, a3}. Let L be the line, 
parallel to ala 3 and passing through the origin. It meets the lines aka I and asa 3 
in points a'~ and a~, respectively. Now replace al by a'~ and a 3 by a~ to get P'. 
Clearly, P c P' and, except for ala 3, all diagonal lines of type a~ai+2 remain the 
same. From this all the above claims follow, concluding the proof of Theorem 3. []  

3. Proof  of  Theorem 1 

In the proof r stands for r*. We assume, without loss of generality, that X coincides 
with the set of vertices of an n-gon P. We call the elements of X vertices (of P) 
and denote them by a, b, c . . . . .  The diagonal ab is called an inner (outer) diagonal 
if ab c~ rB ~ ~ is true (false). 

We assume that 

rB is not contained in int conv Y for any Y c X, I YI < 4. (.) 

We derive several properties of X and finally conclude that P has to be a regular 
pentagon circumscribed around B. 

Claim 1. To every vertex a two distinct inner diagonals adjacent to a exist. 

Proof. The ( n -  3) diagonals starting at a dissect P into ( n -  2) triangles. If 
the minimal number of those (consecutive) triangles which cover rB is less than 
three, then we are in contradiction with (,). Else we have at least two inner 
diagonals. []  



On the Exact Constant in the Quantitative Steinitz Theorem in the Plane 391 

Definition. A sequence al, a 2 . . . . .  a k of consecutive vertices is a critical sequence 
if aia i is an inner diagonal if and only if {i,j} = {1, k}. 

For a critical sequence, k > 3 holds, since no edge of P can intersect rB. Further, 
for any i t  {2 . . . . .  k - 1 } ,  the diagonals ata i and aia k avoid rB. Now let ak, 
ak+ t . . . . .  an, al be the rest of the vertices listed consecutively from ak to al. This 
sequence cannot be critical since if it was, then by the previous remark, for any 
i e{2  . . . . .  k -  1} a n d j e { k  . . . . .  n}, 

rB c i n t  cony{a1, al, Ok, aj}, 

contradicting (*). So we may and do speak of a critical diagonal and of its critical 
side since this sequence (side) is uniquely determined. 

Remark 1. It is evident that on both sides of an inner diagonal ab there is (at 
least) one critical diagonal (one of them, actually, may coincide with it). Claim 1 
implies that at least two critical diagonals exist. 

We need some further notation. If x, y ~ R 2 (x ~ y), then we write ~yy for the 
line they span and ~'~ for the half-line starting at x and containing y. Let 
cone(~-~, u-~ denote the convex cone whose boundary is contained in xy~ u uv. (This 
makes sense only if the half-lines ~-] and u-~ intersect.) Define the angle 7 by 
sin 7 = r, 0 < 7 < re/2. It is clear that, for any inner diagonal ab, 

/__ a o b >  ~ - 27. 

Here and in what follows /__ aob denotes the (unsigned) angle of the half-lines 
and ~ As luck would have it, 

7 < - .  
8 

In fact 7 = 0.391922... and re/8 = 0.392699 . . . .  which can be verified by simple 
calculation. We refer quite often to this fact. We also need the following: 

Lemma 1. Assume ab is an outer diagonal or an edge o f  P. Let  h~x and ~y be 
tangent half-lines to rB such that the triangle determined by -ff-~, by, and ab contains 
rB. I f  the intersection of  the lines "ff-~, by is in int B, then there are vertices u, v ~ X 
such that 

rB c i n t  cony(a, b, u, v}. 

Proof. The apex of the cone C = cone(h'~,x, b-~y) is in int B. Then C intersects the 
boundary of P, and it intersects the interior of some edge uv of P, and Lemma 1 
follows immediately. [] 
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a 

x 

Fig. 1 

Now let ab be a critical diagonal. Draw a half-line starting from a (resp. from 
b) tangent to rB and toward the noncritical side of ab. Denote the last point of 
this half-line in B by x (resp. y) (see Fig. 1). 

Claim 2. N o  vertex o f  P lies in the interior o f  C = cone(ax, by). 

Proof. Assume u e X n i n t  C and let c be any vertex on the critical side of ab. 
Then rB c conv{a, b, c, u}. []  

Claim 3. I f  ab is a critical diagonal, then the origin lies on its noncritical side. 

Proof. Assume the contrary and consider the previous picture. It is easily seen 
(as a consequence of the inequality 7 < n/8) that the apex of the cone C = 
cone(~x, ~y) is in int B. As C intersects the boundary of P, and, by Claim 2, there is 
no vertex in int C, an edge uv crossing C (and not intersecting B) exists. We choose 
the notation so that au is a diagonal meeting rB. Let uu' and vv' be half-hnes, 
tangent to rB such that the triangle determined by ~--f, uu', and vv' contains rB. 
We choose u' and v' as the last point in B, respectively (see Fig. 2). 

We show now that the lines uu' and vv' meet in int B. In view of Lemma 1 this 
will prove Claim 3. We compute angles: / a o u  > n - 27, /__ uou' > n - 2~, there- 
fore / a o u '  < 47. Similarly,/._ boy' < 4~. Since o is on the same side of ab as u' and 
v', we get 

/_ aou' + / b o y '  + / a o b  < n + 87 < 2n, 

w 

consequently the lines uu' and vv' intersect in int B. [] 

Claim 4. There is at most one critical diagonal on each side o f  any line L passing 
through the origin. 
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Proof. Let p and q be the points where L crosses the boundary of P and assume 
there are two critical diagonals alb~ and a2b2 on one side ofpq  (Fig. 3). The order 
of the points in question along the boundary of P is p, al, a2, bl, b2, q (p = al 
and q = b 2 are allowed). By Claim 3, each of axb I and a2b2 is critical with respect 
to the side not containing the origin. Then bla2 c~ rB = ~ and we can apply 
Lemma 1 if the corresponding tangents a2 x and bxy meet in int B. (x and y are 
chosen to be again on the boundary of B so that both cone(b~y,b~a2) and 
cone(a~ ,  a--~)  contain rB.) We compute angles: 

and 

and so 

/_qox = 2rt - ( / q o b  2 -t- / b 2 o a  2 + /__a2ox ) <_ 47 

/__poy = 2re - (/__poal + / a l O b l  + Lbxoy)  < 47, 

/__qox + /_poy < 87 < n, 

consequently, the lines a2x and bly  meet in int B. [] 

P a 2 

Fig. 3 
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Claim 5. For any inner diagonal there is exact ly  one critical diagonal on the side 
not containing the origin. (The  two diagonals may coincide.) 

Proof. Immediate from Claims 3 and 4. [] 

We say that two diagonals are disjoint if they have no inner point in common�9 

Claim 6. To every critical diagonal ab there are at most  two critical diagonals 
disjoint f rom it. 

Proof. If there were three such diagonals, then the three lines they span would 
intersect the half-lines ~ and ~a  in two or three points (one can be parallel to 
ab). Then one of them, say ~ i s  met by them in at most one point�9 We show that 
this is impossible. 

Assume that the lines of two critical diagonals ce and df  do not meet ~ (as in 
Fig. 4). Then de c~ rB = ~ .  Consider, again, the tangent half-lines d-~ and ~ of 
rB, with x and y being the last points of the half-lines in B, and rB lying in the 
triangle determined by the lines dx, -~y, de. We show that these two half-lines meet 
inside B. Then Lemma 1 can be applied and Claim 6 follows. Let a'b' and a"b" 
be the two chords of B tangent to rB and parallel to ab on the critical and 
noncritical side, respectively, a' and a" being closer to a than to b; further, let c', 
d', and e' be the last points of the half-hnes ec, f d ,  and ~ee in B, respectively�9 Clearly, 
c' e arc(a', a") and d' E arc(a', a"). This implies, on the one hand, x ~ arc(s, b'), and, 
on the other hand, e' ~ arc(t, b') =~ y ~ arc(t', a'), where s ( # b"), t (vL b'), and t' ( # a') 
denote the last points in B of the half-lines ~ ~ and ~ ,  all tangent to rB. From 
the relations 

7[ 7[ 
/__ a' os = 7[ - 4~ > - and /__ t' oa' = 4y < - 

2 2 

our claim follows directly�9 [] 

a c d  
a' a" 

b 
Fig. 4 
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Claim 7. To every critical diagonal ab there are exactly two critical diagonals 
disjoint from it. 

Proof. By Claim 1 from each end of ab a further inner diagonal starts (necessarily 
into the noncritical side.) Let x and y be the last point within B of the half-lines 
starting from a and b, tangent to rB on the noncritical side of ab, respectively, 
further, let bl (al) be the "last" vertex for which abz (bal) is an inner diagonal, i.e., 
cone(bal, by) and cone(h--~l, ~xx) contain no vertex besides al and b l, respectively 
(Fig. 5). By Remark 1 to both ab~ and ba~ there is a critical diagonal on the non-ab 
side. We show that they do not coincide. Since by Claim 2 int cone(~x, by) is free 
from vertices, there is no vertex in int cone(a-b~l, b-'~l). Thus albl is an edge and 
by this the last possibility for a common critical diagonal is excluded. [] 

Remark 2. The proof shows that if there are two critical diagonals ce and df 
disjoint from ab, then none of them is parallel to ab, ~ intersects one of the 
half-hnes ab and ha, and df intersects the other one. 

We say that the two critical diagonals intersect if they are not disjoint. 

Claim 8. There are no three critical diagonals that pairwise intersect. 

Proof. Assume, to the contrary, that ab, cd, ef are pairwise intersecting critical 
diagonals, and let a, c, e, b, d, f be the order of these vertices along the perimeter 
of P. We assume, without loss of generality, that e is on the critical side of ab and 
b is on the critical side of ef. There are two cases to consider now: 

Case 1: a and f are on the critical side o f  cd. Then, by Claim 3, the origin lies in 
the triangle determined by the lines ab, cd, ef and this triangle is contained in 
conv{a, e, d} (Fig. 6). However, ae, ed, da avoid rB so 

rB c i n t  conv{a, e, d}, 

contradicting (.). 
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c 

a 

e 

Fig. 6 

Case 2: e and b are on the critical side of cd. Then o e conv{a, e, b, f}  since 
otherwise we separate conv{a, e, b, f}  from o by a line L passing through the origin 
and observe that two (in fact, three) critical diagonals lie on one side of L, 
contradicting Claim 4. If af n rB = ~ ,  then 

rB c i n t  conv{a, e, b, f}  

and we are finished. However, if af c~ rB # ~ ,  then there is a critical diagonal on 
the nonzero side of af (by Claim 5), and there are three critical diagonals on the 
zero side of that diagonal, contradicting Claim 7. []  

Define now a graph F whose vertex set consists of the critical diagonals, and 
two of them are joined by an edge if the two critical diagonals are disjoint. 

Claim 9. F is a five-cycle. 

Proof. By Claim 7 every degree in F is two, thus F is the union of finitely many 
cycles. 

A critical diagonal is seen from o at an angle at least rt - 27. Then three pairwise 
disjoint diagonals would give a total of at least 3(rr - 2y) > 2n, showing that there 
is no triangle C3 among the cycles of F. A four-cycle C4 in F corresponds to 
critical diagonals Dx, D2, D 3, D 4 where D~ intersects D 2 and D 3 intersects D 4 and 
the rest of the pairs are disjoint. Set D i = a~bi. Then conv{a~, bt, a2, b2} and 
conv{a3, b 3, a4, b4} can be separated by a line L, and the nonzero side of L would 
contain two critical diagonals which is not allowed by Claim 4. So there is no C4 
in F. A k-cycle with k > 6 would contain an independent set of three which is 
excluded by Claim 8. Thus F consists of five-cycles only. However, two distinct 
five-cycles would again contain an independent triple. Consequently, F is a single 
five-cycle. [ ]  

We are homing in on the target now. Let D~, i - 1 . . . . .  5 (Di+5 = Di), be the 
five critical diagonals, the consecutive pairs disjoint in cyclic order (Fig. 7). Set 
D~ = a~b~. D2 is disjoint from DI and D3 and both of them are on the noncritical 
side of D2. In view of Remark 2 (following Claim 7) we can choose the notation 
so that albl intersects b2a2, and a3b3 intersects a ~ 2 .  D4 is disjoint from D 3 and 
intersects D 1 and D 2. Let b4 (resp. a4) be the critical side of a2b 2 (albl). D5 is 
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a5 b 4 

Fig. 7 

bl 

disjoint from D 4 and D1 and it intersects a3b 3. Thus the order of these points on 
the boundary  of P is al, b3, a4, bx, a2, b4, as ,  b2, a3, bs. 

It follows from Remark 2 that a~b~ intersects b~+~a~+~. Let c~ denote the 
point of intersection. Notice that c i = b, = ai+~ is possible. We show next that 
there is no vertex in the interior of the cone (b--~, ~ )  (i = 1 . . . . .  5). 
Assume, to the contrary, that  v is a vertex in int cone (b--~, a-~a), say. Then 
all four edges of conv{v, b 2, a 5, a2} are disjoint from rB and since a2b 2 is an inner 
diagonal, rB c i n t  conv{v, b 2, as, a2} contradicting (,). This means that all vertices 
are contained in the star-pentagon c~c2c3c4c5. Set Q = conv{c 1 . . . . .  cs}. Observe 
that 

Q ~ P ~ B  

and the first inclusion is strict unless c~ = bi - a~+ 1 for every i = 1 . . . . .  5. Then, 
by Theorem 3, either Q is a regular pentagon circumscribed around B or  it has a 
diagonal not  meeting rB. Since every diagonal of Q intersects rB, the first 
alternative holds. As B is the incircle of Q the inclusion P c Q cannot  be strict, 
consequently P = Q. [ ]  

4. Extensions 

Sketch of  the Proof of  Theorem 1 when X is not Finite. Write P = conv X, 
= cl X, P = cl conv X = cl P. There are two cases to consider. 

Case 1: X is bounded. Then P is bounded,  too, and X, P are compact.  It can be 
readily seen that the proof  of Theorem 1 goes through (almost without change) 
for the compact  set X. Then either/~ is a regular pentagon circumscribed around 
B or  there are points Yl, Y2, Y3, Y4 ~ X  such that rB c int conv{yl  . . . . .  Y4}. As 
Yi e X, there are points in X arbitrarily close to yi. So for suitable x~, x 2, x 3, x4 e X 
we have rB c i n t  cony{x1 . . . . .  x4}. 

When  P is a regular pentagon, then so is P as well but  with some points on 
its boundary  missing from P. A simple analysis using the fact that P contains the 
closed disk B finishes the proof. 
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Case 2: X is not bounded. We may  assume that  B is not  contained in the convex 
hull of any bounded  subset of  X, i.e., for all R > 0, 

B r conv(RB n X). 

It  can be shown, then, that  as R ~ oo the sets 

cl(B\conv(RB c~ X)) 

shrink to one or two points on the bounda ry  of B. Let b be this point (or one of 
these points). Clearly, b e X must  hold. Further,  one of the half-lines, L, start ing 
f rom b and tangent  to B, has the p roper ty  that  X contains points  arbitrari ly close 
to L and arbit_~rarily far f rom b. Let bx be the half-hne tangent  to rB (so that  
rB c cone(L, bx)), where x is a point  on the boundary  of B. We show easily that  
x e conv{a, b, c} for some a, e ~ X. Then, for a suitable y ~_ X far from b but close 
to L, we get 

rB c i n t  cony{a, b, c, y}. 

Sketch o f  the Proof  o f  Theorem 2. Let X be finite and set r = r*. The definition 
of a critical diagonal  is the same as in Theorem 1. Let ab be a critical diagonal  
and let ae (resp. bar) be the last inner diagonal  adjacent  to a (b) and distinct f rom 
ab (see Claim 1 from the p roof  of  Theorem 1). The  lines fi-6 and bd intersect outside 
B since otherwise rB c i n t  conv(a ,  b, c, d, x} for any x e X from the critical side 
of  ab. Then the nonzero  side of  ac (bd) contains a critical diagonal  alcl  (blda). 
Thus  the critical diagonals  D~ = albl ,  D2 = alel ,  and D 3 = btd~ are pairwise 
disjoint. We can find three pairwise disjoint critical diagonals E~, E2, and E3 so 
that  Ei is disjoint f rom D r if and only if i = j. (We omit  the details.) These six 
diagonals form a s tar-hexagon.  The  rest of  the p roof  is analogous to that  of 
Theo rem 1. 

Some related problems are discussed in [RZ] .  
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