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1. Introduction and main results 

Write ~.-"d for the set of all convex bodies (convex compact sets with nonempty 
interior) in ~d. Define o@g~l d as the set of those K E 5 b  "~d with vol K = 1. Fix 
K E .~g-i d and choose points X l , . . . ,  x~ E K randomly, independently, and according 
to the uniform distribution on K.  Then K,~ = c o n v ( x l , . . . ,  xn} is a random polytope 
in K .  Write E(K, n) for the expectation of the random variable v o l ( K \ K n ) .  E(K, n) 
shows how well K,~ approximates K in volume on the average. 

Groemer [Grl] proved that, among all convex bodies K E o@g~l d, the ellipsoids 
are approximated worst, i.e. 

E(K~ n) < E(B, n) (1.1) 

where B is any ellipsoid of volume one. Equality holds if and only if K is an ellipsoid. 
Wieacker [Wi] derived that E(B, n) = const(d)n -2/(d§ + o(n-2/(d+l)). Affentranger 
[Afl] developed formulae from which E(B, n) can be computed explicitly. 

Here we prove that, among all convex bodies K E ~ a ,  the simplices are approxi- 
mated best in the following sense: 

Theorem 1. Let I f  E ~rld and A E ~dTta, A a simplex, d >_ 2. Then 
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E(K, n) 1 
l i m i n f ~  > 1 + ~ (1.2) 

E( A, n) - d + 1 

unless K is a simplex. 

(1.2) shows that for every K G .~7C1 d different from a simplex there is no(K) such 
that for n >_ no(K) 

E(K, n) >_ (1 + ~d)E(A' n). 

Most probably, for every K E L~w~l d and n > d + 1 

E(K, n) >_ E(A,  n) (1.3) 

with equality if and only if K is a simplex. For d = 2 and n = 3 Blaschke [Bll], [B12] 
proved (1.1) with equality if and only if K is an ellipse and (1.3) with equality if 
and only if K is a triangle, but his remark (not repeated in [B12]) that the method of 
proof can be extended without difficulty to all dimensions d and n = d + 1 appears to 
be erroneous; cf., e.g., Groemer [Gr2], Schneider [Schn], or Pfiefer [Pf]. Blaschke's 
result was extended to n = 4 by Buchta [Bul]. For d = 2 and n _> 3 Dalla and Larrnan 
[DL] proved (1.3) with strict inequality if K is any polygon other than a triangle. 
Their result was completed by Giannopoulos [Gi] who showed that the inequality is 
strict whenever K is a plane convex body other than a triangle. The occurring bound 
was derived by Buchta [Bu2]: 

E(triangle, n) = 2 ~ 1 

In higher dimensions, Dalla and Larman [DL] proved (1.3) in the case that K is a 
d-polytope with at most d + 2 vertices. 

Actually, (1.2) separates the simplices from all other convex bodies. This is due 
to the fact that for polytopes P E . ~ d  we can determine E(P, n) up to first order 
precision. To state this result we call a chain F0 C FI C . . .  C F4_l where F~ is an 
/-dimensional face of  P (i = 0, 1 , . . . ,  d -  1) a tower of P .  (Sometimes this is called 
a (complete) flag; cf., e.g., Bayer and Lee [BaLe].) Write T(P) for the number of  
towers of  P.  

Theorem 2. Let P E ~ d  be a polytope, d >>_ 2. Then 

E(P,n) = ( d +  1 ) a - l ( d -  1)! ~ - -  ' 

For a simple polytope P ,  where T(P) is d! times the number of  vertices of  
P, vert P ,  Affentranger and Wieacker [AW] recently proved that 

lO,  
- - + O  - -  . E(P, n) = ( d +  1) d - l  n 

Before, van Wel [We] deduced for a d-dimensional cube and indicated for any simple 
polytope P that E(P, n) ~., const(d) vert P n -1 log a-1 n with const(d) expressed by a 
(d 2 - d)-fold integral. In the case that P is a tetrahedron E(P, n) ,.~ 3n-  L log2 n was 
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derived by Buchta [Bu4]. If Efron's identity stated below is taken into consideration, 
R6nyi and Sulanke [RS] much earlier obtained for a polygon P that 

2 gnn 1 E(P, n) -~ vert P l ~  const(P) = + - - + o (  ) 
n ?z 

with explicitly given const(P). 
Estimates for E(P, n) were given in the case that P is a d-dimensional cube by 

Bentley, Kung, Schkolnick and Thompson [BKST] as well as by Devroye [De], in 
the general case by Dwyer and Kannan [DK], Dwyer [Dw], and B~irfiny and Larman 
[B~iLa]. The last-mentioned authors proved that E(P, n) is of order n - l  log d-I n for 
any polytope P.  

Denote by E(vert Kn) the expected number of vertices of K,~. The simple identity 
due to Efron [Ef] 

(n + DE(K,  n) = E(vert K,~+I) when K r ' ~ .  1 a (1.5) 

shows that (1.4) is equivalent to 

E(vert P~) = T(P) loga-1 n + O(log a-2 n log log n). (1.6) 
(d+ 1)a-l(d - 1)! 

The advantage of this formulation is that the assumption vol K = 1 can be dropped. 
To prove (1.4), or rather (1.6), we will show that the vertices of Pn are "concentrated" 
in certain simplices associated with towers of P.  For the precise statement we need 
some preparation. 

Assume that together with the polytope P r o~T1 d a hyperplane selection H(.) is 
given. This is a map that associates with every (nontrivial) face F of P a supporting 
hyperplane H(F) such that 

H(F) fq P = F. 

Given a tower T = (Fo, F1,. . . ,  Fa-1) we define the simplex S(T, e) associated with 
T for every small enough e > 0 by induction on d. For d = l, when P = [0, 1], say, 
and H(.) is unique, we set 

S(0, e) = [0, el, 

S ( 1 , e )  = [1 - e ,  11. 

Assume S has been defined for polytopes Q c ,.~T, 1 a - l .  Let P E ~ d ,  T = 
(F0 , . . . ,  Fa-1) a tower of P.  For notational convenience we assume that F0 = {0}. 
Write cone P for the minimal (convex) cone containing P (with apex at the origin). 
Set Hi = H(Fi), and consider the hyperplane Ho(t) parallel to H0 at a distance t and 
on the same side of H0 as P. Then 

Q(t) := coneP  N Ho(t) (1.7) 

is a ( d -  D-dimensional polytope. Since vola-i  Q(t) = const(P)t a-l, there is a unique 
~0 > 0 with vola_l Q(to) = 1. Define 

Q := O(to) r ~ 1  a-~. (1.8) 

For a face F of P with 0 E F but F r {0} the set cone F M Ho(to) is a face of Q. 
Moreover, all faces of Q are of this form. Correspondingly, the tower T = Tp gives 
rise to a tower TQ of Q via 
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TQ = (cone F1 NHo(to),coneF2NHo(to),... ,coneFa_t AHo(to)), (1.9) 

and Hp(-) gives rise to a hyperplane selection HQ(.) via 

HQ(cone F N Ho(to)) = Hp(F) n Ho(to) (1.10) 

where F is a face of P with 0 E F,  F # {0,}. Then, by the induction hypothesis, the 
simplex SQ(.TQ, ~) has been defined. Set 

Sp(Tp, e) = cone SQ(TQ, ~) 71H0(0, s) (1.1 1) 

where H0(0, t) denotes the slab between the hyperplanes H0 and Ho(t). 
Although S(T, e) seems to depend heavily on H(-), it is essentially the same when 

~ 0. More precisely, given another hyperplane selection H'(-), there are constants 
el and c2 (independent of ~) such that for all small enough ~ > 0 

S(T, H, C1~) C S(T, H t, ~) C S(T, H, c2r 

This can be proved by induction in an obvious way. We will write S(T, r for 
Sp(T, H, e) as we think of P and H(-) as being fixed. 

The notation (vert Pn in A) will denote the number of vertices of Pn in A C R a. 
The vertices of P .  are concentrated in the simplices S(T, ~) with e = (log n) -~ in the 
following sense: 

Theorem 3. Let P ~ .~. l a, d > 2, and set c = (log n)-  1. Then 

E(vert Pn in P \  U S(T, ~)) < const(P) log d-2 n log log n. 
T 

This is one of the results needed for Theorem 2, The other one is more difficult 
to prove, and we like to call it "independence of shape". 

Theorem 4. Let P E .~]d, d > 2, and set c = (logn) -1 . Then for any tower T of P 

1 
E(vert ~ in S(T, e)) = logd- 1 n + O(log d-2 n log log n). 

(d+ 1 ) d - l ( d -  1)! 

This shows that S(T, e) contains essentially the same number of vertices of P~ no 
matter what the shape of P is. Actually, we will prove that E(vert P~ in S(T, e)) is 
the same for all T independently of P up to O(log d-2 n log log n). Then this number 
will be implied from the result of  Affentranger and Wieacker. 

Theorems 3 and 4 state that the vertices of Pn are concentrated in UTS(T, e) and 
that their number in any particular simplex S(T, e) is essentially independent of the 
shape of P. This is true not only for the vertices but for the k-dimensional faces of 
Pn as well. Let us write f~(P) for the number of k-dimensional faces of the polytope 
P. Then the following analogue of (1.6) holds. 

Theorem 5. For a polytope P E o~:d "a and k = 0, 1 , . . . ,  d - 1 

E(fk(Pn)) = C(d, k)T(P) log d- t  n + O(log d-2 n log log n) 

where C(d, k) is a constant depending only on d and k. 
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The proof of  this theorem is based on statements analogous to Theorems 3 and 
4. As it is quite technical and does not require new ideas, we will not present it here. 

It can be seen from the work of Affentranger and Wieacker [AW] that 

dd-~ 
C(d, 0) - ((d - 1)!) 2 M2(Ad- l ) '  

dd-2 
C(d, d -  1 ) -  ( ( d -  1)!) 2 MI(Ad-1) '  

where •/[k(Ad_l) denotes the k-th moment of  the volume of the convex hull of  d 
random points in a simplex Ad- l  E ,~b~ ff -1 .  Due to Reed [Re], 

( d -  1)! 
M2(Ad_I)  = dd_l(d+ l ) d - 1  ' 

whence C(d,O) follows as stated in (1.6). However, MI(Ad_I)  is not known for 
d > 5. (Ml (At )  = �89 MI(A2)  = V2, and it was recently proved by Buchta and 

n 2 
Reitzner [BR] that MI(A3) = 72013 15-T0~') 

Since Pn is simplicial with probability 1, for j = - 1 , 0 , . . . ,  d - 2 

d--1 (~ + ~ ) C ( d , k ) = ( _ l ) d _ l c ( d , j )  (1.12) E ( - 1 ) k  + 
k=j 

with C ( d , -  1) = 0, other than in the usual Dehn-Sommervil le  equations where the 
~-"~d-- 1 z l ~ k , e  corresponding value is 1. (Euler's theorem 2-.,k=0 t-- ) ,tk = 1 - - ( - -1)  a corresponds to 

~-~d]_l(-1)kC(d,k) = 0.) For example, in the three-dimensional case, (1.12) and 

C(3 ,0)  = ~2 imply C(3, 1) = ~2, C(3, 2) = ~6" (The resulting expressions for 
E(fk(P,,)) can be simplified by observing that T(P)  is four times the number of  
edges for every three-dimensional polytope P.)  

The results of  this paper were announced in B~rfiny, Buchta [BB]. For further 
information about the convex hull of random points and related topics see the section 
"Random points in a convex body" in the work of Weil and Wieacker [WW] as well 
as the surveys of  Affentranger [Af2], Schneider [Schn], and Buchta [Bu3]. Interesting 
remarks are also contained in the section "Random polygons and polyhedra" of  a new 
book on unsolved problems in geometry [CFG]. 

2. Notat ion ,  definitions,  further  results 

Given a convex body K E ~ a  and 0 > 0, the Macheath region with centre x E K 
is defined as 

M(x,  0) = MK(x,  0) = x + O[(K - x) A (x - K)].  

Sometimes we will write M(x)  instead of M(x,  1). Macbeath regions were studied 
in [Ma], [ELR], [Bill.a], and [B~i]. Define u = uK : K --~ ~ by 

u(x) = vol MK(X). 

Another function of  interest is v = VK : K --+ ]I( which is defined by 
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v(x) = min{vol(K M H +) : x E H +, H + a halfspace}. 

It is deduced in [B~iLa] that u(x) < 2v(x) for every x E K and v(x) <_ (3d)au(x) if 
u(x) or v(x) is sufficiently small. 

We write K(u  < e) for {x E K : u(x) <_ e}; the sets K ( u  >_ e), K(v  <<_ e), 
and K(v  > e) are defined analogously. Macbeath proved that K(u  >_ e) is convex, 
see Sections 7 and 11 of [Ma]. Obviously K(v  > e) is convex because it is the 
intersection of  closed half spaces. 

The main result of  [B~iLa] states that E(K,  n) is "essentially the same" as 
vol K( v  <_ -~). Precisely, there are constants c~(d) and c2(d) such that 

cl(d)E(K, n) <_ v o l K ( v  < 1 )  _< c2(d)E(K, n) (2.1) 
n 

for K ~ o%"~ and n _> d +  1. Moreover, v o l K ( v  _< ~) and v o t K ( u  < -~) are 
essentially the same, too. 

In the case of a polytope we can prove a formula similar to (1.4): 

Theorem 6. Let P E 3g'~ l d be a polytope, d >_ 2. Then 

T(P)  e log a -  1 1 1). - + O(e log d-2 
v o l P ( u  < e ) -  2dd!(d - 1)! e e 

Albeit much simpler than Theorem 2 this will be quite useful. Analogously one 
can show 

T(P)  1 
1 

v o l P ( v  < ~) = r -~). - d d ( d -  1)! l~  - + O(r 
c 

This was first proved by Schtitt [Schii], we found it independently. 
The assumption vol K = 1 or vol P = 1 in the theorems is made for convenience 

rather than necessity. What is really needed is vol K > 0, and we will have to consider 
convex bodies with vol K ~ 1 as well. In this case it is better to take 

vol K (u  <_ ~ vol K )  

vol K 

instead of vol K(u  < ~) because it is affinely invariant. Precisely, let L : ]~d __+ ]~d 
be a nondegenerate affine transformation and K E ~ , -d .  Then, clearly, 

vol  K(UK <: ~ VO1 K )  = vol L K ( U L K  <_ ~ VO1 L K )  (2.2) 
vol K vol L K  

We mention further that E(ver t  K,~) does not depend on the volume of K .  But Efron's 
identity (1.5) has to be modified: 

n + l  
E(vertKn+O = v--~-~E(K, n) when K E ~ d .  

Assume P E 57d "d is a polytope and let T be one of its towers. This will define 
parameters "to(z), vl(z), . . . .  r a - l ( z )  for z E P in the following way. We use induction, 
so when d = 1, T0(z) is the distance of  z from the vertex defining T. When d > l, T0(z) 
is defined (cf. (1.7) and (1.8)) by 

z ~ Ho(r0(z)). 
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Recall the definitions of  Q, TO,, SO, (TQ, ~) from (1.7), (1.8), (1.9), (1.10), (1.11). Set 

ZQ := torol(Z)Z @ Q. (2 .3 )  

Define now for i = 1 , 2 , . . . , d -  1 

~-i(z) = r i _ , ( Z Q ) ,  

where the parameter "ri-l(ZQ) is meant in Q with respect to the tower TO. With this 
definition we have 

z E S ( T , e )  if and only if to(z) < c and zo" E SQ(To , e )  

and, further, 

but 

z E S(T,  e) if and only if Ti(z) <_ e 

Clearly, for a > 0 and z E P 

7"o(C~z) = c~ro(z), 

(i = 0, 1 , . . . , d -  1). 

(2.4) 

vi(az) = ri(z) ( i =  1 , . . . , d -  1). (2.5) 

In the proof of  Theorem 4 we will need the following notation. Again, P is a 
polytope and T = (F0, F I , . . . ,  Fa-1) a tower of  P .  For r r  r  > 0 define 

P ( $ 0  = P ( 4 , o ,  �9 �9 � 9  C d  

= P ( O 0 , . . . ,  6i;  Fo,..., Fi) 

= {z C P : ~-j(z) < Cj (3' = 0 , . . . ,  i)}. (2.6) 

In particular, if g)o = q#l . . . . .  ~Oa-1 = c, then 

P ( ~ a - I )  = S(T,  ~). 

Moreover, we put 
P ( r  = P when i = O, (2.7) 

and we set for i = O, 1 , . . . ,  d - 1 

P ( r  l, ri _> r 

= P ( r  ,(gi--l,Ti ~-~ ~)i) 
= {z E P ( 0 / - 0  : r~(z) > r 

Notice that for i > 1 

~'(Q) > r A Ho(0, 6o) (2.8) P(r  Ti >_ r = cone Q( r  �9 �9 r  ' i - 1  - 

where ~(Q) is the (i - 1)st parameter induced in Q by the tower T. ' i - 1  
Finally, we define 

ray(x, y) = {x + t(y - x)  : t >_ 0}, 

and we set 
u(x,  y) = max{u(z) : z E aft(x, y)} 
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where u : I~ d ~ tt~ and aft(x, y) denotes the affine hull of  x, y E 1( d. 
We will use the notation const(P)  for different constants. As we think that the hy- 

perplane selection H(. )  is given together with the polytope P ,  we will write const(P) 
instead of const(P, H) .  

3. Auxil iary results 

For 0 < ~ < 1 

d d- I  1 1 
vol{xel~d:l-ix~<_r , O < x i < l ( i = l , . . . , d ) } = e Z ~ l o g i - . r  (3.1) 

i= 1 i=0 

This follows, e.g., from (3.5) and (8.1) in Chapter I of  [Fe]. 
Assume now that P is a polytope with a fixed tower T whose starting vertex is 

the origin. Then 
ro(x)+ro 

= / vold-l[Mp(x) A Ho(t)]d~ (3.2) 7s 

r0(x)--r0 

where 7-0 _> 0 is defined as the largest t for which the section Mp(x)fqHo(ro(x)-t) is 
nonempty. It is easy to see that the central section Mp(x) fq Ho(7-o(X)) coincides with 
hlQ(ro(x))(x). Since MR(x) is centrally symmetric with centre x, the largest volume 
section is the central one. Then (3.2) implies 

On the other hand, 

Up(X) = 2 

up(x) < 2TOUQ(ro(z))(X). 

ro(x) 
/ 

ro(x )- ro 
to(x) 

>_: f 
rO(X)-ro 

VOid_ 1 IMp(x) fq Ho(t)]dt 

t - T0(X) + To ~ d-I VOld-1 MQ(To(z))(x)dt 
ro / 

(3.3) 

2 ~  = --d-UQ(ro(x))(x). (3.4) 

We will often use (3.3) and (3.4) when ro = to(x). This happens if x is close enough 
to the vertex of T,  for instance, if the vertex of T is the only vertex of P lying in 
the slab H0(0, 2to(X)). 

Assume now that K E ~ f a  with vol K = q. It can he seen from the proof of  
Theorem 1 in [B~La] that 

d - l ( n )  "u (x ) ' i ' l i  t--2-q-q) ~q)  Prob(x r Kn) <_ 2 Z ( - )n-, (3.5) 
i=0 

where Prob is meant with x E K f x e d  and Kn the random polytope in K varying. 
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Before stating the first of three lemmata needed in the proof of Theorem 4, we 
mention a result of  Macbeath: Let L be a convex compact subset of  K containing 
interior points of  K.  Then, according to Lemma 7.1 in [Ma], the maximum value of  
uK in L is attained at a unique point of  L. 

L e m m a  1. Assume K E ~ c d ,  and a and b are points on the boundary o f  K such that 
aff(a, b) contains interior points of  K .  Let c be the point where u takes its maximum 
value on aff(a, b). Then, if  u(e) is sufficiently small, 

[la - < ( 3 d ) d %  
lib - 

Lemma 1 says that if H is a hyperplane and u(c) = max{u(x) : x E H}  with 
c E H,  then c is a "(3d)d+2-central ' '  point of  the section K N H.  Similarly, the 
v-maximal point on H is the centre of  gravity of  K N H (cf., e.g., the proof of  
Lemma 4 in [ELR]), whence it is "(d - 1)-central". 

L e m m a  2. Assume P E ~ ,  T is a tower of  P,  ~0 = ~l . . . . .  qoa-i = (log 1)--I 
with e > 0 small enough, q~0, q ~ , . . . , r  > 0 are constants, 0 >_ 1. Then, for  
i = 0, 1 , . . . , d -  1, x E P(~ i )  implies 

vol[P(r r~ > r n MP(~i_o(x  ~ O)] 

< const(P)ri  (x) vol Mp(oi_ l) (X, O) 

L e m m a  3. Assume, again, P E ~C1 d, T is a tower of  P,  g~o = qol . . . . .  r  = 
(log { ) - l  with e > 0 small enough, r ~1, ' ' '~  •d--1 > 0 are constants. Then, for  
i = 0 , 1 , . . . , d -  1, 

meas{(x, y) E P(~ i )  • P(r  >_ r : Uet~i_l)(x,y)  <_ e} 

_< const(p)e2 loga_ 2 1 log log 1 

where meas is the product o f  the Lebesgue measures on ~a • ~d. 

The proofs of the lemmata are given in Section 8. In Section 7 we deduce Theorem 
1 from Theorem 2. The proof of  Theorem 2 consists in proving Theorems 3 and 4 
which will be done in Sections 5 and 6. Theorem 6, or rather its proof, turns out to 
be an important tool for the proofs of  Theorem 3 and 4, so we start with Theorem 6. 

4. Proof of  Theorem 6 

For a vertex v E P define Hv = H({v})  and write Hv(0, ~) for the slab between H,, 
and Hv(~). Put A(~) = P \  Uv H~(0, ~). As a first step in the proof we show 

1 
vol[P(u  _< e) M A(~o)] <_ const(P)e log a-2 log (4.1) 

provided ~o d > const(P)e. (4.1) means that the essential part of  P ( u  <_ e) is concen- 
trated near the vertices of  P .  
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When d = 1 and ~ _> e/2, the left hand side of (4.1) equals 0. For d > 2 let 
A t , . . .  , Am be simplices forming a triangulation of P that uses vertices of P only. 
Clearly, 

m 

P(u <_ e) c U AdUAi <_ e). 
i=l 

Now for a simplex A E . ~ l  d with hyperplane selection H(-) one can show that 

vol(x c A : UA(Z) < C, X r U Hv(O, ~)} 
v a v e r t e x  o f  A 

1 1 
< const(d)e log d-2 ~ log ~ (4.2) 

provided ~a > const(d)e. The proof of this is a routine calculation using (3.1) and is, 
therefore, omitted. See [Dw], [AW] for a similar computation. 

Using an affine transformation carrying A~ into ,4 we get by (2.2) 

vol{x E A~ : ua~(z) _< e, x r U Hv(O, ~)} 
v a v e r t e x  o f  , 4  i 

U < vol,4i vot{x 6 A : UA(Z) < VO1Ai X ~ H.(O, 
v a v e r t e x  o f  A 

e vol Ai (vo1,4i) l/d 
< vol Ai const(d)----:-7 log d-z log 

VOl/_& 

< const(d)eloga_ 2 1 log 1 
qv 

provided ((VO1,4i)l/d) const(d) ~ __ _o i.e. _> const(d)e. Summing this for all 

At we get (4.1). 
It is helpful for the second step in the proof to notice that analogous arguments 

easily give 

vol P(u < e) < const(P)e log d-1 1 (4.3) 
E 

This second step consists in showing that P(u < e) is concentrated in the union 
of the simplices S(T, ~). Setting now B(~) = P\  UT S(T, T) we claim 

1 1 
vol[P(u _< e) n B(T)] ~ const(P)e log d-2 ~ log ~ (4.4) 

provided T d ~ const(P)~. We prove (4.4) by induction on d. The case d = 1 is trivial. 
The case d = 2 which needs special consideration is quite simple and is left to the 
reader. 

Since B@) D A@) = P\  Uv Hv(O~ ~) we have 

P(u < e) n B@) = [P(u < e) n A(~)] U U [ P ( u  < e) n B(~) n H~(0, ~)], 

so that 
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vol[P(u _< e) N B(~)] 

< vol[P(u < ~) n A(~)] + E vol[P(u < e) N B(~) n H~(O, ~)]. (a.5) 
V 

We will estimate 

O(v) := vol[P(u _< e) N B(~) n H~(O, ~)] 

= vol{x c P : u(x) < e, x r U S(T, ~), x E Hv(0, ~)} 

separately for each vertex v. We suppose v = 0, again. Assume ~ is so small that the 
only vertex lying in/4o(0, 2(p) is v = 0. Consequently, for x C P N H0(0, ~) 

Mp(x,  l) = Mconv(Qu{O})(x , 1) 

where Q is defined in (1.8), cf. (1.7) as well. Then 

~o 

/VOId-I{X E Q(t) : up(x)  < e, x r U s ( T , e ) } d t .  (4.6) O(v) 
, i  

0 

We estimate the integrand in (4.6) using successively (3.4), (2.2), the fact that 
vold-1 Q(t) = el (Q)t d-l,  and the induction hypothesis 

vold_l{x ~ Q : ~q(x) < ~, x r U SQ(T~, ~)} 

< const(Q)r logd_ 3 _1 log _1 (4.7) 
e 

provided ~d-1 ___ c2(Q)e; cf. (4.4) and (1.9). Thus we obtain 

VOld-l{X E Q(t )  :up (x )  ~ c, Z r U S(T, ~)} 

de 
< VOld_l{x E Q(t): uQ(t)(x) <_ ~ ,  x r U S ( T ,  ~)} 

_ vold-i Q(t) VOld-1 {x 6 Q : UQ(X) < de vold- lQ r U SQ(Tp, ~)} 
volQ - 2tVOld-1Q(t)' x 

de 
= o(Q) t  d-1VOld_l{x C Q : UQ(X) <_ 20(Q)td ,  x r USQ(TQ, (p)} 

2cl(Q)t d 1 
< q (Q) t  d-I const(Q) dz _ logd_ 3 _ _  log -- 
- 2q  (Q)t a d~ 

= const(Q) t iogd_3 2CI (Q)t______ a log 1 (4.8) 
de 

de de provided ~d-l  > c 2 ( Q ) ~  and < 1. Define t2 and tl as the smallest 
values t > 0 such that these inequalities hold, i.e. 

td de and t d = de 
= c:(Q)2ct(Q)qod-I 2el(Q)" 

Notice that t2 > tl as ~ > 1. - -  r  I -- 
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We apply (4.8) when t2 < t < (p. Observing 2q(Q)§ < t (as the volume of  P 
- -  - -  d - -  

is 1) we see that 

~o 

VOld_l{x E Q(t) : up(x) <_ ~, x r US(T ,~ ) }d t  
t2 

~ 2ct(Q)t_____~ d 
< c~ l~ dc log I-dt 

t2 

1 ( 2c~(Q)~ d c2(Q)'~, 1 
= c o n s t ( Q ) ~ e  log d-2 log d-2 

_< const(Q)s log a-2 1 log 1 .  
e 

For t l _< t _< t2 we use 

vold-l{x E Q : UQ(X) <_ e} _< const(Q)elog d-2 1 
C 

instead of (4.7); cf. (4.3). (Applying (4.3) can be avoided if the whole theorem is 
proved by induction.) Then 

t2 

VOld-l{x C Q(t) : up(x) <_ c, x q~ US(T ,~ ) }d t  
tl 

t2 

< / V O l d - l { X  e Q(t):  up(x) <_ e}dt 
tl 

t2 

J de }dt < cl(Q)t d-i vold_l{x E Q : UQ(X) ~_ 2cl(Q)t~ 
tl 

t2 
<_ / cl(Q)td_ 1 de 2cl(Q)t d 

const(Q) 2ct--~)td log a-2 ds dt 

t2 
e 2cl (Q)t d dt 

= const(Q)-/log a-2 de 
tl 

1 c2(Q) 
= c o n s t ( Q ) ~ e  log a-I ~a-I  

< const(Q)s log d-2 log 

s i n c e l < ~ _ < ~ .  
Finally, for 0 _< t _< t~ 
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VOld--l{X C Q ( t ) : u p ( X )  <_ x ~ U S ( T ,  ~v)}dt C~ 

0 

t !  t l 

< vole-1 Q(t)dt  = Cl(Q)td-ldt  = -~. 

0 0 

To summarize, we conclude that 

O(v) <_ const(Q)e log a - 2 1  log 1 
e qo 

Because of (4.5), this together with (4.1) proves (4.4). 
As a third and last step in the proof we compute vol [P(u  _< e) N S(T,  go)]. 

We do this first when P = C, the unit cube in I~ a. In this case, by symmetry, 
C(u <_ e) Cl S(T,  ~p) is the same for all towers T of  C. On the other hand, 

u c ( x )  = 2~xl . . . zd 

for those x = ( x~ , . . . ,  Xd) E C which satisfy 0 _< xi _~ �89 (i = 1 , . . . ,  d). A routine 
computation similar to the one needed for (4.2) gives 

1 
vol{x E C :  u c ( x )  <_ e, x~ <_ ~ (i = 1 , . . . , d ) }  

1 1)!elogd_ 1 1 +O(e logd_  2 ! ) .  
2d(d -- e e 

Since there are d! towers and so d! simplices S(T ,  ~) starting with Fo = {0}, we get 

vo l [C(uc  _< e ) r ~ S ( T , ~ ) l =  2ad!(d 1)veloga-I + O ( e l o g d - 2 1 1 o g l ) ,  (4.9) 
- -  . e go 

where we used (4.4) with P = C' as well. 
Assume now P is a polytope and T is one of  its towers. Then one can find two 

parallelepipeda Ct and C2 with towers T1 and T2 so that Sp(T ,  ~p) = Sol (7'1, ~o) = 
Sc2 (T2, ~o) and that for x close enough to the origin 

x E C1 implies x E P and 

x E P implies x E C2. 

Now if x c S(T ,  ~) and go is small enough, then x is close to the origin and so 

M c l ( x )  C M p ( x )  C Mc2(x) .  

Consequently uc l ( x )  <_ up (x )  ~_ uc: (x) .  We know from (4.9) and (2.2) that for 
i=  1,2 

1 1 1 l 
- 1)(e logd-1 -- + O(elog  d-2 - log ~ )  vol[Ci(uc~ _~ e) N S(Ti,  ~)] 2dd!(d - e e 

proving that 

1 1 
vo l[P(up  ~ e) ~ S(T ,  go)] = 2dd!(d _ 1) t e log d-1 - + O(e log d-2 1 log 1 ) .  (4.10) 

�9 e e go 
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Finally, summing (4.10) for all the towers and using (4.4) gives 

T(P)  1 
vol P(u < e) = 2ad!(d _ 1)! e log a-1 - + O(e log a-2 1 log 1 )  

provided qa d _> const(P)e. This certainly holds when ~ is a suitable constant and 
e > 0 small enough, proving the theorem. [] 

5. Proof of Theorem 3 

Assume A C P is measurable. Set X,~ = {x l , . . . ,  x .}.  Clearly, 

n 

E(vert P,~ in A) = ~-'~ Prob(xi E A, x~ tg conv(Xn\{x~})) 
i=t 

= n / Prob(x ~ Pn-Odx.  (5.1) 

x E A  

Here Prob(x r Pn- l )  is meant with x fixed and Pn-1 = convXn-1, a random 
polytope. We apply (5.1) when 

A = B(e) = P \  U S(T, e) 
T 

where e = (log n) - l .  We use the method of [B~iLa]. Changing n to n+  1 and applying 
(3.5) we get 

(n + 1) / Prob(x 9~ P~)dx 

B(e)  

d--1 

_< (. + l) / 
B(e)  "- 

n d - - I  

=(n+l)~ / 2 Z (n) (~J~-~)i(l - -~)n-Jdx 
X=l B(~) i=0 

;~-- l< �9 " - A  
--u(x )~" n 

< 2(n+ 1 ) Z  Z i (2-nn) ( 2n 
X=l i=O 

Here ( i ) ( N )  < ~ ,  (1 - < 2 i, and (1 - < yield 

Z ( )i(1 "2~ - < c~ (5.3) 
i=0 

Moreover, vol{x E B(e) : u(x) < ~ } < 1, Set ~o = [4 log nJ. Then 
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2(n+ 1) Z ( )i(1 - )'~-ivol{x E B(e):u(x) < - }  
n 

X=Ao+] i=0 

_< const(d)n ~ Ad-le -'x/2 
A=Ao+I 

OO 

<-- c~176 Z Ad-l e-A/4 
A=I 

_< const(d). 

We know from Theorem 6 or rather from (4.4) that 

A n 1 
vol{x E B(e) : u(x) < A} _< const(P) log d-2 ~ log - ,  

E 

since e = (logn) -1 satisfies e d > const(P)~ when A < A0. So we have 

,xo d-l [n \ A ~ 1 A ~ I ) ~ - i v o l { x c B ( ~ ) : u ( x ) <  ~} 

A=] i=O 

A0 

_< const(d)n Z Ad-le-A/2 const(P)~- log a-2 An log log n 
,k=l 

,k o 

_< const(P) Z Ade--A/2 logd-2 n log log n 
X=I 

< const(P) log d-2 n log log n. [] 

(5.4) 

(5,5) 

This proof will serve as a model for some proofs to come. In particular, estimations 
analogous to (5.2), (5.3), (5.4), and (5.5) will frequently be used with reference to 
this section and without elaboration. 

6. Proof of  Theorem 4 

Again let Xn = {x j , . . . , xn}  be the set of the n random points in P. For i = 
0, 1 , . . . , d -  1 define 

E(i, n) = E[vert conv(Xn M P(q]0) in P(~3~)] 

- E[vert conv(Xn N P(~i-l))  in P(~0].  

Here P(r and P(95i) are defined in (2.6), cf. (2.7) as well. We set 

~ = (logn) -1, r = const(P) (i = 0, 1 , . . .  ,d - 1) (6.1) 

where r is chosen so small that the set {z E P : 0 < TdZ) < 2~bi} does not contain 
any vertex of P. We claim that 

0 < E(i, n) < const(P) log d-2 n log log n. (6.2) 
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This will prove the theorem in the following way: 

E(vert Pn) = ~ E[vert P~ in P(~0; Fo)] 
Fo 

+ O(Iog d-2 n log log n) 

= ~ E[vert conv(Xn N P(r Fo)) in P(~0; F0)] 
Fo 

+ O(log d-2 n log log n) 

= ~ E[vert conv(X~ N P(~bo; Fo)) in P(~o, ~1; Fo, FD] 
Fo,Ft 

+ O(Iog d-2 n log log n) 

= ~ E[vert conv(X~ f~ P(0o, r F0, F1)) in P(~o, ~l; Fo, FD] 
Fo,F~ 

+ O(log d-2 n log log n) 

, ~ - . . .  

=~-~ E[vert conv(X,~ A P(r �9 �9 -, ed-1; T)) in P (~0 , . - . ,  ~d-X; T)] 
T 

§ O(log g-2 n log log n) (5.3) 

where the equalities follow from Theorem 3 and (6.2), alternatively. The terms in the 
last sum are independent of P,  they depend only on ~0, �9 .-,  44-1 and r  (Pa-l. 
This means that they are the same for every tower of every polytope once these 
numbers are equal. For a simple polytope Affentranger and Wieacker determined 

d vert P 
E(vert P~) = (d + 1) 4-1 1ogd-1 n + O(log d-2 n). 

Since T(P) = d! vert P for a simple polytope, we get from (6.3) that the expected 
number of vertices of P~ lying in S(T, (logn) -1) is 

1 l o g d -  1 n + O ( l o g  d - 2  n log log n) .  
(d+ 1)d-l(d -- 1)! 

But then E[vert P,~ in S(T, (log n)- l ) ]  is this very number for every tower T of every 
polytope, simple or otherwise. 

Set q = volP((~- l ) .  Choosing the random n-set X,~ from P is the same as 
the following two-step procedure. First choose m E {0, 1 , . . . ,  n} with probability 
(n)qm(1 _ q)n-m, then choose m points YI~... ,Ym from P(r  randomly, in- 
dependently and uniformly, and choose n - m points from P\P(r 1) randomly, 
independently and uniformly. Correspondingly, 

E ( i , n ) = ~ ( : ) q m ( 1 - q )  ,~-~ 
m---o 
{E[vert conv(X,~ N P( r  in P ( ~ ) I  card(X~ fq P(r = m] 

- E[vertconv(Xn n P(~3i-1)) in P(~Dt card(X,~ n P(a3i_D) = m]} 
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= qm(1 __ q)~--m 
' , 'r~=0 x . "  

{E[vertconv(Ym n P ( r  in r(@i)] 
- E[vert  conv(Ym A P ( r  1)) in P(~i ) ]  } (6.4) 

with Ym -- {Y~,... ,  Ym}. Here conv(Y~nP( r  = P @ i - ~ ) m  since Y~ C P( r  
but we cannot use the same notation for conv(Ym A P( r  So we better leave them 
as they are. We continue (6.4) using (5.1) 

m - - 0  

m / Prob[x ~ conv(Ym-1 n P ( r  

xEP(~O 

and x E conv(Y,~_l N P(r  (6.5) 

So we see that E(i, n) > O. We claim now that for m ___ d + 2 

:= m / Prob[x ~( conv(Ym-1 E0 n P(r 
, ]  

x C P(,~ O 
and x E conv(Ym-L A P(~i-1))]dx 

const(P) log d-2 m log log m. (6.6) 

(E0 = 0 clearly for m __. d + 1.) This will prove (6.2), since using (6.6) in (6.5) gives 

E(i ,n)< ~ ( : )q~(1--q) '~-~cons t (P) logd-2mloglogm 
m = d + 2  

<const(P)loga-2nloglog n ~ ( : )  qm(l - q )  n - ~  
m = d + 2  

< const(P) log d-2 n log log n. 

As we prove (6.6) we now introduce the notation K = P( r  and we assume 
that vol K = vol P ( r  = l since in (6.6) this does not matter. Let us write further 

K(~-~ < r := P( r  

K(7~ > 4~) := {z E K : ~'~(z) > r 

K(ri > ~ )  := {z ~ K : -r~(z) > ~ } ,  

but P ( r  = P(~0,  �9 �9 ~ )  as earlier. For the estimation (6.6) we need the simple but 
important 

Proposi t ion 1. Assume x, y j , . . .  ,Ym-1 are in general position in K. Set Ym-1 = 
{Yl,. - - ,  Ym- 1 } and assume, further, that 

x E P ( ~ 0 ,  z E convYm-1,  x ~ conv(Ym-i  n K('r i  < ~0).  

Then there is a yk E Ym-1 f-) K(7-i > r such that 
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ray(x, yk) n conv[(Y,~_l\{yk}) N K('ri > qoi)] = ~, (6.7) 

and 
ray(x, Yk) FI conv[(Ym-l\{yk}) M K(~-~ < 0i)l = O. (6.8) 

Proof. Identify x with the origin for this proof. Then the conditions imply that 

Cl := cone Ym-1 = I~ d, 

C2 := cone(Ym-1 N K(~-i _< r i t I$ d, 

C3 := cone(Ym-1 n K(~-i > ~i)) it ~a. 

As the sum of the last two cones is C1, C3 must have an extreme ray, defined by 
some Yk E Y,~-I N K(T~ > ~i) that is not in C2. Then Yk ~ K(-r~ _< r as well, and 
ray(x, Yk) has the claimed properties. [] 

We rewrite (6.6) using the new notation and Proposition 1. 

E0 = m / Prob[x ~ conv(Ym-i N K(ri  _< r and x E conv(Ym-1 M K)]dx 
. 1  

P(~i) 

/ "  Prob[3yk E Ym-l  N I((Ti ~_ r such that (6.7) and (6.8) hold]dx _< m 

P(~i) 

m - 1  

/ Z Prob[yk E K(Ti > r and (6.7) and (6.8) hold]dx _< m 

P @ O  k=l 

/ ( m -  1) ~ Prob[ray(x,y) nconv(Ym_2nK(Ti  > ~ , ) )=0 < m 
, /  , /  

xE P(~i)  yEK(ri  _>r 

and ray(x, B) N conv(Ym-2 f~ K('ri <_ r = ~]dydx. 

Now change m m m + 2 and define the events 

G1 : ray(x, y) N conv(Ym n K(vi >__ ~a~)) = ~, 
G2 :ray(x, y ) n  conv(Y,~ n K(7"i < r  = 0. 

Thus, in order to prove (6.6) it will be enough to show that 

m 2 f f  Prob(G1 and G2)dydx < const(P) log u-2 m log log m (6.9) 
, / d  

(x,y)E K (i) 

where K (i) = P(~O x tf(~'~ ~_ r 
Let z be the point where the function 

u = uK(= ue(~_~)) 

takes its maximum value on aft(x, y). It is known that z is unique (cf. Section 3), but 
we will not neexl this. We split K (0, the domain of the integration in (6.9), into three 
parts: 
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d - I  

j--o 

K{ ~) = {(x, y) e K (~) : r~(z) > 2So~}, 

K~ ~) = {(x, y) c K (~) : r~(x) < r~(z) < 2~o~}, 

K~ i) = {(x, y) a K (0 : wi(z) <_ ri(X)}. 

We will estimate the integral (5.9) separately for the three parts. 

Case l: ~-i(z) > 2~i. Set ~ = uK(,-t>~O, (1 = volK(~' /> qai), and recall (3.5). 

Prob(G 1 and G2) < Prob(G l) 

< Prob[z r conv(Ym N K(ri >_ ~i))] 

~---0 

Prob[z ~ conv(Ym A K(ri _> qai))] card(Ym n K(ri  k ~ ) )  = #1 

= ~ (~)q~'(1-(~)m-'Prob(z ~ K(Ti >_ ~) , )  
#=0 

d--l 

~,=o j ~  2c7 

d - I  _ rn  . 

=2E(m): . J 'U(Z) ' J~" ( :~ ' ]~ ) ( l -q )m-~[q( l - ' ( z ) ) ]  ~-~ 
2q u=~ ~=0 J ~ ~'--z:-_~ A_, 2q 

j=0 u~ 

Then 
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E1 := m 2 / / P r o b ( G 1  and G2)dydx 
KI i) 

d-1 

K~i) j:=O 

= 2m2 E y (---~--)~(1 - )m-Jdydx 
2 = 1  Kli) j=O 

m 

_< const( ,-2 E y) KS: _< 
>,--I 

where the last inequality follows in the same way as (5.2) and (5.3). This time we 
set Ao = [8 log mJ and write 
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~0 

E,  < const(d)m2[~-~ ~d-le-~/2meas{(x, y) e K ~ ) :  fi(z) < A__} 
A=I m 

+ ~ )~d-le-~/2]. 

A=~O+I 

(6.10) 

The second sum is less than const(d)m-2;  cf. (5A). For the first sum we need 

2d! 
Proposi t ion 2. u(z) <_ ( d -  i)! fz(z) if Ti(Z) > 2~. 

Proof We use induction. For i = 0 the statement is 

Up(Z) ~ 2up(~-o>_~o)(z) 

provided To(Z) > 2qa0. Observe that MP(ro>>_~o)(Z) = Mp(z) G Ho((P0, 2~-0(z) - ~o) 
where Ho(~t,t2) stands for the slab between H0(ll)  and Ho(tu). So by (3.2) 

~(z) = 2 fo ~ VOld_l[MP(~o>_~o)(z) N Ho(O]dt 
u(z) 2 fo  ~ VOid-l[Mp(z)  N Ho(t)ldt 

fro(z) VOld-1 [Mp(z) N Ho(t)]dt  1 
0 ~ > _  

f:o(z) vold- i  IMp(z )  N Ho(t)]dt  - 2 

since "ro(z) > 29o and the integrand is a monotone function. 
When i > 1, to := max{0, 2T0(Z) -- r  is the smallest t such that 

Mp(~o ..... r  n Ho(t) and MP(r ..... r n Ho(t) 

are nonempty. Therefore (3.3), (3.4), and the induction hypothesis (also cf. (2.8)) 
imply 

~(z) = vol Mp(r o ..... r  p'i>~0 (z) 

u(z) vol Mp(r o ..... r 

2 f~:o(z) VOid_ 1 [MP(4~ ..... r  l,r~>~O(z) n Ho(t)]dt 

2 fro ~ v o l a - l [ M p ( ~  ..... r N Ho(t)]dt 

rQ(z)-t~ VOld-1 [MR(co ..... ~i_tp-i>_~0(z) n Ho('ro(z))] d > 
(T0(Z) -- t0) VOId-I[Mp(r o ..... ~ i -p (z )  n Ho(7"o(Z))] 

= 1 up!~.(z)~i,!,,..,r > 1 (d - i)! l [] 

d uo(~,o(~))(r ~ ..... ~_~)(z) - d ( d -  1)! 2" 

Using Proposition 2 and Lemma 3 in the first sum of  (6.10) we obtain 
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~o ,~ 
E Ag-l e-M2meas{(x, y) e K~i) : ft(z) < m} 
A=I 

AO 
< E Aa-'e-a/2meas{(x'Y)E K~'>: u(z) < 2d,~----} 

A=I 

AO 

--< E Ad-le-M2 c~ l~ 2dlAm log log 2d!Am 
A=I 

< const(P)m -2 log d-z m log log m. 

This proves that 
El < const(P) log  d -2  m log log m. 

Case 2: Ti(X) < ri(z) < 2qOi. This time we set ~2 = UK(r~<r and q = vol K(Ti < r 
In a similar way as in Case 1 we see that 

Prob(G1 and G2) < Prob(G2) 
_< Prob[z r conv(Ym tO K(ri  _< r 

d - I  ~ 
' 

j__o\j j 2 

Correspondingly, 

E2 := m 2 f f  Prob(Cl and G2)dydx 

m 

<- c~ E Ad-le-X/2meas{(x' y) e K~ i) : (z(z) < ~---} 
A=l m 
Ao 

A 
< const(d)m2[E Ad-%-M2meas{(x, y) E Kg(~ : ~(z) < m} 

A=I 
m 

+ E Ad-le-)~/2] 
A=Ao+I 

where Ao = [8 log m J, again. Here we need 

d! 9"  
Proposition 3. u(z) < ~ t ( z )  if v~(z) <_ 

Proof By induction again. The case i = 0 is very simple, since up(z) = up<r ff 
T0(z) _< ~ .  When i _ 1, the same reasoning as in the proof of Proposition 2 gives 
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e(z) 
u(z) 

vol Mp(r  o ..... r  

vol  Mp( r  o ..... r 

r0(z) 
2 f VOld-l[Mp(r o ..... r 

to 

> 

to(z) 
2 f vOld-l[MP(r ..... ~i_I)(Z) fq Ho(t)]dt 

to 

(to(z) - to) VOld-l[Mp(r o ..... r A Ho(7-o(Z))] 

-- (70(z) -- ~0)vold-l[MP(r ..... r fq Ho(7"o(Z))] 

1 uQ(ro(z))(e~ ..... r > 1 (d - i)! > -  [] 
- d uQ(ro(z))(r ~ ..... r - d ( d -  1)!' 

Observing (6.1) we see in the same way as in Case 1 that 

E2 < const(P) log d-2 m log log m. 

Case 3: Ti(z) _< ~'i(x). Of course, ~-i(x) < ~i < r < Ti(y). Macbeath proved that the 
set {x E K : u(x) > e} is convex (recall Section 2). This implies that u is maximal 
on ray(x, y) at x. Similarly as in Case 2 - but with x instead of  z - we get 

E3 := m 2 / / P r o b ( G 1  and G2)dydx 

m z / / P r o b [ x  ~ conv(Ym M K(T~ < r _< 

Ao 

)~----0 

+ ~ Ad-le -A/2] 

with Ao = L8 log mJ.  Again u(x) <__ d!~(x) by Proposition 3. Lemma 1 shows that 
y E Mg(z ,  O) with 0 = (3d) d+2. As x lies on the segment connecting z and y we have 
y e MK(x,  8). Hence 

~..(i) A 
meas{(x,y)  E " '3 : / i (x)  < m }  

< meas{(x, y) E K~ 0 : u(x) < dt A } 

< meas{(x, y) e P (~ i )  • K(r i  _> r : u(x) < dr. A__, y e MK(x,  O)} 
m 

= / vol{y e K(T~ > r : Y ~ MK(X,  O)}dx. 
~ g  

a:EP(r 
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Estimating the integrand by Lemma 2 and observing (6.1) we further see that 

meas{(x, y) e K~i): 72(x) _< _..A} 
m 

< f const(P)Ti(X)U(x)dx 
xEP(~ i) 

u(x)<_d!-~ 

_< const(P)(log m)-  1 dIAm / 1 dx. 
xEP(~i )  

u(:~)<_d! ~m 

By Theorem 6 

vol{x E P(~O:u(x) < d! A-- } <_ const(d) d!A log d-1 d!)~ 
m m m 

and therefore 

Consequently 

and 

meas{(x, y) E /s : fi(x) < A_} 
m 

_< const(P)mA---~ log d-2 m. 

.X 0 

~_)~d-%-)'/2meas{(x,y)~ R'3 (~> : 5(x) _< m A--} 
A--O 

< c o n s t ( P ) 5  log a-2 m 

E? _< const(P) log a-2 ra. [] 

7. Proof of  Theorem 1 

Consider a convex body K E Jg~l a. Define N(e) as the maximal number of pairwise 
disjoint caps of K, each of volume e. (A cap of K is the intersection of K with 
a halfspace.) If K is a polytope, then N(e) < vertK and N(e) = ver tK for small 
enough e. Conversely we have: 

If N(e) is bounded, then K is a polytope. (7.1) 

To prove this assume that N(e) < No, N(eo) = No, and take pairwise disjoint 
caps C1, . . . ,  CNo, each of volume eo. Then Ci = K N Hi with a halfspace Hi. Write 
H~ for the halfspace contained in H~ such that vol(K M H~) = e for 0 < e < r By 
changing each H~ a little and decreasing eo a little we may assume that K C/Hi ~ is a 
single point zi. We show now that K = conv{zl , . . . ,  zN0}. Assume not, then there 
is a point zo on the boundary of K with zo r conv{zl,. .  ,,zNo}. Then there is a 
halfspace H0 with z0 E int Ho and zi r Ho (i = 1 , . . . ,  No). Then the cap H~ f? K 
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is disjoint from all the other caps H~ f~ K for sufficiently small e, a contradiction 
proving (7.1). 

Now we prove (1.2). Let first K be a polytope. If it is not a simplex, it has at 
least d+2 vertices, each vertex belongs to at least d edges, and, generally, each k-face 
belongs to at least d - k faces of dimension k + 1. Hence T ( K )  > (d + 2)d!, and 
Theorem 2 gives 

(d + 2)d! 1 . . . .  E ( K , n )  _ T ( K )  > - -  - l + - -  
n m l m E ( A , n )  T ( A )  - (d+ 1)! d+ 1 

unless K is a simplex. So assume K is not a polytope. For e > 0 small, find N(e)  and 
pairwise disjoint caps C1,. . . , CN(e) of volume e. Let C~ = K fq Hi and C~ = K fq 1-1" 
where the halfspace H* is contained in Hi with its boundary hyperplane halving the 
width of C~ in direction orthogonal to Hi. Clearly, for 0 > 0 small enough 

{x ~ c~ : uc~(x) < 7} = {x ~ c~  : u~c(x) < ~}. 

The proof of Theorem 2 of [B~tLa], applied to C~ (cf. (2.2)), yields 

vol{x E C* : uc~(x)  < r/} > const(d)r~log d-l e.  
7/ 

Choosing e = x/~ we obtain 

vol K(UK <_ ?1) >-- 

N(4~ 
Z vol(x e C*:  UK(X) <_ ~} 
i=l 

N ( x/~) 

= ~ vol{x e c ;  : ~c,(x)  < ~} 
i=l 

> const(d)N(v/~) ~ loga_ 1 1 

and consequently, by (2.1), 

E ( K , n ) >  const(d)N(---~n) l~  i n  

Since N(~n)  is unbounded by (7.1), this shows that 

E(  K ,  n) ~ n  lira inf E ( A ,  n-----~ >- lira infconst(d)N( ) = oo. [ ]  

8. Proof of the lemmata 

Proof  o f  Lemma 1. The set K ( v  >_ e) is convex as it is the intersection of closed 
halfspaces. By Lemma F of [Ba] it does not contain any line segment on its boundary 
provided e > O. TtmmfOre the maximal v-value on aft(a, b) is attained at a unique point 
~ ,  and-fl~'e is, a hyperplane H* containing aft(a, b) such that K ( v  > v(c*)) n H* = 
{c*}, 15xna Loatma G of [B~i] ,are know that i f C  is a cap with K ( v  > e ) N C  = {x}, 
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a single point, then C C M(x, 3d) provided e is sufficiently small. Hence the cap C* 
cut off from K by H* is contained in M(c*, 3d), and consequently 

Ila - c*ll < 3d. 
l i b -  c*ll - 

Now if c* is on the line segment connecting c and b, clearly 

Ila - cl_______~l _ tla - c*ll ___ 3d, 
l i b -  clt l i b -  c*ll 

and we are done. So assume c* is on the line segment connecting c and a. Since u 
is maximal at c, u(c) > u(c*). Write Q* = K N H*.  Let the width of C* be h in 
the direction orthogonal to H*.  As C* C M(c*, 3d), the width of M(c*) in the same 
direction is at least ~d h. Considering (3.2), (3.3), and (3.4) we see that 

u(c) ~_ 2hUQ* (c), 

1 2  . 
u(c*) > -~-~huQ.(C ). 

Let L be the (d - 2)-dimensional plane in H* through b orthogonal to aft(a, b), and 
let a be the maximal (d - 2)-dimensional volume of a section of  Q* with a plane that 
is parallel to L. Then 

uQ.(c) < 2lib - cll~. 

On the other hand, C* C M(c*,3d) implies Q* c MQ,(c*,3d) and thus VOld-1 Q* < 
(3d) d-1 VOld-i MQ,(C*), i.e. 

1 
(3d)d_ 1 VOld-I Q*. U Q . ( C * )  >_ - -  

As vOld_ 1 Q* ~ d-~l t Ila -- bll~, 

Hence 

1 
uQ.(c*) > Ila - blla. 

(d 1)(3d) d-1 

~(r ~Q.  (c) lib - ctl 1 < u(c*) < 3d2 < 6 d 2 ( d -  1)(3d)d-1 Ha bII 
- - u Q .  ( c * )  - 

< (3d)d+ 2 [ [ b : ~  
- I l a -  bll'  

and ~ _< (3d) d+2 gives ~ _< (3d) a+2. [] 

Proof of Lemma 2. Set, as in the proof  of  Theorem 4, K = P ( r  and K(~'i >_ r  = 
P(r >_ r  We may assume T0(x) < ~ which implies that K('r0 _> r n 
MK(x, 9) is empty, proving the lemma when i = 0. 

For i _> 1 we first consider the case 0 = 1. Recall the definition of Q in (1.8), set 
q = cone Fl ~ Ho(to) and define 

x* = x + (1 - ~'o(x)tol)q. 
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Assume now i > 1. It is not difficult to see that for 0 < t < 2to(x) 

MK(X) • Ho(t) C ( -1  + ttol)q + MQ(r ..... 4,~_~)(x*). (8.1) 

(MK(X) N Ho(t) is empty if t > 2to(X).) From 

K(~-~ _> (Pi) = coneQ( r  r 7-~-QI > ~bi) N H0(0, r 

(cf. (2.8)) it follows that for 0 < t < to 

K(ri  >_ Oi) fq Ho(t) C_ ( -1  + tto')q + Q(r  ~)i--1;7"~?~ ~" ~i). (8.2) 

(8.1), (8.2), and the induction hypothesis yield 

VOld-l[K(ri >_ Oi) ~ MK(x)  A Ho(t)] 

= VOld-l[Q(r r r~_Ql ~ r n MQ(~, ..... r 

< const(Q)r(~Q_l(x*) vola_l MQ(~1 ..... ~i_l)(x*) 

= const(Q)ri(x)vold_l MQ(~-0(x))(~ 1 ..... r 

since ~-~_Ql(x*) = ri(x) as i > 1 (cf. (2.5)) and MQ(r162 is congruent to 
MQ(ro(x)Xr ..... r Then 

vol[K('ri >_ r f3 MK(X)] 
27"0(x) 

= / vold-I[K(Ti _> r N MK(X) f3 Ho(t)]dt 
J 

0 

< 2to(x) const(Q)ri(x) vold-1 MQ(ro(x))(~l ..... r 

< const(P)Ti(x) vol MK(X), 

where the last step follows from (3.4). 
Special care is needed when i = 1. Then the hyperplane H(FI)  supports K 

and so MK(X) lies between the hyperplanes H(F1) and 2x - H(FI) which is the 
reflection of H(FI) through x. The slab between these hyperplanes intersects Q in 
Q(r(o Q) < 2To(x)rl(X)tol). So we have instead of (8.1) 

MK(X) f3 Ho(t) C_ ( - 1  + t tol)q + Q(T(o Q) <_ 2ro(x)vl(x)tol). 

On the other hand, using (2.4) we get 

K(~'I > r fq Ho(t) C ( - 1  + t tol)q + Q(r(o Q) >_ tOlto~). 

Hence K(r l  > r MK(x) N Ho(t) is empty unless t r  1 < 2ro(X)rl(x)to 1. Thus 
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voI[K(T1 ~> 01) n MK(X)] 
2"ro(x) 

= / vole-l[K(rl  >_ r fq M g ( x )  n Ho(t)]dt 
, 1  

o 

P 

/ VOld-I[MK(X) n Ho(t)]dt <_ 

o 
< 2~-o(x)Tl(x)~b~ -1 V01d-1 [MK(X) N Ho(~-o(x))] 

_< dO~-lrt(x) vol MK(x) .  

If/9 > 1, x +/9(K - x) D K D K('ri >_ r implies 

K(7-~ > r N MK(x,/9) 

= K(T~ > 4'~) n {x +/9[(K - x)  n (x  - K)]} 

= K ( ' r ~  >_ O i )  n [ x  + / 9 ( K  - x)] n [x +/9(x - K)I 

= K(~-~ > 4)0 n [x + (K - x)] n [x +/9(x - -  K)], 

and as K = cone Q ( r  r H0(0, r it follows from vo(x) < ~ that 

[x + (K - x)] N [x +/9(x -- K)] 

= K f] [(/9 + 1)x -- OK] 
0+1 0+1 0+1 

z + [(K T--z) - 2 - -  n ( - - T - z  K)] 

0+1 
= MK(--~x,  11. 

Consequently 

/9+1 
K(~-i _> r N MK(X,/9) = K(~-i >>_ Oi) N M K ( - - - ~ x ,  1). 

On the other hand, Ti (~-X)  = 7i(X) and 

0+1 
M K ( - - ~ x ,  1) = [x + (K - x)] n [x + O(x -- K)] 

C [x +/9(K - x)] n [x +/9(x - K)] 

= MK(X,/9). 

Thus we have 

vol[K(~-i _> r  n MK(x,/9)] 
/9+1 

= vol[K(Ti >_ r n M K ( - - ~ x ,  1)] 

/9+1 /9+1 
_< const(P)ri(--~---x) vol  M K ( - - - ~ X ,  1) 

< const(P)7"i(x) vol MK(X,/9). I--I 

493 
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Proof of Lemma 3. We are going to use Theorem 6 of [BALa] and Theorems 7 and 8 
of [B~i]. They - or rather their proofs - say the following: 

For a convex body K C ~dl  d and e < e0(d) assume that z l , . . . ,  zN is a system 
of points maximal with respect to the following two properties: u(zj) = e for every 
j = 1,. . . ,  N and M(zj, �89 �89 = 0 for every j, k = 1 , . . . ,  N, j # k. According 
to Macbeath, the set K(u > ~) is convex (recall Section 2) and does not contain any 
line segment on its boundary (recall Section 3), so for every zj there is a halfspace 
H~ with K(u > E) N H~ = {zj} . Now, by Theorem 6 of [B~iLa] 

N N 

1 H~] C K(u < ~) C U M(zj, 5), U[M(zj, 7) n 
j=l j=t 

(8.3) 

and by Theorems 7 and 8 of [B~i] 

N 

{(x, y) E K x K : u(x, y) < e} C U M(zj, 15d) x M(zj, 15d). 
j=l 

(8.4) 

Again set K = P (~ i - l )  and K(ri >__ r = P(r > ~i). As K is a polytope, 
1 by Theorem 6, vol K(u < e) < const(P)e log d- l ~" On the other hand, vol[M(zj, �89 

HI]  = 2-(a+l)e. Hence 

N < const(P)log d-1 1 (8.5) 

Claim. If z ~ S(T, 2r]) and H § is any halfspace containing z in its bounding hyper- 
plane, then 

1 H+\S( T,7)] > 1 1 vol[M(z, ~) n _ d.~2 d volM(z,  ~). 

Proof. By induction on d. The case d = 1 is trivial. Since 

1 1 3 
M(z, 7) C Ho(-~ro(Z), ~ro(zl) 

and the last set is disjoint from S(T, ~1) whenever r /<  �89 only the case to(Z) < 2~ 
has to be considered. 

As z E H0(0,277) and z r S(T,2rD = coneSQ(TQ,2~)N H0(0,2r/) (cf. (1.11)), 
dearly zQ f~ SQ(TQ,2~?) (el. (2.3)). Then, by the induction hypothesis, for any half- 
space H~ in Ho(to) containing zQ on its boundary 

voln_~[Mdz~, 1 H~\S~(Tq ,n) ]  > 1 1 ~) M (d - 1)!2 d-1 vola-1 MQ(zp, ~). 

Choosing H~ := cone[H + N H0('ro(z))] n Ho(to) and replacing Ho(Lo) by Ho(ro(z)) 
we obtain 

VOld-I[M(z, �89 n Ho(ro(z)) n H+\, cone Sp(Tp, r/)l 

1 1 
> (d - l ) :z  - ; ""a - '  vold_t[M(z, ,:-;) n Ho(ro(z))]. 
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(The set H § n Ho(ro(Z)) may, exceptionally, coincide with the whole Ho(To(z)). In 
this case one has to perturb H0.) The point l z  has distance �89 from the ( d -  1)- 
dimensional set M(z, �89 f3 Ho(ro(z)) fq H+\ cone SQ(To, rl). Both the point and the 
set lie in M(z, �89 71 H+kS(T, rl). Thus 

1 
volIM(z, ~) N H+kS(T, y)] 

1 r0(z) vola-l[M(z, 1 >_ -~ ~ 7 ) M Ho(ro(z)) n H+kS(T, 0)] 

1 to(z) 1 1 
> d 2 ( d -  1)!2 d-~ vol[M(z, 7) n Ho(ro(z))] 

1 1 
> ~ volM(z, ~), 

where the last step follows from (3.3). [] 

The Claim shows that for zj q~ S(T, 2~/) 

1 n H ; \ S ( T , , ) ]  > 1 voI[M(z, ~) _ d l - ~ .  

On the other hand, by (4.4) 

vol[P(u < r U S(T, 27?)] < const(P)r log d-2 _1 log log 1 
T 

1 --1 if we choose 7/ = (log ~) . Then (8.3) shows that the number of points zj outside 
UT S(T, 2rl) is at most 

const(P) log a-2 1 log log le (8.6) 

Further, (8.4) implies 

{(x, y) e P(~i) • K(T~ > r : ug(x,  y) < ~} 
N 

C_ U[M(zj,  15d) M P(~3i)] x [M(zj, 15d) fq K(r~ > 00]. 
j=l 

(8.7) 

Consider now a point zj E S(T, 2r/) for some tower T. It follows from Lemma 2 that 
if the tower T does not start with the chain of faces F0 c F! C . . .  C Fi, then 

vol[M(zj, 15d) M P ( ~ ) ]  < const(P)e(log 1) - t .  
E 

When T starts with this chain of faces, then, again by Lemma 2, 

(8.8) 

vol[M(zj,  15d) f'l K(ri  >_ r < const(P)e(log 1)  -1 . 

Taking the measure of the sets in (8.7) we get 

(8.9) 
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meas{(x, y) E P(q~) • K(ri  > ~i) : uK(x, y) < e} 
N 

< ~ vol[M(zj, 15d) (7 P(~i)] vol[M(zj, 15d) 73 K(~-i >_ r 
j=l 

By (8.6) there are at most const(P)log a-2 ~ loglog ~ terms with zj ~ UTS(T, 271), 
and as both factors in each term are less than const(d)e, the sum of these terms is at 
most 

const(P)s2 loga_ 2 1 log log 1 
g c 

By (8.8) the terms with zj E S(T, 2rD are less than const(P)e(log ~)-1 times const(d)e 
if T does not start with Fo C F1 C . . .  C Fi, and by (8.9) less than const(d)e times 
const(P)e(log ~)-I if T starts with F0 C F~ c . . .  C Fi. As by (8.5) there are at 

1 most const(P)log d-1 ~ terms, the sum of terms with zj E UTS(T, 2~) is at most 

const(p)e2 loga_ 2 1 

Therefore 
meas{(x,y) C P(qsi) • K(7i >_ r : uK(x,y) <_ e} 

_< const(P)e2 logd_ 2 _1 log log -.1 [] 
E E 
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