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Abstract. Given a set S of n points in R a, a subset X of size d is called a k-simplex 
if the hyperplane aft(X) has exactly k points on one side. We study Ed(k, n), the 
expected number of k-simplices when S is a random sample of n points from a 
probability distribution P on R d. When P is spherically symmetric we prove that 
Ea(k, n) < cn a- ~. When P is uniform on a convex body K c R z we prove that E2(k , n) 
is asymptotically linear in the range cn < k < n/2 and when k is constant it is 
asymptotically the expected number of vertices on the convex hull of S. Finally, we 
construct a distribution P on R z for which E2((n - 2)/2, n) is cn log n. 

1. Introduction and Summary 

Let X be a set of n points  in R a in general position. The simplex conv(S) (when 
S ~ X and ISI = d) is called a k - s i m p l e x  if X has exactly k points on one side of 
the hyperplane aft(S). A k-simplex is an (n-d-k)-simplex as well. Although this 
should not  cause any confusion we always try to have k < n -  d -  k. In  two 
dimensions a k-simplex is called a k-seoment .  

Write ed(k, n) for the maximal  number  of k-simplices over all configurations X 
of n points in R ~. Most  of the previous work has focused on ed(k, n) because of its 
connection with k-sets .  A subset Y c X of size k is called a k-set if Y and X \  Y 
are separated by a hyperplane. The question is: how many  k-sets may a set X 
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possess? It is easy to translate an upper bound for ed(k, n) into an upper bound 
on k-sets. 

Clearly, O(n d) provides a trivial upper bound for ea(k, n). When d = 2, nontrivial 
bounds were obtained by Lov~sz [15] for halving sets (n even, k = n/2), and later, 
for general k < n/2, by Erdrs  et al. [12]. A simple construction gives a set S with 

n log k k-sets, while a counting argument shows that e2(k, n)= O(nx/k ). These 
bounds were rediscovered several times, for example by Edelsbrunner and Welzl 
[11], but had not been improved until Pach et al. [17] reduced the bound to 

nx/k/log* k. Papers [1], [13], and [22] contain results related to the study of 
e2(k, n). 

Raimund Seidel (see [10]) extended the Lov~tsz lower bound construction to 
d = 3 and showed that e3(k, n) = ~(nk log(k + 1)). The argument may be applied 
inductively giving ed(k, n) = f~(nk d- 2 log(k)). 

A nontrivial upper bound for d = 3 was recently obtained by Bgr~my et al. [5]. 
They showed that e3(n/2, n) = n 3-*, where e > 0 is some small constant. This, in 
turn, was improved by Aronov et al. [2] to O(n 8/3 log 5/a n). Dey and Edelsbrunner 
[9] have been able to remove the logarithmic factors from this bound. Recently, a 
nontrivial upper bound for d > 3 was established via a result of Zivaljevi6 and 
Vrerica [23]. They proved a colored version of Tverberg's theorem which now 
implies that O(n d-e") is an upper bound for halving sets in R d, ed > 0 being a small 
constant depending on d. 

It appears likely that the truth is near the lower bound. Support comes from 
the fact that in "typical" cases there are relatively few k-sets. In this paper we 
study Ed(k, n), the expected number of k-simplices when X is a sample of n random 
points from a probability measure P on R d. When there is no confusion we write 
E(k, n). The following derivation gives an expression for Ed(k, n) that we use 
throughout. Pick d points x 1 . . . . .  xd independently, according to P. Write I for the 
hyperplane aft(x1 . . . . .  xd). We assume throughout that P vanishes on every 
hyperplane so I is well defined with probability one. (In particular, P is nonatomic.) 
Write l § and l -  for the open half-spaces on the right and left of l, respectively, 
and set F(/) = min(P(l§ P(l-)), the probability content cut off by l. The random 
variable F(/) has a distribution function 

G(t) = P(F(I) < t) (1) 

which determines Ed(k, n) in the following way. Given a sample X = {x 1 . . . . .  xn} 
from P, the expected number of k-simplices is 

Ed(k, n) = ~ Prob[there are k points on one side of aff(xi,, . . . .  xid)] 
l <i j<" '<id<_n 

= k [tk(1 - t)~-a-k + (1 - t)kt "-a-k] dG(t). (2) 

Our  first result is a simple one about  spherically symmetric distributions (the 
definition is given in Section 2). 
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Theorem 1. For a spherically symmetric distribution we have Ed(k, n) < c l n  d -  1, C l 
bein9 a constant depending only on d. 

Next we deal with the case where P is the uniform distribution on a compact,  
convex body K ~ R 2. We assume that Area(K) = 1 so that P coincides with the 
restriction of  Lebesgue measure to K. Define v: K ~ R by 

v(x) = inf{Area(K c~ H): x E H, H is a half-plane} (3) 

and A(t) = Ar( t  ) = Area{x e K:  v(x) < t}. The properties of v and A(t) have been 
studied in [3], [6], and [21]. Here we prove that G is differentiable and that G'(t) 
is essentially equal to A(t). This helps establish the following theorem. 

Theorem 2. There are absolute constants c 2 and c a such that, for  the uniform 
distribution over any convex set in the plane, 

for every sufficiently large n and every k = O, 1 . . . . .  I(n - 2)f2]. 

Sometimes we express the relation in (4) as 

/ k  + l'x 
E 2 ( k , n ) ~ n A ~ ) "  

Since t <_ A(t), we have c4 < A(t) < 1 when t > c4 > 0. Theorem 2 

The behavior of A(t) (for small t) is given by Theorem 7 of [6] 

1 
cst  log - <_ A(t) < c6 t2/3. (5) 

t 

Schiitt and Werner  [21] show that for a function f ( t )  with cs t log(1 / t )<  
f( t)  < c 6 t 2/3 (and some additional properties) there is a convex set K = K f  ~ R 2 

of area 1 such that At(t)  ~ f(t) .  This shows that not  only does 

n fk  + 1~ 2/3 
- -  _( E2(k, n) _( c6nk%-- ) cs(k + l) lOg k + l 

Remark 1. 
then shows that when �89 _> k/n > c, ,  

(4) 

E2(k, n) ~ n. 
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hold for P uniform on a convex body, but also, for (almost) any function 
between these bounds, there is a convex body K with E2(k, n) behaving like that 
function. 

The special case k = 0 is interesting. Then Ez(k, n) equals the expected number 
of edges of conv(X), which was known to behave like A(1/n) (see [6]). So Theorem 
2 says that Ez(k, n) behaves like the expected number of edges of conv(X) when 
k is a constant, and like n when k/n > t o. 

Finally, we give an example of a distribution for which E2(k, n) is large. We 
consider the case k = (n - 2)/2 (n even), that is, the expected number of halving 
segments. We give a distribution Pn such that 

E l m - - 2  ) 2\  2 , m > cTm log m 

whenever the sample size m is within a constant factor of n. Then, using Pn, we 
describe a distribution P for which 

E / n - 2  ) 
z \  2 , n > c8n log n. 

Finally, we point out the abstract of [7], where one of the present results 
was announced, but with an erroneous proof. This is one of the reasons we 
take some care in establishing the simple statements about Ea. The methods 
are familiar in geometric probability and integral geometry (see [4], [161 
and [19]). Nevertheless, the results seem to be the first ones concerning Ea 
and in view of the fact that k-sets have applications in computational geo- 
metry and machine learning [14], [18-1, we feel that these theorems are useful and 
interesting. 

2. Spherically Symmetric Continuous Distributions 

Suppose that P has a density function g : R d ~ R  that only depends on Ixl, 
the distance from x e R d to the origin. We say that such a P is spherically 
symmetric. This defines another function f :  R§ ~ R by f ( r ) =  g(Ixl) when 
r = l x l .  

Proo f  o f  Theorem 1. Set x d_ 1 = vold- x ( Sd- 1). Clearly, 

1 = g(x) dx = f (r )r  ~- 1 dr du = tc~_ 1 f (r)r  d- 1 dr. (6) 
a r  a - l  =0  0 
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Now let H(t) be an open half-space with probabi l i ty  content  t, 0 < t _< �89 and write 
p = p(t) for the distance (from the origin) to H, the bounding hyperplane of H(t). 
Then 

t = g(x) dx = f ( w / r  2 +lYl  2) dy dr, (7) 
(t) = p  E R  d - I  

where r is the length of the componen t  of x parallel to u and y = x - ur, u denoting 
the unit no rmal  to H. 

Claim 1. G(t + At) - G(t) < caAt. 

Theorem 1 follows immediately  because, f rom (2), 

Ea(k, n) < k [tk(1 -- t)n-a-k + (1 - t )k tn-d-k]c 9 dt 

--~ Ctond- 1; (8) 

the last inequality is a consequence of the well-known fact that  

(m + l ) ( 7 )  f ~  tJ(l - t)~-J dt = l. (9) 

Proof o f  Claim 1. We use the Blaschke-Petkantschin  formula (see p. 201 of [20]) 
which says that  

d x l " " d x a  = d! vol d_ t (conv{yl . . . . .  Yd}) dYl""dYa du dr, 

where the points  x 1 . . . . .  x d lie in the hyperplane ux = r with u ~ S d- 1, the unit 
sphere in R d and r > 0, and Yi = xi - ru. With this fact, 

G ( t + A t ) - G ( t ) = f . . . f ~  g ( x t ) . . . g ( x d ) d x l . . . d x  a 
< F ( I ) < t + A t  

= f f [ i ( , + , o ; . ~ s d - ~ ; , ' " ; y ~  f ( x / r 2 + . y ' j 2 ) ' ' ' f ( x / r 2 + ' y a ] 2 ,  

x d! vola- t (conv{yl  . . . . .  Ya}) dy l""dya  du dr 

c'"'f.f. = d! x._ 1 "" f ( x / r  2 + l y l l E ) ' " f ( x / r  2 + ,yal z) 
d p ( t + A t )  d - i  d - I  

x vol a_ l (conv{yl  . . . . .  Ya}) dYt ' "dYa  dr. 
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Notice that the innermost d integrals here denote the expectation of the 
volume of conv{yl . . . . .  Yd} when the points Yl . . . . .  Yd are distributed on the 
hyperplane H = {x: ux  = r} according to density f ( x / ~  + [y[2). This is, again, 
a spherically symmetric distribution in the hyperplane H with center ru which we 
take for the origin of H and denote by 13. The signed volume of conv{yl . . . . .  y~} 
is 

,o 1 dotC 
( d -  1)! . . .  

but 

( ; 1 - . .  1 )  (10 1 ... 1 )  ( ~  ... 1 ~) det = det + "" + det . 
"'" Ye Y2 "'" Ye 1 "'" Y e - I  

Consequently, with unsigned volumes, 

d 

vo l ( conv{y l  . . . . .  Yd}) < 
i = 1  

vol(conv{ { Y l . . . . .  Yd, 13} \ { yi} }). 

Since every term on the right-hand side has the same expectation, 

E [ v o l ( c o n v { y l , . . . ,  Yd})] < dE[vol(conv{O, Yl . . . . .  Yd-1})].  

Moreover, 

vol(conv{O, Yl  . . . . .  Yd-1})  - 
1 1 d - I  

- -  1-I lYJ (d - 1)! Idet(yl . . . . .  Yd-l ) l  < (d - 1)! i=1 

by Hadamard's inequality. This way we get 

G(t + At) - G(t) <_ dBrd_l  f ( x / r  z + ly, IB)lY~l dy, 
Jr=p(t+At) L i = I  

x fy~ f ( x / r  2 + ty~l 2) dy~ dr. 
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F r o m  (6), 

f f; f ( x / r  2 + y2)ly, I dy i = f ( x / ~  + s2)s �9 s a-2 ds du 
d--I ES d -2  = 0  

= l s  f + S2)S a- 1 ds 
= 0  

fq 
~o q dq 

= xd-2  f(q)(q2 _ rE)td - 1)/2 ~ 2  
r 2 = r  ~ / q  

fq ~ Kd  - 2 
<- xd-2  f (q )qd-1  dq < - - -  

=r K d -  1 

By (7) 

f r  "u) fR  f ( x / r 2  + lyal2) dyd dr = A t  
= p(t + At) d-  

and therefore 

G(t + A t ) -  G(t) < dEra_ 21xa-~2} a - / \  'At. 
\ x a -  x/  

[ ]  

3. Uniform Distribution on a Convex Set 

Let K c R 2 be a convex set with Area(K) = 1. We are interested in E2(k, n) when 
P is the Lebesgue measure  restricted to K. Since E 2 is invariant  under (non- 
degenerate) affine t ransformat ions  of  K we may  assume that  K is in "normal  
position," i.e., that  

rB 2 ~ K c 2rB 2, 

w h e r e  B 2 is the unit disk, centered at the origin, and r is a universal constant  (in 
fact r = 3-3/4, but  we do not need this precision). The existence of the "normal  
posi t ion"  follows f rom that  of the L6wner - John  ellipsoid [8]. 

It is more  convenient  to work  with the directed version of (2). So let l = x-~ 
denote the line directed f rom x to y. Write F(/) for the probabi l i ty  content of  
the half-plane l + on the right of  l; this is equal to the area of K c~ l § Set G(t) = 
Prob[F(/)  < t]. Then (2) becomes 

(10) 

We need some further notat ion.  Given tp e [0, 2n] and t e (0, 1) there is a unique 
directed line l(q~, t) with direction q~ that  has F(/) = t. l(q~, t) is clearly cont inuous in 
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b o t h  va r iab les  and  can  be ex tended  to t = 0 and  t = 1. In  tha t  case l(tp, 0), say, 
deno tes  the  d i rec ted  line tha t  has  K on  its left and  s u p p o r t s  K. T h e  line l(~0, t) has  
s igned d is tance  p(cp, t) f r o m  the or ig in  so tha t  p(~o, t) > 0 if the  or ig in  is on  the  left 
of  l(~0, t) (or on l(~0, t) itself) a n d  p(~o, t) < 0 otherwise .  Also, for  a n y  ~o e [0, 2~],  
p(tp, t) ~ [p(tp, 1). p((p, 0)]. 

T h e  d i rec ted  line hav ing  d i rec t ion  ~o a n d  a t  s igned d i s tance  p f rom the 
or ig in  cuts  K in to  two  par t s  o f  a r ea  t(~0, p) on  its r ight  and  1 - t(~o, p) on  its 
left. Def ine  ~9(r t) as  the  length  of the  cho rd  l(qh t) r~ K.  Clear ly,  p = p(tp, t(tp, p)) 
identical ly.  I t  is ev iden t  t ha t  p ~ ( q ) , t ( q ) , p ) )  is a c o n c a v e  func t ion  on  
[p(~o, 1), p(q,, 0)]. 

Recal l  the  def ini t ion of  v(x) f r o m  (3). W e  wri te  K(t)  = {x E K: v(x) < t} a n d  A(t) 
for  its area .  

Theorem 3. G(t) is differentiable when t ~ (0, 1) and 

G'(t) = ~ O2(tp, t) &p. 

Theorem 4. As  t ~ O, 

G'(t) = ~A(t)(1 + o(1)). 

W e  m e n t i o n  here  tha t  G ( t ) ~  tA(t) is p r o v e d  in [3].  T h e o r e m s  3 and  4 
es tab l i sh  a different  a n d  a p p a r e n t l y  m o r e  subt le  p r o p e r t y  of  the  func t ion  G. W e  
need:  

L e m m a  1. For each t ~ (0, 1) there is a constant Ct such that 

]~0(tp, t) --  ~(r u)] < Ctlt - u] 

fo r  all tp e [0, 2h i  and u E [0, 1]. In  fact ,  Ct = 8r/min(t ,  1 - t). 

T h e  p r o o f  is s t r a i g h t f o r w a r d  us ing  the  n o r m a l  pos i t ion  and  the  fo l lowing  easy  
facts  (refer to  Fig. 1): 

1. T h e  c h o r d  func t ion  p ~ q,(tp, t(~o, p)) is c o n c a v e  in p. 
2. F o r  all s ~ (0, 1), 4r(p(tp, 0) - p(tp, s)) > s a n d  4r(p(tp, s) - p(tp, 1)) > 1 - s. 
3. q4~o, sXp(~0, t) - p(~o, u)) < 2(u - t) if s = u or  s = t. 

W e  o m i t  the  details.  
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Fig. 1. The chord function ~(~o, t) = I1(~o, t) n KI. 
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Proof  of  Theorem 3. Write l = ~-~. By the B laschke -Pe tkant sch in  formula,  

G(t + At) - G(t) = P rob [F ( / )  6 [t, t + At)] 

<F(~yI<t+At 

= IX -- f~l dye d~ dp dq~. 
Jp(cp,t+At) <~eKnl 

An elementary c o m p u t a t i o n  reveals that 

ff~ I~ - .~1 d~ d)~ = ~Z3(/), <y~Knl 

where X(/) = ~k(~o, t(tp, p)) is the length of  the chord K n I. So  

f ~  C p(q~~ G(t + At) -- G(t) = ~ ~/3((p, t((~, p)) dp d e 
J p(~,t + At) 

f ~lt f p(q~. t) = ~ 02(0, t) @(~p, t(~p, p)) dp d~p 
d p(r t + At) 

So~n fp(r t) + ~ [02 (0 ,  t(tp, p)) -- ~b2(0, t)]O(cp, t(r p)) dp dq~. 
dp(tp, t+At) 
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The first term here equals ~ S 2" ~02(~0, t) d~o At since trivially (again, see Fig. 1) 

f p(O, t) 
At = q/(q~, t(tp, p)) dp. (11) 

d p(@,t + At) 

Therefore 

G(t + At) - G(t) 1 ~'2, 
- - ~ k 2 ( ~ o ,  t )  dcp 

At 6 J o 

- -  J~Oz(q~, t(q~, p)) - ~2(q~, t)l~(q~, t(q2, p)) dp dq2 
< 6At J pt~o,t +At) 

1 ;~"  f"~"')  8rC, At@(~o, t(~o, p))dp dq~ 
< 6A--t Jp(~.,+ao 

8rTz 
- C, At, 

3 

where we used Lemma 1 in the last inequality and (11) in the last equality. [ ]  

Remark  2. We point out  that, for �89 > t > t o > 0, 

cl l  < G'(t) < c12. (12) 

The upper  bound is trivial from Theorem 3 because ~O is bounded. For  the lower 
bound it is enough to see that ~k(q~, t) > c13t. This follows easily from the normal  
position of K. 

Before the p roo f  of Theorem 4 we need some preparation. The body 

K(v ~_ t) = { x ~ K :  v(x) ~_ t} 

is clearly convex. We assume t < to < 0.01, say, and then K(v > t) is nonempty  as 
well. Thus  the boundary  of K(v > t) is a convex curve V(t) with left and right 
tangents at every z e V(t). These tangents coincide at all but  countably many 
z ~ v(t). 

Fix t ~ (0, to]. Given q~ ~ [0, 2n) let ).(q~, t) be the unique directed line (with 
direction ~0) that is a support ing line to K(v > t) and has K(v > t) on its left. 2(q~, t) 
has exactly one point  (to be denoted by z(q~, t)) in common  with K(v > t) since, as is 
proved in [3], V(t) contains no line segment. Call the angle ~0 reoular if ).(~0, t) 
is tangent  (left, right, or  both) to the curve V(t) at z(q~, t). Write R for the 
set of regular angles in [0, 2r0 and N R  for its complement.  It is not difficult 
to see that  R is a closed set. Therefore N R  is a countable union of open intervals; 
the point  in the proof  of  Theorem 4 is that the total length of these intervals 
is O(t). 
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Recall that  l(tp, t) is a directed line that  cuts off area t f rom K. It  follows from 
the proof  of L e m m a  G in [3] that if ~o is regular, then 2(q~, t) and l(q~, t) coincide 
and z(tp, t) is the midpoint  of the chord K n l(tp, t). Finally, let L(to, t) be the length 
of the segment connecting z(q~, t) to the last point  on 2(q~, t) in K. Observe that, 
for a regular angle, L(tp, t) = �89 t). 

We omit the simple proof  of the following. 

Claim 2. Area(K(v > t)) = �89 12~ L2(cp, t) d~o. 

Lemma 2. The total length of  the intervals in N R  is O(t). 

Proof  Assume that  (p is nonregular  and let tp + and ~o- be the direction of the 
left and right tangents l + and l -  to V(t) at z(qo, t). Since q~+(q~-) are regular, z(tp, t) 
is the midpoint  of the corresponding chords which we denote by u§ + and u v , 
as is shown in Fig. 2. Then u - u  + and v - v  § span parallel lines. Let S be the strip 
between them. Clearly, 

An elementary 
(t2/(2r)) 1/3 > 0.8, so 

Moreover ,  

Area(rB2\S) <_ Area(K\S)  _< 2t. 

computa t ion  reveals that  the width of S is at least 2 r -  

min( lu -  - v - I ,  lu + - v+l)_> 0.8. (13) 

1 = Area(K) < 2t + �89 diam2(K)(n - (~0 + - q~-)), 

tl't" U-- 

V(t) 

J 

K 
u 

Z 

u  

Fig. 2. Tangents at a nonregular point z = z(~0, t) on V(t). 
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because  b o t h  l ines 1 + a n d  1- cu t  off  a cap  f r o m  K of  a r ea  t, a n d  the r e m a i n d e r  is 
c o n t a i n e d  in a c i r cu l a r  sec tor  wi th  cen te r  z(~p, t), r ad iu s  e q u a l  to  d i a m ( K )  < 4r, 
a n d  ang le  n - (tp § - tp-) .  C o n s e q u e n t l y  (see Fig .  2), 

~p+ --  ~p- _< n - - - -  1 - 2 t  

8 r  2 

so cp + - tp-  is s e p a r a t e d  f rom n. O n  the o the r  hand ,  

t > A r e a ( c o n v { u - ,  u +, v -} )  = �89 u+ - v + 1�89 - v - I  sin(~p + - ~p-) 

> �88 2 sin(~p + - ~p-) > 0.16 sin(tp + - tp - )  

p r o v i n g  tha t  

go § - r _< 8t. (14) 

This  shows  tha t  N R  c o n t a i n s  on ly  " s h o r t "  in terva ls .  
Because  t < 0.01 a sma l l e r  disk,  0.8rB 2, is c o n t a i n e d  in K(v > t). Cal l  

the  p o i n t s  z(~0, t) n o n r e g u l a r  if q~ e N R ,  a n d  the  o the r  p o i n t s  of  V(t) regular .  
O b s e r v e  t h a t  there  a re  on ly  c o u n t a b l y  m a n y  n o n r e g u l a r  po in t s ,  each  one  cor re -  
s p o n d i n g  to  an  in t e rva l  f r om N R .  C h o o s e  a r egu l a r  p o i n t  z(tpl, t) a n d  take  cpl to  
be 0. W e  are  go ing  to  cons t ruc t ,  by  induc t ion ,  a sequence  of  r egu la r  po in t s  

z 1 = Z(~pl , t )  . . . . .  Zra = z(~p,, t) with  tp I < cp2 < " -  < ~Pm < 2n. A s s u m e  ~01 . . . . .  (Pi 
have  a l r e a d y  been  cons t ruc t ed .  P ick  a r e g u l a r  p o i n t  z = z(~0, t) wi th  tp > ~Pl so tha t  
Iz - zi[ ~ [0.19, 0.20-1. Such  a p o i n t  c lear ly  exists.  F u r t h e r ,  it c an  be chosen  so tha t  
~P - qh < �88 as can  eas i ly  be  seen f rom 0.8rB z c K(v  >_ t). N o w  if ~p - ~0~ < n/2, 
t hen  we def ine  ~P~+I = tp and  z~+l = z. H o w e v e r ,  if not ,  then  def ine tpi+l to  be  a 
r egu l a r  ang le  very  c lose  to  (~o + ~p~)/2 a n d  set ~oi+ 2 = tp. Since the  in te rva ls  in N R  
are  s h o r t e r  t h a n  8t < 0.08 we have  tp~§ 1 - ~p~ < re/2 a n d  ~P~+2 - tPi+~ < n/2. W e  
s top  when  the next  ~p, ~p,,+ ~ is l a rge r  t h a n  2rr. 

I t  is easy  to  see n o w  tha t  m < 35. Indeed ,  tp - ~p~ > rr/2 can  h a p p e n  at  m o s t  
th ree  t imes ,  a n d  in the  o t h e r  cases  [z~+~ - z~[ > 0.19. As  the  p e r i m e t e r  of  V(t) is 
a t  m o s t  4nr  we get  m < 3 + (4nr)/0.19 < 35. 

C o n s i d e r  n o w  the  c o u n t e r c l o c k w i s e  arc  A~ c o n n e c t i n g  z i to  zi+a on  V(t). 
Le t  w~ a n d  w 2 be  t w o  n o n r e g u l a r  po in t s  on  A~, w~ h a v i n g  the left t angen t  
d i r ec t i on  ~bl a n d  w 2 h a v i n g  the  r ight  t a n g e n t  d i r ec t i on  ~b 2, wi th  0 < ~k 2 -~k~ .  
T h e  i n e q u a l i t y  r  - ~'~ < rr/2 is a u t o m a t i c a l l y  sa t i s f ied  since, by  the  cons t ruc t ion ,  

~ i + 1  - -  ~Oi ~-~ n / 2 .  

C l a i m  3 .  ~b2 - ~kl < 16t .  

Proo f ( see  Fig.  3). I f  w I = w 2, then  this  fo l lows f rom (14). O the rwi se ,  let  w be  the 
in t e r sec t ion  of  the  t a n g e n t s  a t  w I a n d  w 2. O b s e r v e  t ha t  the  ang le  w l w w  2 is a t  least  
n /2  (since ~b 2 - ~'1 < rr/2), so 

Iw - w2[ < Iwl - w21 < Izi -- zi+ l[ < 0.20. 



On the Expected Number  of k-Sets 255 

Fig. 3. 

V(t) 

Left and right tangents at nonregular points w 1 and w 2. 

Again,  we used ~oi+ 1 - ~oi < n/2. M o r e o v e r ,  wr i t ing  u 2 v2 for  the  t angen t  chord  in 
d i rec t ion  @2 a n d  ulv ~ for  the o the r  t angen t  chord ,  

t >__ Area(conv{ul,  u2 ,v l}  ) = �89 - u2l lul - vl[ sin(ff 2 - ~kl) 

> ~(�89 - u 2 1 -  0.20)1ul - vii sin(~2 - ~1) 

> ~(0.20)(0.8) sin(if2 - if1) = 0.08 sin(~b2 - ~a), 

where  we used (13) as well. [ ]  

Proof  o f  Theorem 4. F o r  a regu la r  direct ion,  L(~o, t) = �89 t). T h e n  

G'(t) = ~ 0%o, t) &o 

If: 1 = -~ 4L2(q~, t) dfp "~- (~/2((p, t) -- 4L2(qh t)) dq~ 
R 

= ~A(t) + ~ 1 (~,2(tp, t) - 4LZ(~p, t)) dcp. 
JN R 

I f  all d i rec t ions  a re  regular ,  we are  finished. O the rwi se  

~A(t)l < ~ f I~J2(cp, t) - 4LZ(cp, t)l dcp IG'(t) 1 

JN R 

16r 2 
<_ - -  meas(NR) < Cl4t. 

6 
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According to [6], A(t) > ct log(I/t)  for some absolute constant  c, so we get 

= O 1 
G'(t) ~ a ( t ) ( l +  (l~og(Ut3))' []  

Theorem 2 follows easily f rom Theorems  3 and 4 using some propert ies of  A(t), 
namely:  

1. 1 > A(t) > 0 and A(t) is mono tone  increasing. 
2. A(c~t) <_ c15~2A(t), if ~ >_ 1 and t > 0 (see [6]). 

Proof  o f  Theorem 2. When k = 0, E2(k, n) is the expected number  of edges (or 
vertices) of the convex hull and this case is covered in [6]. So assume k > 1. It 
follows from propert ies  1 and 2 above  that  A((k + 1)/n) ~ A(k/(n - 2)). We write 
m = n - 2 to simplify the notat ion.  By Theorem 3 

E2(k, m + 2) = 2 

It  follows easily f rom Theorem 4 and the propert ies  of  G'(t) and A(t) that  

f ~  tk(1-- t)'~-kG'(t) dt ~ f ~  tk(1-- t)"-kA(t)  dt. 

Therefore it is enough to show that, for all k = 1 . . . . .  [.m/2], 

Write I(m, k) for the expression on the right, l(m, k) would decrease if we only 
integrated on the interval [k/m, 1], and, since A(t) is increasing, it would decrease 
further if we replaced A(t) by A(k/m). This shows that  

(:) (:) I(m, k) > A (m + 1) tk(1 -- t) m-k dt > c2A �9 
/ra 

For  the last inequality it should be proved that  

(m + 1) tk(1 -- t) m-k dt >_ c2 > 0 
/m 

for all k = 1 . . . . .  / m / 2 J  and for all large enough m. This can be done  as follows. 
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The integrand is maximal at 
T e [k/m, 1], 

257 

t = k/m and decreases on [k/m, 1]. So, for any 

f: (:) tk(1 i t ) ~ I ~ dt > T -- Tk(1 -- T) m-k. 
Ira 

Choosing T = (k + x/%)/m gives a good lower bound for the integral. We omit 
the technical computations. 

For the other inequality we observe that A(t) <_ A(k/ra) when t < k/m. From 
property 2 above, 

when t > k/m. This gives 

ti tm'~ 2 li k \ 

; (771 l(m,k) <_ (m + \ k ]  \m,/kJ o /,, 

( k )  ( m k ) [ ;  m 2 f / ]  _< A (m + 1) tk(1 - t) ~-k  dt + c~5 ~S t~+2(1 - t)"-* dr 

and this is less than c 3 A(k/m) by (9). [] 

3.1. Higher Dimensions 

We mention a possible generalization to the case d > 2. In this case define 

G(t) = P[V(x 1 . . . . .  xa) <- t], 

where F(x l , . . . ,  xa) is the probability content of the half-space on the right-hand 
side of aft(x1 . . . . .  xa). Here x~ ...... xa are independent random points from P (on 
Ra). Formula (2) is replaced by its directed version: 

(15) 

Let P be the uniform distribution on a convex body K c R d. Define v and A(t) 
as in (3). It is proved in [3] that G(t) ~ t a- ~A(t) for any convex body K ~ R a but 
what we need here is the behavior of the derivative of G. This does not seem to 
be easy to establish and we could only settle the case when K is smooth (say c~3) 
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with the Gauss -Kronecke r  curvature bounded away from zero and infinity. In 
this case we can prove 

G'(t) ~ t a-  2A(t) 

and so 

E d ( k , n ) ~ ( : ) ( n k d ) f 2 t k + a - 2 ( 1 - - t ) n - a - k A ( t ) d t .  

It is known that, for a ~3 convex body  K ,  A(t)  ,,. t 2/ta+~ which gives 

Ea(k, n) .,~ k a-  2 + 2 / ( d  + 1) n 1 - 2/(d + 1) 

in view of (9). This shows, again, that  Ea(k, n) behaves like the expected number  
of facets (or vertices, edges, etc.) of  the random polytope inscribed in K when k is 
constant  and like n a -  ~ when k > cn. This is probably  true for all convex bodies 
K c R a, not  only for the cr ones. 

4. A Distribution with Many Halving Lines 

Erd6s et  al. [12] exhibited a set T~ of nl = 3" 2 i points which has at least cni log nl 
halving segments. We use this example to construct  distributions P for which 
E2((n - 2)/2, n) > c s n  log n. First we review the example of [12] and point out 
some new features that are needed for the analysis. 

The example is sequential. At step i = 1 there are nl = 6 points; three are 
vertices of  an equilateral triangle and three are on rays from the center through 
these vertices, as in Fig. 4(a). Clearly, there are h 1 = 6 halving segments. To 
form T2, 

�9 

�9 

(a) (b) 

Fig. 4. Sets T 1 and T:. 

@ �9 
�9 O 
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Fig. 5. 

U 

Halving pair u, ve T~ begets two pairs in T~+ 1. 

each point u e T 1 splits into two close points I/1, u 2 which are positioned so they 
define a halving line, as in Fig. 4(b). In addition each pair u, v that defined a 
halving line in T 1 now defines two halving lines, as shown in Fig. 4(b) (see also 
Fig. 5). This gives nz = 3" 2 2 = 12 points with h2 = 18. 

In general, T/has  ni = 3" 2 i points. It is shown in [12] that each point u ~ T i 
may be replaced by two close points ux, u2 which can be positioned so that: 

1. u l u  2 is a halving segment in Ti+ 1. 
2. If uv was a halving segment in T~, two new halving lines are formed from 

ul, u2, vl, v2 (see Fig. 5). 

If h i denotes the number  of halving segments in T~, properties 1 and 2, respectively, 
show that  

hi+ 1 = rl i q- 2hl, hi = 6, 

a recurrence with solution h i = 3" T -  1(i + 1). 
To describe our  construct ion we need to know f~(j), the number  of j-segments 

in T, j = 0, 1 . . . . .  nJ2  -- 1. We have used h i for f{nJ2  - 1) and we write h f  = 
f~(ni/2 - 2) for the number  of  segments that are one-less-than-halving. F rom Fig. 5, 
if uv was a j-segment in T~, then the four segments u l v l ,  u~v2, u2v l ,  u2v2 form two 
(2j + 1)-segments and a 2j-segment and a (2j + 2)-segment in Ti+ 1. However, when 
j = n J 2 -  1, the 2j-segment and the (2j + 2)-segment are both one-less-than- 
halving.,Tberefore fi+ 1(0) = f,{0) and 

ni 2, 
f~+ ~(2j) = f~(J) + f,(j  - 1), j = 1 , . . . ,  2 (16) 

nl 1, (17) f~+ 1(2j + 1) = 2f,(j), j = O, 1 . . . . .  2 
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f~+,(2j) = 2f~(j) + L(J -- 1), 
ni 

j = ~- -- I, (18) 
2 

fi + ,(2j + 1) = 2f~(j) + n i, j = -- - 
ni 

1. (19) 
2 

Equat ion  (19) is the recurrence for hl, while (18) gives 

hi-+1 = 2hi + h/-, h~- = 6, 

a recursion solved by hi- = 3 '  21(i - 1) + 6. 
A convenient  way to represent f~ is via the cont inuous function gl on [0, �89 

with values gi(0) = 0 and 

j +  1~ f~(j) j = O, 1, n 1, (20) 
g~k n i / n i 2 

and linear between the points j /ni .  Evaluat ing (19) for j = nd2 - 1 shows that  
9~(�89 = hJnl = (i + 1)/2 and for j = nl/2 - 2, that  g~(�89 - 1/n3 = hi-/nl > i - 1. 
F r o m  (17) and (18), f o r j  < nJ2 - 2, gi+l((J + 1)/n3 = 9i((J + 1)/nl) and this implies 
91+,((J + 1)/n3 = 91((J + 1)/n3. Therefore,  for t < ti = �89 - 1/nl, gZ+k(t) = 9i(t), by 
the linearity of  gl. These relations allow the computa t ion  of all values of  f~(j). 

We now make  T~ into a set Si of positive area by replacing each point  x e T~ 
by the disk centered at x with radius e i, which may  be chosen small enough so 
that  the disks are in general posit ion (no three s tabbed by a line). It  is not  surprising 
that:  

L e m m a  3. I f P i  is the uniform distribution on Si, then EE((n - 2)/2, n) = fl(n log  n) 
as long as an < nl < bn, f o r  f i x e d  0 < a < b < oo. 

P r o o f  We have, according to (2), 

n n - 2  E(n-22~ 2 'n)=(2)(n/2-1)fo/22[t(1-t)]"/2-1dG(t) 
-> 2 c16 2[t(1 -- t)] " /2- t  dG(t) 

d 1/2 - l/x/~, 

_> dG(t) 
2 ~ j ,/5-,/,/~, 2" nlJ 

f 
l/2 

<__ c lan3/2e  -2("In') dG(t) 
d 1/2 - I/x/'~ 

= c l s n ' / 2 e - 2 t " / ' ) [ G ( � 8 9  ~ ) ] "  (21) 
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Now let x and y be two points chosen independently and randomly according 
to P~. Write D for the event that x, y are not in the same disk; clearly, Prob[Dl = 
1 - 1/nl. We have 

1 
x / ~ )  = Pr ob[ F(xy ) e [ ~  

>_ Prob[F(xy) e [12 

' ;]1 
~fni '  D Prob[D] 

1 . , /~- 1 f/(j) 

> (ni - 1) 2 j=n,(1/2-1lye) gi - -  \ n l / "  

Note that t i / 2  = ) - -  1~rail2 > �89 -- 1 / ~ / a n d  that there are 2 i -k-  1 values o f j  such 
that t k < (j + 1)/ni < tk+ l. Therefore, 

2 ~ ,  ~ k~+'-* ( j + l ]  2 ~-~ 
a(�89 a(�89 - 1  ) > - -  Z g, - -  - -  Z g,( O 

ni k=i /2  j=[k \ n i / I  ~i  k=i /2  

> -  ( k -  1)2 i-k-1 > 
- -  n i  k=i /2  - -  

Combined with (21), 

n -- 2 ) lognl 
E2 ~ - ,  n >_ q8n3/2e- Z("/"')cl9 

and so E 2 >_ cTn log n. []  

On the other hand, it is straightforward to show that, as n --* o% the expected 
number of halving segments for n points chosen from P~ is O(n). The argument is 
a simple calculation like the one in (8) using the fact that dG is bounded as n 
increases. 

Next we show that there is a single distribution for which E 2 grows at a 
superlinear rate. Assume that a sequence w,, ~ 0 is given. We construct an 
absolutely continuous distribution P for which Ez((n - 2)/2, n) > C7Wnrt log n for 
any n. We use the same sequence of sets T~ and system of disks St as before with the 
nesting condition that S i = Si+ 1. This can be achieved if, in each step, the radii 
of the disks are small enough. 

Define P by requiring that P(Si) = ms with every disk in St having probability 
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content  mJn~, i = 1, 2 . . . .  ; mi is specified later. Clearly,  m 1 = 1 must  hold  and as 
S~ ~ S~+1 we have ms > m~+~. If  m~ > m~+l we define P, restr icted to SI\Si+I, to 
be uniform on S~\S~§ P is a p robab i l i ty  measure  for every sequence 1 = 
m 1 > m 2 > . - '  of posi t ive numbers .  

Arguing  as in (21) we see that  

( ) E (1 ) ]  n - - 2  1 - - ~ n n  E >_ G(�89 - G 

As in the p roof  of  L e m m a  3 we let x, y denote  a r a n d o m  pai r  of poin ts  d is t r ibuted  
accord ing  to P. Define i by requir ing nl < n < ni + r Let  Di denote  the event that  
bo th  x and y are in Si but  belong to different disks of Si. Clearly,  

P rob [D/ ]  = m 1 - . 

The  previous  c o m p u t a t i o n  applies  now in the fol lowing way: 

1 
G ( � 8 9 1 7 6  V / ~ ,  ~ ]  D , I  P r ~  

> _  - -  _ 

2 i  

n i 4 
2U2m 2 >_ c7m2n log n. 

If we choose  ml = 1 for all i, then P is a p robab i l i ty  d is t r ibut ion,  with suppor t  
N Si and  having E 2 ,-~ n log n. This d i s t r ibu t ion  is concent ra ted  in a small  set. If 
we choose  a decreas ing sequence m~ slowly tending  to zero, then P is an absolute ly  
con t inuous  measure  and  E 2 > m2n log n. 
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