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Abstract 

The simplicial complex K(A) is defined to be the collection of simplices, and their proper sub- 
simplices, representing maximal lattice free bodies of the form (x: Ax<~ b), with A a fixed generic 
(n + 1 ) × n matrix. The topological space associated with K(A) is shown to be homeomorphic to R n, 
and the space obtained by identifying lattice translates of these simplices is homeorphic to the n-toms. 
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1. Introduct ion  

We study the global topological  structure of a simplicial complex arising naturally in the 

study of  integer programming.  The simplices in the complex consist of maximal lattice free 

bodies defined in the following way. Let Z n be the lattice of  integers in R ", and let A be an 

(n + 1) × n matrix, with ith row denoted by ai, and which satisfies the two conditions: 

(A1)  There is a unique (up to a positive multiple)  strictly positive ( n +  1) row-vector  

~- such that ~-A = 0, and 

(A2)  If, for any index i, a;. z = 0 for some integral z, then z = 0. Condition (A1)  implies 

that the n × n  minors of  A are non-singular and that for any b the simplex (xlAx<~b) is 

bounded. Since, for our purposes, the rows of  A can be normalized arbitrarily, there is no 

loss in generality in assuming that 7r= 1 = (1 . . . . .  1). Condition (A2)  asserts that for any 

*Corresponding author. 
The first author was partially supported by Hungarian NSF grants 1907 and 1909, and also by U.S. NSF grant 
CCR-9111491. The research of the second author was supported by DMS9103608 and the third author by NSF 
grant SES9121936. 

0025-5610 © 1994---The Mathematical Programming Society, Inc. All rights reserved 
SSDIOO25-5610(94)OOOlO-Q 



274 L Bdrdny et al. / Mathematical Programming 66 (1994) 273-281 

bi the hyperplane a i • x = b i contains at most one lattice point in Z n, As it will turn out, this 
condition can be relaxed so that small perturbations of  A are also admissible. 

A maximal  lattice f r ee  body is a body of  the form K =  (x lAx  <<, b) containing no lattice 
points in its interior, and such that any closed convex body which properly contains K does 

have a lattice point in its interior. It follows from (A2) that for each i there is a single lattice 
point z i on the hyperplane a i ' x =  b~, that these lattice points are distinct for different i, and 

that a;. z j < a~. z ~ fo r j  4= i. Moreover  there is no lattice point z such that ai" z < ai" z ~ for i = 0, 
1, ..., n. 

The abstract simplicial complex K ( A )  consists of  all of  the formal simplices (z °, z 1 . . . . .  
zn), oriented in this fashion, and all of  their subsimplices. The complex contains an infinite 
number of  simplices, since an arbitrary lattice translate of a maximal lattice free body is 

also maximal lattice free. It will be shown, however, that (A1) implies that the complex is 
locally f in i te  in the sense that every lattice point z is a vertex of a finite number of  such 
simplices (White, 1983). It can also be shown that each ( n -  I)  face (z  1 . . . . .  z i-1, z i+~, 

.. . .  z n) is incident to precisely two n-simplices in the complex, with opposite derived 

orientations, so that the complex is an orientable pseudo-manifold (Scarf, 1981a). 
The simplicial complex K ( A ) ,  being locally finite, can be provided with the usual topol- 

ogy: Give each simplex in K ( A )  its customary topology, and realize K ( A )  as the disjoint 
union of its vertices and the relative interiors of  its simplices and subsimplices. A set in the 
union is defined to be closed if its intersection with the closure of  each simplex in K ( A )  is 
a closed set. The associated topological space will be written as ]K(A) ]. 

When n = 2, there is a basis, b 1, b 2, for the lattice Z 2, such that the simplices in K ( A )  are 

the lattice translates of  (0, b 1, b 1 + b  2) and (0, b 2, b 1 +b2 ) ,  thereby providing a simple 

geometric realization of the abstract complex as ~2. When n/> 3, however, the convex hulls 
of  two distinct n-simplices may contain common interior points, and the global structure of  
the complex is no longer transparent. Some indication of this structure is suggested by the 

following result which also appears in White (1983).  
Assume that the rows of A are permuted so that de t [ l ' ,  A] > 0, and for each simplex 

S =  (z °, z 1 . . . . .  z ~) in K ( A ) ,  define 

index(S) = sign [det(z I - z ° . . . . .  z n - z °) ] , 

or zero if the determinant vanishes. Then for generic x ~ ~",  

E ( index(S) [ x ~  convex(S) )  = 1 . 

The result suggests that the natural geometric realization of the complex K ( A )  by means 
of the convex hulls of  its simplices may be an intricate folding of ~n into itself; and this is, 
in fact, our major conclusion. 

Theorem 1. [K(A) [ is homeomorph ic  to ~n.  

The group of integers Z n acts on K(A),  since the lattice translate of a simplex in K ( A )  

is also a simplex in K ( A ) .  We may, therefore, obtain a new complex, K Z ( A ) ,  by identifying 
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those simplices or subsimplices of K(A), which are lattice translates of each other. Local 
finiteness of K(A) implies that the new complex has a finite number of simplices of each 
dimensionj = 0 . . . . .  n. In particular KZ(A) has a single vertex. KZ(A) is not a conventional 
simplicial complex, but is a more general object known as a CW complex (Massey, 1980). 

KZ(A) is realized as the disjoint union of a single vertex and the relative interiors of the 
simplices and subsimplices of K(A), with lattice translates identified. As before, a set in 

the union is closed if its intersection with the closure of any simplex is a closed set. The 
topological space obtained in this fashion is denoted by I KZ(A) [, and is clearly homeo- 
morphic to [K(A) [/Z n. 

White (1983) contains an additional result, bearing on the structure of KZ(A). Again 

assume that the rows of A are permuted so that det[ 1', A] > 0. 
Then 

~2 [det(z 1 - z  ° . . . . .  z n - z ° )  ]/n!= 1 , 

with the sum taken over a set of representatives in K(A) of the maximal simplices in KZ(A). 
The result states that the sum of the signed volumes of the simplices in KZ(A) is equal to 
unity, and is consistent with the following theorem, conjectured by Lex Schrijver. 

Theorem 2. I KZ(A) I is homeomorphic to the n-torus. 

The demonstration of Theorem 1 involves the construction of a simplicial mapping of 
the vertices of K(A) into ~n+ 1, such that the convex hulls of the images of the vertices of 

two distinct n-simplices no longer overlap. They form, in fact, the facets of a convex set in 
~n+l. 

Before presenting the details of this construction it may provide motivation for the study 
of K(A) to say a few words about the relationship between maximal lattice free bodies and 

integer programming. Consider the integer program 

min • aoj" zj (1) 
subject to ~, aij" zj <~ bi, i = 1 . . . . .  n and z ~ Z n 

Let N(O) be an arbitrary set of lattice points which is symmetric about the origin. For a 
particular right-hand side b, a lattice point z is said to be a local minimum with respect to 
N(O) if z is a feasible solution to ( 1 ), and if, for every h ~ N(O), z + h is either infeasible 
or yields a higher value of the objective function ~,aoj" (z~ + hfl. 

Under assumptions (A 1 ) and (A2), it may be demonstrated that there is a unique minimal 

N(0) ,  called the set of neighbors of  the origin associated with the matrix A, for which a 
local minimum with respect to N(0) is a global minimum for each integer program obtained 
by specifying a right hand side b. The set of neighbors may be shown to consist of precisely 
those lattice points h which are contained in some simplex of K(A), another of whose 
vertices is the origin (Scarf, 1986). Alternatively, a lattice point h is contained in N(0) iff 
the only lattice points in the body 
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(xlAx~<b), with bi = m a x(0 ,  ai 'h)  

are 0 and h themselves. Geometrically, the set of  neighbors are those lattice points h such 

that (0, h) is an edge of  K(A).  

The complex KZ(A) is intimately related to what is known as the Frobenius problem: 

Letp  = (Po . . . . .  Pn) be a vector of  positive integers whose greatest common divisor is unity. 

The Frobenius problem is to find the largest in tegerf  * which cannot be written as a non- 

negative integral combination of  thep~. LetA be a matrix of  size (n + 1) × n, whose columns 

generate the n dimensional lattice of  integers h satisfying p-  h = 0. Then it has been shown 

(Scarf and Shallcross, 1992) that 

f * = max(p,  b IAx~< b is a maximal lattice free-body) - Epi.  

Since all maximal lattice free bodies (x lAx <<. b) are similar in shape, the Frobenius number 
can be obtained by finding that maximal lattice free body with maximal volume. 

2. A geometric realization of K(A) 

We now begin the process of  proving Theorems 1 and 2. Consider the mapping of R" 
into R n + 1 given by 

Yi=exp(tai 'x)  for i = 0  . . . . .  n ,  (2) 

with t a fixed positive real number. Clearly the image of  ~n under this mapping is contained 

in the set M = (y = (Yo . . . . .  Yn) J Yl > O, I-Iyi = 1) and, as we shall see, the image is the entire 
sheet of  this hyperboloid. (Scarf, 1973, contains an earlier but less useful version of this 

mapping.) 
Let V = (v) be the image of  the lattice of  integers Z n. Notice that V is a discrete set, i.e., 

every compact set in ~n q- 1 contains finitely many elements of  V. We can define a multipli- 

cation in En +1 by taking the coordinate-wise product of  two vectors. With this multiplica- 

tion, M is an Abelian group with identity 1 = ( 1 . . . . .  1), and V a discrete subgroup. Finally, 
let C be the convex hull of  V. (For simplicity of  notation, we omit explicit reference to the 

dependence of  V, C and other constructions on the parameter t.) 

C is not the convex hull of  finitely many points and so it need not be, and is not, a convex 
polytope. We can, nevertheless, define faces of  C in the following way. L is a face of C if 

there is a half-space H c R n + 1 with bounding hyperplane H ° such that C c H and C n H ° = L. 

The vertices, or zero dimensional faces of  C, are precisely the vectors v ~ V, since each such 

vector is on the boundary of  the strictly convex body (y l Y > 0, I~yi >/1 ). The line segment 

[v, u] will be an edge of  C (a one dimensional face) if and only if the segment [1, vu -1] 

is also an edge. More generally the facial structure of C is identical at each vertex; the 
convex hull of (u, v 1 . . . . .  v k) will be a face of  C if and only if the convex hull of  ( 1, v 1 • - -  1 ,  

.... vku-1) is also a face of  C. ( If  (y: ~hiyi>~h) is the half-space which verifies that the 

first convex hull is a face, then (y: S, hiu~y~ >~ h) verifies that the second convex hull is a face, 
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and conversely). As we shall see (Theorem 3), there is a to such that for t >  to, the facets - 

or faces of  dimension n - of  C are simplices and the number of  facets containing any 
particular vertex is finite. As a consequence, C will have the facial structure of  a polytope 

at each vertex. 
In order to prove Theorem 1 we shall require some preliminary arguments. We start with 

three lemmas concerned with the facial structure of  C. 

L e m m a  1. The image o f  ~ ~ under the mapping (2)  is the entire set M = (y l Y > O, 1-Iy~ = 1 ). 

Proof.  Let y be an arbitrary point in M. The n × n minors of  A are non-singular so that there 

is a solution, x, to the system of equations 

a i ' x  = ( 1/ t )  log y~, for i = 1 . . . .  , n .  

Since I-Iyi = 1, the same x satisfies the corresponding equation for i = 0. []  

L e m m a  2. Let e > 0 be given. Then f o r  each i, there is a v ~ V with v 1 <~ e f o r  all j ~ i. 

Proof. Take i = 0. From (A 1 ), the set (x la i .  x <<, ( 1 / t ) l o g  e, j = 1 . . . . .  n) is a cone with non- 

empty interior and therefore contains a lattice point. The argument for other i is similar. []  

L e m m a  3. Let y o be on the boundary o f  C and let h = ( ho . . . . .  hn) 4:0 be such that h . y >1 h . y o 

f o r  all y ~ C. Then hi > O f o r  all i. 

Proof.  yO is in the set (y [y > 0, I-[yi >~ 1 ), so that all of  its coordinates are strictly positive. 

If  one of the coordinates of  h, say h i, were < 0, then, as e tends to zero, the vectors v 

described in Lemma 2 will lie in C and violate the inequality h . v  >~ h .yO. It follows that 

hi >1 0, and that h. yO is strictly positive since the coordinates of h are /> 0, but not all zero, 

and y° > 0. But then if hl = 0, these same vectors in V will violate h- v ~> h .y°. []  

We now turn to three lemmas concerning the structure of  K ( A ) .  

L e m m a  4. Each lattice point  z ~ Z n is contained in a f inite number o f  simplices in K( A ) . 

Proof.  Let the lattice point be z = 0 ,  with simplex (0, Z 1 . . . . .  zn), associated with the 

maximal lattice free body given by (x lAx ~< b), where bg = maxja;, z j >t 0. Any particular set 

of  this form contains a finite number of  lattice points; if there were an infinite sequence of  

such maximal lattice free bodies, all differing from each other, then in this sequence one of  

the coordinates, say bo, would tend to infinity. But this is impossible since the cone defined 

by a~. x < 0, for i = 1 . . . . .  n, has a non-empty interior which contains infinitely many lattice 

points. []  

N(0) ,  the set of  neighbors of  the origin, is identical with the set of  (z i -  zJ), with z g and 
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z j vertices of  a common simplex in K ( A ) .  We note that Lemma 4 implies that N(0)  is finite. 

Lemma 4 has another useful implication. 

Lemma 5. Define 6 1  = rain ( l a;" hi :  h ~ N(0) ,  i = 0, 1 . . . . .  n).  Let  S be a f inite set o f  lattice 

points and let K = ( x l A x  < b ) ,  where b i = m a x ( a i . z :  z ~ S ) .  Then i f  K contains a lattice 

point, it will contain a lattice point ~ with ai " ~ ~ bi - 61 f o r  all i. 

Proof. Let ~:~ K and let i be an index such that b i -  61 < ai" ~< bi = ai" z i with z i a particular 

lattice point in S. Then ~: and z i are not neighbors. It follows that the smallest body of the 

form ( x l A x ~ c )  containing s c and z ~, will also contain an interior lattice point. If  the 

conclusion o fLemma  5 is not valid for this interior lattice point in this smaller body - which 

is strictly contained in K -  we repeat the argument. But the argument must terminate after 
a finite number of  repetitions, since each repetition eliminates at least one interior lattice 

point. []  

We have one final Lemma before proceeding to the proof of  Theorem 1. 

Lemma 6. There is a 62 > 0, such that i f  (z °, z 1 . . . . .  Z n) is a simplex in K(A),  ordered so 

that f o r  each i, maxjai, z j is assumed at z i, and i f  z is a lattice point  different f rom z °, z 1 . . . . .  

z n, then a i . z  >~ ai" z i + 62for some i. 

Proof. It is sufficient to demonstrate Lemma 6 for those simplices in K ( A )  with z ° =  0, 

since the general simplex may be reduced to this case by subtracting z ° from each z;. The 

number of  such simplices is finite and it is therefore sufficient to find a 82 for each simplex 

and take the smallest of  these. But, of  course, there is such a 82 for any particular simplex 

(0, z ~ . . . . .  z n) in K ( A ) ,  since otherwise there would be an infinite set of lattice points, z(E), 

satisfying ai" z(E) < ai" z g + ~, for i = 0, ..., n, and E tending to zero. []  

3. The proof  of  Theorem 1 

Theorem 1 will be demonstrated by means of  the following result, which shows that for 

large t, the convex hulls of  the images of  the vertices of  simplices in K ( A )  provide a 

geometric realization of  the complex. 

Theorem 3. There is a to such that f o r  each t > to, the n-facets o f  C are simplices. Moreover, 

f o r  such t, the simplex ( z °, z 1 . . . . .  z n) ~ K( A ) i f  and only i f  the images o f  its vertices (v °, 

v 1 . . . . .  v n) are the vertices o f  an n-facet o f  C. 

Proof. The proof consists of  two parts. We begin by letting (z °, z 1 . . . . .  z n) be an arbitrary 

set of  n +  1 lattice points whose images (v °, v 1 . . . . .  v n) lie on an n-facet of  C, for some 
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particular t > tl = (log (n + 1 ) ) / 61, and demonstrate that these n + 1 lattice points form a 

simplex in K ( A ) .  

Let h be the strictly positive normal to the hyperplane supporting the facet containing 
(v  °, v 1 . . . . .  vn) ,  for the particular t in question. We have 

E hi exp( ta i  "z) >/1,  (3) 

for any lattice point z, with equality for z --- z ° . . . . .  z n. 

Consider first z = z j. It follows from the above equali ty that for each index i, 

hi e xp (  tai " z)  ~< 1 ,  

so that 

ai " z ~ <~ - ( 1 / t )  log(hi) , 

and therefore 

max~[ai, z ~] ~< - ( 1/t) log(hi) . 

We wish to show that there are no lattice points other than z °, z 1, ..., z n in the body 

(xlAx~<b), with b i = m a x j [ a l . z J ] ,  so that (z °, z 1 . . . . .  z n) is a simplex in K ( A ) .  Let z be 

such a lattice point (z = z j is possible at the moment) so that ai" z <<. maxj[ai, z j] - 61, for all 
i, using Lemma 5. But then inequality (3) implies that there is an index i with 

hi exp( ta i  "z) >1 1 / ( n +  1) , 

and 

ai "z>_- - ( 1 / t ) l o g ( h i )  - ( 1 / t ) l o g ( n +  1) 

~> maxj[ai ,  z j] - ( 1 / t ) l o g ( n  + 1) , 

a contradiction if t >  tl = ( log(n + 1 ) )/61. 

We now turn to the second part of  the argument and demonstrate that the convex hull of  

the images of  the vertices of  a simplex (z °, z 1 . . . . .  z n) in K ( A )  form a facet of  the boundary 
of  C for large t. Let ( v °, v 1 . . . . .  v n) be such a set of  images and let h satisfy h. v j = 1, for 

j = 0, 1 . . . . .  n. We will demonstrate the existence of  a t2, for this simplex, such that h.  v/> 2, 

for all t >/t2, and for all v which are images of  lattice points other than z j. Assume that the 
vertices have been permuted so that a i . z  i= max j[ a i • Z J]. 

By Cramer's rule we have 

ho = det N /  det[ e x p (  tai . z 1) ] 

with N the matrix obtained by replacing row 0 by ( 1 . . . . .  I )  in the matrix appearing in the 

denominator. Let us estimate the denominator first. The determinant can be written as the 

sum of ( n +  1)! terms, each one based on a permutation of  (0, 1 . . . . .  n). But for each 
permutation, o-, other than the identity, the corresponding term will be [ I-Iexp (ai-z ~ i ) )  ] t, 

which is strictly less than 

FI exp(ai . z  i) ] ' ,  
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so that for large t this single term will be the asymptotic value of  the determinant in the 

denominator. A similar analysis tells us that the numerator is asymptotically equal to the 

same product with index ranging from 1 to n, so that ho ~ exp( - tao" z°), in the sense that 

ho = ( 1 + eo ( t ) )  exp ( - tao" z°), with eo(t) ~ 0 as t ~ oo. 

By a similar argument we obtain 

hi = (1 + ei( t))exp( - ta i  "zi), with ei(t) ~ 0  as t ~ ,  for all i .  

In particular there is a t2 so that for all t >" t2, we have 

hi >'2exp( - ta i  . z i ) e x p ( - t 8 2 )  for all i ,  (4) 

with 62 the constant referred to in Lemma 6. 

In order to demonstrate that con (v o, v 1 . . . . .  v n) is a facet of  the boundary of  C, we shall 

show that h. v >/2, for t>" t2, and for any image, v, of  a lattice point other than (zJ). From 
(4),  we have 

h'v>>.2 Y~ exp(t(ai " z - - a  i "zi-- 62)) >-2,  

for any integral z other than (z J), since, for that z, Lemma 6 states that there must be at least 
one index i with ai'z>-ai'zi+ 62. 

In this argument, the value of t2 depends on the particular simplex (z °, z 1 . . . . .  zn); in 

order to complete the proof of  Theorem 1 we must show that a single value suffices for all 

simplices. But for any t, the image of  (z °, z 1 . . . . .  z") is a facet of  C if the image of  (0, 

z ~ - z  ° . . . . .  z " - z  °) is a facet. There is a finite number of simplices in K(A) for which 

z ° = 0, and we may select the largest value of  tz associated with any of  these. 

The value of  to in the statement of  Theorem 3 is the larger of  fi and tz. It should be 

remarked that we have demonstrated that for t >  to, the n-facets of  C are simplices. For if 
the convex hull of  ( v o, v ~ . . . . .  v n) is contained in an n-facet of  C, we know that its preimage 

(Z  O, Z 1 . . . . .  Z n)  is a simplex in K(A) and, consequently, the convex hull of  (v °, v 1 . . . . .  v") 

is, itself, an n-facet. [ ]  

Theorem 3 yields a geometric realization of  the complex K(A) as the boundary of  the 

convex set C, for t >  to in the following fashion: given a particular simplex in K(A) with 

vertices (z °, z 1 . . . . .  z"),  associate the point x = E%v t with the formal convex combination 

]E%z j, for each a = ( ao . . . . .  an) with % >" 0, E a  t = 1. With this mapping, F: I K(A) I ~ OC, 
vectors arising from different simplices in K(A) or from the same simplex but with different 

formal convex combinations, are mapped to different points on the boundary of  C. Thus F 

provides a homeomorphism between I K(A) I and OC, and Theorem 1 follows from the 
observation that OC is homeomorphic to ~n. 

For the proof of Theorem 2, we need an argument from equivariant topology which we 

shall state in a somewhat informal way. Consider the composite mapping obtained by first 

mapping the formal convex combination E%z j to x on the boundary of  C, as above, and 

then mapping x to y in M, by Yi = Xi/[I~xj] l/n" This composite mapping, T: I K(A) I ~ M, 



L Bdrdny et al./Mathematical Programming 66 (1994) 273-281 281 

is a realization of the complex K(A) as the hyperboloid M. Furthermore the mapping T is 
compatible with (equivariant for) the actions o fZ  n on [K(A) ] (by translation) and on M 
(by coordinatewise multiplication by points in V), i.e., if (Yo . . . . .  y,) is the coordinate 
vector associated with the formal convex combination Eaiz j, then the coordinate vector 
associated with its lattice translate Eaj(z~+z) is (YoVo . . . . .  y,v,), with v the image of z 
under the mapping (2). Therefore, the set of lattice translates of a given point in [K(A) I 
corresponds to a single point in M/V, so that T induces a homeomorphism between 
I KZ(A) I = I K(A) [/Zn and the quotient space M/V. Theorem 2 follows from the obser- 
vation that M~ V is homeomorphic to the n-toms En/zn. 
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