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Abstract. Given a set S of n points in R% a subset X of size d is called a k-simplex
if the hyperplane aff{X) has exactly k points on one side. We study E,k, n), the
expected number of k-simplices when § is a random sample of n points from a
probability distribution P on R?. When P is spherically symmetric we prove that
Efk, n) < cn~*. When P is uniform on a convex body K < R? we prove that E,(k, n)
is asymptotically linear in the range cn < k <n/2 and when k is constant it is
asymptotically the expected number of vertices on the convex hull of S. Finally, we
construct a distribution P on R? for which E((n — 2)/2,n) is cnlog n.

1. Introduction and Summary

Let X be a set of n points in R? in general position. The simplex conv(S) (when
8§ < X and (S| = d) is called a k-simplex if X has exactly k points on one side of
the hyperplane aff(S). A k-simplex is an (n-d-k)-simplex as well. Although this
should not cause any confusion we always try to have k <n—d — k. In two
dimensions a k-simplex is called a k-segment.

Write e (k, n) for the maximal number of k-simplices over all configurations X
of n points in R%. Most of the previous work has focused on e,(k, n) because of its
connection with k-sets. A subset Y < X of size k is called a k-set if Y and X\Y
are separated by a hyperplane. The question is: how many k-sets may a set X
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possess? It is easy to translate an upper bound for ek, n) into an upper bound
on k-sets.

Clearly, O(n) provides a trivial upper bound for e (k, n). When d = 2, nontrivial
bounds were obtained by Lovasz [15] for halving sets (n even, k = n/2), and later,
for general k < n/2, by Erd0s et al. [12]. A simple construction gives a set S with

nlog k k-sets, while a counting argument shows that e,(k,n) = O(nﬁ). These
bounds were rediscovered several times, for example by Edelsbrunner and Welzl
[11], but had not been improved until Pach et al. [17] reduced the bound to
nﬁ/log* k. Papers [1], [13], and [22] contain results related to the study of
e,(k, n).

Raimund Seidel (see [10]) extended the Lovasz lower bound construction to
d = 3 and showed that e;(k, n) = Q(nk log(k + 1)). The argument may be applied
inductively giving ek, n) = Q(nk?~ 2 log(k)).

A nontrivial upper bound for d = 3 was recently obtained by Barany et al. [5].
They showed that e;(n/2, n) = n® ¢, where ¢ > 0 is some small constant. This, in
turn, was improved by Aronov et al. [2] to O(n®? log®® n). Dey and Edelsbrunner
[9] have been able to remove the logarithmic factors from this bound. Recently, a
nontrivial upper bound for d > 3 was established via a result of Zivaljevi¢ and
Vrecica [23]. They proved a colored version of Tverberg’s theorem which now
implies that O(n®~*) is an upper bound for halving sets in R?, ¢; > 0 being a small
constant depending on d.

It appears likely that the truth is near the lower bound. Support comes from
the fact that in “typical” cases there are relatively few k-sets. In this paper we
study E(k, n), the expected number of k-simplices when X is a sample of n random
points from a probability measure P on R?. When there is no confusion we write
E(k, n). The following derivation gives an expression for Ek, n) that we use
throughout. Pick d points x, ..., x; independently, according to P. Write / for the
hyperplane aff(x,,...,x;). We assume throughout that P vanishes on every
hyperplane so ! is well defined with probability one. (In particular, P is nonatomic.)
Write I* and I~ for the open half-spaces on the right and left of /, respectively,
and set F(l) = min(P(I"), P(I7)), the probability content cut off by . The random
variable F(I) has a distribution function

G(t) = P(F(h < t) (1

which determines E(k, n) in the following way. Given a sample X = {x,,..., X,}
from P, the expected number of k-simplices is

E k,n) = Y Prob[there are k points on one side of affix;, ..., x;)]
1<i<:-<ig<n
_ d 1/2
= <Z><n L ) J [t5Q — e 47 4+ (1 — " 47 %] dG(). 2)
0

Our first result is a simple one about spherically symmetric distributions (the
definition is given in Section 2).
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Theorem 1. For a spherically symmetric distribution we have E{k, n) < c,n*"}, ¢,

being a constant depending only on d.

Next we deal with the case where P 1s the uniform distribution on a compact,
convex body K — R? We assume that Area(K) = 1 so that P coincides with the
restriction of Lebesgue measure to K. Define v: K+ R by

v{x) = inf{Area(K n H): x€ H, H is a half-plane} 3)

and A(t) = Ag(t) = Area{x € K: v(x) < t}. The properties of v and A(r) have been
studied in [3], [6], and [21]. Here we prove that G is differentiable and that G'(¢)
is essentially equal to A(f). This helps establish the following theorem.

Theorem 2. There are absolute constants c, and c5 such that, for the uniform
distribution over any convex set in the plane,

k+1 k+1
cznA<~—t—> < E,(k,n) < c_,,nA(mL) (@)
n n

for every sufficiently large n and every k =0, 1,..., [ (n — 2)/2].

Sometimes we express the relation in (4) as

Es(k, n) ~ nA<kL1>.

n

Remark 1. Since t < A(t), we have ¢, < A(r) < 1 when t > ¢, > 0. Theorem 2
then shows that when 3 > k/n > c,,

Ez(k, n) ~ Rn.

The behavior of A(¢) (for small ) is given by Theorem 7 of [6]
1 2/3
cst log : < A(t) < ct™”. (5)

Schiitt and Werner [21] show that for a function f(f) with cstlog(l/f) <
f(t) < cet?* (and some additional properties) there is a convex set K = K < R?
of area 1 such that Ag(t) ~ f(¢). This shows that not only does

n
k+

1 2/3
cs(k + 1)log N < E,(k,n) < cg n(——n———>
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hold for P uniform on a convex body, but also, for (almost) any function
between these bounds, there is a convex body K with E,(k, n) behaving like that
function.

The special case k = 0 is interesting, Then E,(k, n) equals the expected number
of edges of conv(X), which was known to behave like A(1/n) (see [6]). So Theorem
2 says that E,(k, n) behaves like the expected number of edges of conv(X) when
k is a constant, and like n when k/n > ¢t,.

Finally, we give an example of a distribution for which E,(k, n) is large. We
consider the case k = (n — 2)/2 (n even), that is, the expected number of halving
segments. We give a distribution P, such that

m—2
EZ(T’ m) >csmlogm

whenever the sample size m is within a constant factor of n. Then, using P,, we
describe a distribution P for which

n—2
E2< 5 ,n)gcgnlogn.

Finally, we point out the abstract of [7], where one of the present results
was announced, but with an erroneous proof. This is one of the reasons we
take some care in establishing the simple statements about E,. The methods
are familiar in geometric probability and integral geometry (see [4], [16],
and [19]). Nevertheless, the results seem to be the first ones concerning E,
and in view of the fact that k-sets have applications in computational geo-
metry and machine learning [14], [18], we feel that these theorems are useful and
interesting.

2. Spherically Symmetric Continuous Distributions

Suppose that P has a density function g: R? - R that only depends on |x]|,
the distance from xeR? to the origin. We say that such a P is spherically
symmetric. This defines another function f:R, - R by f(r)=g(]x|) when
r=|x|.

Proof of Theorem 1. Set k,_, = vol,_,($*""). Clearly,

1= J g(x) dx = f ) fOr tdrdu=rx,;_, J‘w fr¢Ydr. (6
R4 ueSd-1 Jr=0 0
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Now let H(t) be an open half-space with probability content t, 0 < ¢ < 4, and write

p = p(t) for the distance (from the origin) to I1, the bounding hyperplane of H(t).
Then

t=f g(x)dx=J‘ao J‘ S/ +1yl?) dy dr, Q)
H@) r yeRd-1

=p

where r is the length of the component of x parallel to u and y = x — ur, u denoting
ihe unit normatl to IT.

Claim 1. G(t + At) — G(t) < cyAt.

Theorem 1 follows immediately because, from (2),

_ 1/2
Ek,n) < (")(" d) j L — o 4% 4+ (1 — "4 ¥c, dt
a\ & })J,
<cont ™Y (8)

the last inequality is a consequence of the well-known fact that

(m + 1)('7) J i de = 1. )
]

0

Proof of Claim 1. 'We use the Blaschke-Petkantschin formula (see p. 201 of [20])
which says that

dxy - -dx, = dl voly_ (conv{yy, ..., ys}) dy, - dy, du dr,

where the points x,, ..., x, lie in the hyperplane ux = r with ue $*"!, the unit
sphere in R? and r > 0, and y; = x; — ru. With this fact,

G(t+At)—G(t)=f'“J g(x1) - glxg) dx - -dxy
t<F()<t+At

plt)
=J. f f J f(\/rz+|y1|2)"'f(\/r2+|yd|2)
r uesi-1 Jy, Va

=p(t+At)

x d! vol;_,(conv{y,, ..., ys}) dy, - dy, du dr

(t)
=d!xd_,fp f f S+ 1P P + 1y
Rd—-l Rd—l

p(t+At)

x vol;_ (conv{yy,..., ya}) dy - dy, dr.
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Notice that the innermost d integrals here denote the expectation of the
volume of conv{y,,...,y;} when the points y,,...,y, are distributed on the

hyperplane H = {x: ux = r} according to density f(,/r* + |y|*). This is, again,
a spherically symmetric distribution in the hyperplane H with center ru which we
take for the origin of H and denote by 0. The signed volume of conv{y,,..., y;}

1S
()
d-—-1)! Vit Ya

but

1 - 1 1 1 - 1 1 - 1 1
det< )= det( )+ - det< )
Yi 0 Va 0 y, = wa yi " Ya-1 O

Consequently, with unsigned volumes,

d

volconv{y,, ..., y}) < Z vol(conv{{y,, ..., ya ON{¥:}}).

i=1
Since every term on the right-hand side has the same expectation,
E[vol(conv{y,, ..., ya})] < dE[vol(conv{0, y,, ..., y,_ D]

Moreover,

1 d-1
|det(yy, - os Ya—1)| < IT 1wl

_ 1
volconv{0, y;, ..., Ya—1}) = m (d— 1)
. ci=1

by Hadamard’s inequality. This way we get

0] d—
Gt + Ar) — G() < d?yy f [H1 _{ S+ Pl dYa]

r=p(t+At) Li=1

X J S/ + 1yal?) dy, dr.
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From (6),
j f(\/r2+y.-2)lyildy,-=J f f(Jr* +sH)s 572 ds du
R4 ueSi-2 Js=0
f* oo
=K4_» SJr? +sH)s 1 ds
Js=0
[ 2 -1z 949
= Kg-2 fa)g* ~r?) 2
Jg=r ~/ q2 - 7'2
f* K
< K42 f@)g* ! quLE-
Ja=r Kg-1
By (7)
p(r) —_
f f S/ + 1yl dyg dr = At
r=p(t+At) J RI-!
and therefore
K d—1
G(t + At) — G(t) < dzx,,_2< "‘2) At. O
Ka-1

3.  Uniform Distribution on a Convex Set

Let K = R? be a convex set with Area(K) = 1. We are interested in E,(k, n) when
P is the Lebesgue measure restricted to K. Since E, is invariant under (non-
degenerate) affine transformations of K we may assume that K is in “normal
position,” i.e., that

rB?> < K < 2rB?,

where B2 is the unit disk, centered at the origin, and r is a universal constant (in
fact r = 373 but we do not need this precision). The existence of the “normal
position” follows from that of the Léwner-John ellipsoid [8].

It is more convenient to work with the directed version of (2). So let [ = xy
denote the line directed from x to y. Write F(I) for the probability content of
the half-plane I* on the right of I; this is equal to the area of K n1*. Set G(f) =
Prob[F(l) < t]. Then (2) becomes

E,(k, n) = (;)(" ; 2) f "L — 2 4Gl (10)
0

We need some further notation. Given ¢ [0, 27} and te(0, 1) there is a unique
directed line I(g, t) with direction ¢ that has F(I) = t. [(¢, t) is clearly continuous in
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both variables and can be extended to t = 0 and ¢ = 1. In that case (¢, 0), say,
denotes the directed line that has K on its left and supports K. The line (¢, t) has
signed distance p(, t) from the origin so that p(¢, t) > 0 if the origin is on the left
of (g, t) (or on I(g, t) itself) and p(¢, ) < O otherwise. Also, for any ¢ € [0, 2n],

P, t) e [p(e, 1). plo, 0)].

The directed line having direction ¢ and at signed distance p from the
origin cuts K into two parts of area t(¢p, p) on its right and 1 — t(¢, p) on its
left. Define (o, t) as the length of the chord ig, ) n K. Clearly, p = p(o, t{¢, p))
identically. It is evident that p+ (e, Hp,p)) is a concave function on

[p(e, 1), ple, 0)].
Recall the definition of v(x) from (3). We write K(t) = {x € K: v(x) < t} and A(f)

for its area.

Theorem 3. G(t) is differentiable when t € (0, 1) and
2zn
G =4 f Yo, t) do.

Theorem 4. Ast— 0,
G'(t) = 2A()(1 + o(1)).

We mention here that G(t) ~ tA(t) is proved in [3]. Theorems 3 and 4
establish a different and apparently more subtle property of the function G. We
need:

Lemma 1. For each t €(0, 1) there is a constant C, such that

W, 1) — ¥le, W) < G|t —u]
for all ¢ €[0,27] and ue {0, 1]. In fact, C, = 8r/min(t, 1 — t).

The proof is straightforward using the normal position and the following easy
facts (refer to Fig. 1):

1. The chord function p+ Yo, t{e, p)) is concave in p.
2. For all se(0, 1), 4r(p(e, 0) — p(o, s)) = s and 4r(p(ep, s) — plp, 1)) =2 1 — .
3. Yo, sKplo,t) — plo,u)) <2u—t)if s=uors=t.

We omit the details.
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K

&4, 1) 2o, o, u)

Fig. 1. The chord function (¢, t) = |l(e, t) " K|.

Proof of Theorem 3. Write | = xy . By the Blaschke—Petkantschin formula,

G(t + At) — G(t) = Prob[F() e [t, t + A1)]

=f fl dx dy

t<F(xy)<t+At
2z fplo.t)

=J f Jf |X — | dx dy dp de.
V] p(p.t+ AL x<jeKnl

An elementary computation reveals that

” |x — y| dx dj = &x°(D),
x<jeKnl

where x(I) = (o, t(p, p)) is the length of the chord K n I So

ple.t)
Gt + A1) — G(t) = f f Yo, o, p) dp do

plo,t+Ar

ple.t)

=3 j Yo, 1) Yo, t(p, p)) dp do
0

ple,t+ A1)

2n fple.t)
+ %J Jp [wZ((p, t((P, P)) - |//2((P, t)]lﬁ((p, o, p)) dp d(p
1]

ple.t+AY
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The first term here equals § (3" ¥*(¢, 1) do At since trivially (again, see Fig. 1)

p(, 1)
At = J ¥(o, t(p, p)) dp. (11

p(¥,t+An

Therefore

‘—MG(HAt)_G(t)—lr"!// (o, t)dwl

J‘ JP((P 21
, (o, p)) — ¥, DI, (e, p)) dp do

6At Pl@,1+ Al

1 J‘p(w . 1)
< 8rC, Aty(o, t(e, p)) dp do

6At plo,t+A1 '

8

=T e

3

where we used Lemma 1 in the last inequality and (11) in the last equality. [
Remark 2. We point out that, for § >t > ¢, > 0,
¢y < G(t) < ¢y (12)

The upper bound is trivial from Theorem 3 because yr is bounded. For the lower
bound it is enough to see that ¥(¢, t) > c¢,5t. This follows easily from the normal
position of XK.

Before the proof of Theorem 4 we need some preparation. The body
Kv>1t)={xeK: v(x)>1t}

is clearly convex. We assume t < t, < 0.01, say, and then K(v > t) is nonempty as
well. Thus the boundary of K(v > t) is a convex curve V(t) with left and right
tangents at every ze V(t). These tangents coincide at all but countably many
ze V(t).

Fix te(0,t,}. Given ¢ e[0,2n) let A(¢p,t) be the unique directed line (with
direction ¢} that is a supporting line to K(v > t) and has K(v > ¢} on its left. Ao, 1)
has exactly one point (to be denoted by z(o, t)) in common with K(v > 1) since, as is
proved in [3], ¥{(t) contains no line segment. Call the angle ¢ regular if Ao, t)
is tangent (left, right, or both) to the curve V(t) at z(¢p,t). Write R for the
set of regular angles in [0, 2n] and NR for its complement. It is not difficult
to see that R is a closed set. Therefore NR is a countable union of open intervals;
the point in the proof of Theorem 4 is that the total length of these intervals
is O(t).
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Recall that l(g, 1) is a directed line that cuts off area t from K. It follows from
the proof of Lemma G in [3] that if ¢ is regular, then A(e, t) and K¢, ) coincide
and z(o, 1} is the midpoint of the chord K n Ko, ). Finally, let L{¢, t) be the length
of the segment connecting z(o, t) to the last point on i(g, t) in K. Observe that,

for a regular angle, L(p, t) = (o, 1).
We omit the simple proof of the following.

Claim 2. Area(K(v > 1)) = 3 [3" L*(o, 1) dep.

Lemma 2. The total length of the intervals in NR is O(t).

Proof. Assume that ¢ is nonregular and let ¢* and ¢~ be the direction of the
left and right tangents I* and I~ to V() at z(p, t). Since ¢ *(¢ ) are regular, z(@, t)
is the midpoint of the corresponding chords which we denote by u*v* and u™v~,
as is shown in Fig. 2. Then u"u* and v v* span parallel lines. Let S be the strip
between them. Clearly,

Area(rB%\S) < Area(K\S) < 2t.

An elementary computation reveals that the width of S is at least 2r —
(£3/(2r)? > 0.8, so

min(|lu” — v~ |, Jut —v*|) > 08. (13)
Moreover,

1 = Area(K) < 2t + % diam*(K)(n — (¢* — ¢ 7)),

v

K

\B vt

Fig. 2. Tangents at a nonregular point z = z(¢, t) on V(1).
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because both lines I* and I~ cut off a cap from K of area t, and the remainder is
contained in a circular sector with center z(g, t), radius equal to diam(K) < 4r,
and angle = — (p* — ¢ 7). Consequently (see Fig. 2),

1-2t
8r?

+

" —@ <nmn-—

»

so @t — ¢~ is separated from n. On the other hand,

t > Area(conv{u ", u*, v })=3lut —v*|ilu” — v |sin(p* — @)
> (0.8)% sin(p* — ¢ ) > 0.16 sin(p* — ¢ )

proving that
ot -9~ <8t (14)

This shows that NR contains only “short” intervals.

Because t < 0.01 a smaller disk, 0.8rB?, is contained in K(v >1). Call
the points z(¢g, t) nonregular if ¢ e NR, and the other points of V(t) regular.
Observe that there are only countably many nonregular points, each one corre-
sponding to an interval from NR. Choose a regular point z(¢,, t) and take ¢, to
be 0. We are going to construct, by induction, a sequence of regular points
2y =2(@ 1)y e 2y = 2(@, 1) With @, < @, < - < @,, < 27. Assume @y,..., ®;
have already been constructed. Pick a regular point z = z(¢, t) with ¢ > ¢, so that
|z —z;|€ [0 19, 0.20]. Such a point clearly exists. Further, it can be chosen so that
@ — ¢; < 3, as can easily be seen from 0.8rB> = K(v = f). Now if ¢ — ¢; < 7/2,
then we define ¢,, , = ¢ and z;,, = z. However, if not, then define ¢,,, to be a
regular angle very close to (¢ + ¢;)/2 and set ¢, , = ¢. Since the intervals in NR
are shorter than 8t < 0.08 we have ¢,,, — ¢; < /2 and ¢;,, — ¢;,; < /2. We
stop when the next ¢, ¢,,,, is larger than 2n.

It is easy to see now that m < 35. Indeed, ¢ — ¢; > 7/2 can happen at most
three times, and in the other cases |z;, ; — z;| > 0.19. As the perimeter of V(t) is
at most 4nr we get m < 3 + (4nr)/0.19 < 35.

Consider now the counterclockwise arc A4; connecting z; to z;,, on V().
Let w, and w, be two nonregular points on A;, w, having the left tangent
direction ¥, and w, having the right tangent direction ,, with 0 <y, — ¥;.
The inequality ¢, — ¥, < n/2 is automatically satisfied since, by the construction,

Qiv1 — @ S T/2.
Claim 3. , — ¢y, < 16¢.

Proof (see Fig. 3). If w; = w,, then this follows from (14). Otherwise, let w be the
intersection of the tangents at w, and w,. Observe that the angle w, ww, is at least
n/2 (since Y, — Yy < n/2), so

lW - W2| < |W1 e Wz‘ < ‘Zi —_ ZI'+1| < 0.20.
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v

Fig. 3. Left and right tangents at nonregular points w, and w,.
Again, we used ¢;, , — ¢; < n/2. Moreover, writing u, v, for the tangent chord in
direction v/, and u,v, for the other tangent chord,

t > Area(conv{u,, u,,v,}) = 3|w — uy| |u;, — vy| sin(yy, — ¢,)
2 3(3lv; — uy| — 0.20)|uy — v, | sin(y, — ¢,)
> $(0.20)0.8) sin(y, — ;) = 0.08 sin(yr, — ¥,),

where we used (13) as well. O

Proof of Theorem 4. For a regular direction, L(p, t) = $i(p, 1). Then

2n
G)=4% f Ve, 1) do

0

%;U Yo, 1) do + j Yo, 1) dcp]
R NR

2n
=3 U 4L%(p, t) do + J (o, 1) — 4L (o, 1) d‘/’]
0 NR

i

=341t + % f W@, 1) — 4AL%o, 1)) do.
NR
If all directions are regular, we are finished. Otherwise

1G'(t) — 34()| < % j ¥ *(p, 8) — 4L%(9, 1)| do
NR

16r2
< Tr meas(NR) < ¢y, t.
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According to [6], A(t) = ct log(1/t) for some absolute constant ¢, so we get

’ — 4 —‘1_—-—
G'(t) = zA(t)<1 + 0<log(1/t)>) ' -

Theorem 2 follows easily from Theorems 3 and 4 using some properties of A(t),
namely:

1. 1 > A(t) = 0 and A(t) is monotone increasing.
2. A(xf) < ¢ 52 A(t), if @ > 1 and t > 0 (see [6]).

Proof of Theorem 2. When k =0, E,(k, n) is the expected number of edges (or
vertices) of the convex hull and this case is covered in [6]. So assume k > 1. It

follows from properties 1 and 2 above that A((k + 1)/n) ~ A(k/(n — 2)). We write
m = n — 2 to simplify the notation. By Theorem 3

1
Ey(k,m+2) = ("’ ; 2)(':) f M1 — " *GY(e) d.
[

It follows easily from Theorem 4 and the properties of G'(t) and A(t) that

1 1
f (1 — " *G'(t) dt ~ j (1 — "X A(1) dt.

0 0

Therefore it is enough to show that, forall k = 1, ..., | m/2 |,

A(E) ~ (m + 1)('") Jl (1 — " rAQ) de.
m k 0

Write I(m, k) for the expression on the right. I{m, k) would decrease if we only
integrated on the interval [k/m, 1], and, since A(z) is increasing, it would decrease
further if we replaced A(z) by A(k/m). This shows that

I(m, k) > A<5>(m + 1)('") J DMt drs c2A<5).
m k) Jim m

For the last inequality it should be proved that

m\ 1
(m+1)< )f fl—om*tdt>c, >0
k kim

forall k=1,...,{ m/2 ] and for all large enough m. This can be done as follows.
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The integrand is maximal at t = k/m and decreases on [k/m, 1]. So, for any
Tel[k/m, 1],

1 k
J‘ 1 ="k dt > (T )T“(l — Ty K
k

/m m

Choosing T = (k + \/76)/m gives a good lower bound for the integral. We omit
the technical computations.
For the other inequality we observe that A{t) < A{k/m) when t < k/m. From

property 2 above,
m\* [k
A(t) < cisf— ) Al — ),
k m

when t > k/m. This gives

k/m 1
I(m, k) < (m + l)<Z>A(§>[J f tk(l _ t)m“k dt ¥ j tk(l _ t)m-—kcls<%’g>z d[]
0 kim
k m 1 m? !
< A<_>(m + 1)( >|:J tk(l _ t)m~k dt + Cis — f tk+2(1 - t)m_k d[:l

and this is less than c; A(k/m) by (9). O

3.1.  Higher Dimensions

We mention a possible generalization to the case d > 2. In this case define
G(t) = P[F(xy,...,xy) < t],

where F(x,, ..., x,) is the probability content of the half-space on the right-hand
side of aff(x,, ..., x,). Here x,, ..., x, are independent random points from P (on
R%. Formula (2) is replaced by its directed version:

n\(n—d lk _ pn—d—k
2((1)( K )L 1 -1 daG(e). (15)

Let P be the uniform distribution on a convex body K < R% Define v and A(t)
as in (3). It is proved in [3] that G(t) ~ t*~ ' A(¢) for any convex body K € R? but
what we need here is the behavior of the derivative of G. This does not seem to
be easy to establish and we could only settle the case when K is smooth (say %3
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with the Gauss—Kronecker curvature bounded away from zero and infinity. In
this case we can prove

G'(t) ~ t*72A(1)

and so

Ejk,n) ~ (Z)(" ; d) J 1 =21 — g aTk A dt
0

It is known that, for a € convex body K, A(f) ~ t¥“* which gives
Efk,n) ~ fi— 22+ Dyl -2/@d+1)

in view of (9). This shows, again, that E(k, n) behaves like the expected number
of facets (or vertices, edges, etc.) of the random polytope inscribed in K when k is
constant and like n?~! when k > cn. This is probably true for all convex bodies
K < R, not only for the €> ones.

4. A Distribution with Many Halving Lines

Frdds et al. [12] exhibited a set T; of n; = 3- 2! points which has at least cn; log n;
halving segments. We use this example to construct distributions P for which
E,((n — 2)/2,n) = cgnlog n. First we review the example of [12] and point out
some new features that are needed for the analysis.

The example is sequential. At step i =1 there are n, = 6 points; three are
vertices of an equilateral triangle and three are on rays from the center through
these vertices, as in Fig. 4(a). Clearly, there are h, = 6 halving segments. To
form T,

@ ®)
Fig. 4. Sets T and T,.
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Fig. 5. Halving pair u, ve T; begets two pairs in T, ,.

each point u € T splits into two close points u,, u, which are positioned so they
define a halving line, as in Fig. 4(b). In addition each pair u, v that defined a
halving line in T, now defines two halving lines, as shown in Fig. 4(b) (see also
Fig. 5). This gives n, = 3-2% = 12 points with h, = 18.

In general, T, has n; = 3- 2! points. It is shown in [12] that each point ue T,
may be replaced by two close points u,, u, which can be positioned so that:

1. u u, is a halving segment in T; ;.
2. If uv was a halving segment in T;, two new halving lines are formed from
uy, Uy, Uy, v, (see Fig. 5).

If h; denotes the number of halving segments in T;, properties 1 and 2, respectively,
show that

hi+l =ni+2hi, hl =6,

a recurrence with solution h; = 3-271(i + 1).

To describe our construction we need to know fj), the number of j-segments
inT,j=0,1,...,n/2 — 1. We have used h; for fi(n/2 — 1) and we write h; =
f{n;/2 — 2) for the number of segments that are one-less-than-halving. From Fig. 5,
if uv was a j-segment in T}, then the four segments u, vy, u;0,, U0y, U, v, form two
(2 + 1)-segments and a 2j-segment and a (2j + 2)-segment in T;, ,. However, when
j=ny2 —1, the 2j-segment and the (2j + 2)-segment are both one-less-than-
halving., Therefore f;,(0) = f{0) and

fie1@) = £) + £G = D), j=1,...,%—2, (16)

i@+ D) =20 i=0, 1"5— 1, (17)
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fiei@) =26+ i1 = "5 ~1, (18)

fin@+D=2D+n, j= 5" ~ 1. (19)

Equation (19) is the recurrence for h;, while (18) gives
hivy = 2hi +h, hy =6,
a recursion solved by h; = 3-2i(i — 1) + 6.

A convenient way to represent f; is via the continuous function g; on [0, 1]
with values g,(0) = 0 and

gi<f+ll>=f‘(j), j=0, 1,...,%—1, (20)

n; n

i

1

and linear between the points j/n;. Evaluating (19) for j = n;/2 — 1 shows that
g{d) =h/n;=(3G+1)/2 and for j=n/2—2, that g3 —1/n)=h/m;=i— 1.
From (17) and (18), forj < n;/2 — 2, g, (((j + 1)/n;) = g{(j + 1)/n;) and this implies
gi+1((J + 1/n) = g{(j + 1)/n). Therefore, for t <t; =5 — 1/n;, gisu(t) = gi(t), by
the linearity of g;. These relations allow the computation of all values of f{(;.

We now make T; into a set S; of positive area by replacing each point xe T;
by the disk centered at x with radius ¢;, which may be chosen small enough so
that the disks are in general position (no three stabbed by a line). It is not surprising
that:

Lemma 3. If P, is the uniform distribution on S;, then E,{((n — 2)/2, n) = Q(n log n)
as long as an < n; < bn, for fixed 0 <a <b < .

Proof. We have, according to (2),

n—2 n\( n—=2Y\ " -
B30 )= (), 2 -oreao

><")c z " 201 — 9121 dG(D)
= 2 16\/; 1/2‘1/\/"_1

2n 1/2 4 n/2 — 1
> (")em il ‘o [1 _ -] dG(t)
2 \/; 12-1)/m 2 n;
1/2
< ¢ gn®2e20m) '[ dG(t)
12 -1//n;

11
= c18n3/2e“2"‘/""’[G(%) - G(5 ~ ﬁ)] @1
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Now let x and y be two points chosen independently and randomly according

to P;. Write D for the event that x, y are not in the same disk; clearly, Prob[D] =
1 — 1/n,. We have

1 1
> Probl:F(xy) |: -, ”D]Prob[D]
2 \/,, 2

1y~ )
>{1—-— =
= ( ”i) j=n,/2z—\/;,— ("i)

2

)" nj2 -1 j+1
z(n,.—x)< ) ) g.»( :
2 J=n1/2-11/m) h;

Note that t;, =5 — 1/m;, > 3 — 1/\/; and that there are 2° %! values of j such
that ¢, < (j + 1)/n; < £, ;- Therefore,

2 icl ket j+1 2 it o
RCIEENCEES ) o222 5 g
i k=i2  j=u n; i k=i2
2 2\ i
> 2% - <— L gin
i k=ip2 n;

Combined with (21),

n—2 logn;
E n) > c gnte 20, Ll
2 2 > 18 19 \/‘

and so E;, > ¢,n log n. |

On the other hand, it is straightforward to show that, as n — oo, the expected
number of halving segments for n points chosen from P, is O(n). The argument is
a simple calculation like the one in (8) using the fact that dG is bounded as n
increases.

Next we show that there is a single distribution for which E, grows at a
superlinear rate. Assume that a sequence w, — 0 is given. We construct an
absolutely continuous distribution P for which E,((n — 2)/2, n) = ¢, w,nlog n for
any n. We use the same sequence of sets T, and system of disks §; as before with the
nesting condition that S; = §;, ;. This can be achieved if, in each step, the radii
of the disks are small enough.

Define P by requiring that P(S;) = m; with every disk in §; having probability
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content my/n;, i =1, 2,...; m; is specified later. Clearly, m; = 1 must hold and as
S; > 8;+, we have m; > m;,,. f m; > m;,, we define P, restricted to S\S;;,, to
be uniform on S\S;,,. P is a probability measure for every sequence 1=
m, > m, > --- of positive numbers.

Arguing as in (21) we see that

E(n——Z n)>c n3/? G(1)~G<1-L>]
5 ’ = 20 2 2 \/; .

As in the proof of Lemma 3 we let x, y denote a random pair of points distributed
according to P. Define i by requiring n; < n < n;,,. Let D, denote the event that
both x and y are in §; but belong to different disks of S;. Clearly,

Prob[D;] = m,?(l - l)

i

The previous computation applies now in the following way:

1 1 1 1 1
G - G(» - »—) > Prob[F (xy)e |:— _, —:| I D,-:lProb[Di]
2" /n 2 u'2
2
>— - 2"2m? > c,m?n log n.
n;

4
If we choose m; = 1 for all i, then P is a probability distribution, with support
() S; and having E, ~ nlog n. This distribution is concentrated in a small set. If

we choose a decreasing sequence m, slowly tending to zero, then P is an absolutely
continuous measure and E, > m2n log n.
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