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O N  T H E  N U M B E R  OF 
C O N V E X  L A T T I C E  P O L Y T O P E S  

I.  BARA, NY AND A . M .  VER S HIK 

1. I n t r o d u c t i o n  a n d  R e s u l t s  

A convex polytope P C R d is a lattice polytope if all of its vertices come 
from the lattice of integers, Z d. Write :P or ~Pd for the set of all convex lattice 
polytopes with positive volume. Two convex lattice polytopes are said to 
be equivalent if there is a lattice preserving affine transformation R d ~-, 
R d carrying one to the other. This is clearly an equivalence relation and 
equivalent polytopes have the same volume. Write Nd(A) for the number of 
different (i.e., non-equivalent) convex lattice polytopes of volume A in R d. 
Arnold [Ar] proved that 

A 1/3 <~<~ log N2(A) << A 1/3 l ogA,  (1.1) 

He conjectured and Konyagin, Sevastyanov [KS] proved that  this extends 
to higher dimension in the following way: 

d - - 1  d - - I  
A~-~ << log Nd(A) << A~-~ log A .  (1.2) 

Actually, the lower bound here is due to Arnold [Ar]. In this paper we 
improve upon the upper bound giving the right order of magnitude of 
log Nd( A ). 

T H E O R E M  1. 
d - - 1  

log Nd(A) << A +  z ~  �9 (1.3) 

This theorem is proved in the special case d = 2 in [BP]. Although the 
proof given there uses a lemma similar to Theorem 2 below it does not go 
through in higher dimensions. 

The upper bound in (1.1) and (1.2) follows from the fact that the 
d - - I  

number of vertices of any P E Pd is << (volP)~-~. This is a result of 
Andrews [Anl], other proofs and extensions can be found in [KS] and [Sch]. 
Using Theorem 1, or rather its proof, we get this as a corollary. 
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d--1 
COROLLARY. The n u m b e r  of  vertices of  any P E 7~d is << (vol P )  ~-r.  

T he  ma in  tool in the proof  of Theorem 1 is a result  about  "mul t i -  
par t i t ions" .  Write Z d for the set of positive integer points  of R g, i.e., z 6 Z~ 
if everY componen t  of z is a positive integer. Given n = ( n l , . . . ,  rid) 6 Z+ ~ 
we c a l I a  set {z l , .  , z,} C Z~_ such tha t  t �9 " ~-]~i=1 zi = n a mult i-parti t ion of 
n. T h e  n u m b e r  of dist inct  mul t i -par t i t ions  of n will be denoted  by p(n). 
The generat ing function of p(n) is given in Andrews'  book JAn2] as 

s(x)= p(n)x" = I I  (1-xm) -', (1.4) 

where x = ( x l , . . . ,  xd) e R d and  x"  = x~ ~ . . .  x~ ~. I t  is clear a n d  ac tual ly  

well known,  t ha t  f ( x )  is well-defined and finite when all Ixil < 1. To our 
surprise we could not  find the  following theorem in the li terature.  

T H E O R E M  2. 

loop(n)  < (d + 1)(((d + 1)nx . . . r id )  1 / ( d + 1 )  �9 

Here ( (d  + 1) =. ~ k -(a+l)  is the  zeta function. 
W h e n  d = 1, p(n) is the number  of part i t ions of n E Z and the upper  

bound  from Theorem 2 is very good, cf. IRa]. In the case d = 2 a more 
precise formula is given in [An]. In fact, p(n) is de te rmined  there with 
high precision in the range when n l / n 2  and n2/nx is bounded.  It follows 
from [Be] tha t  logp(n)  is of the order (nln2) 1/a when n l / n  2 and n2/n~ 
is bounded ,  and less than  t ha t  outside this range. In higher dimensions, 
logp(n)  is of the order (n~ . . .  rid) I/(d+1) when  none of the  nl is too small. 
Even the  constant  in Theorem 2 is best  possible, see the Remark  at the end 
of sect ion 2. We ment ion  t h a t  the same bound  would not  apply if zi = 0 
were allowed for' the components  of the  const i tuents  of the mult i -par t i t ion.  
This  can be seen easily by compar ing  p(n) for d = 1 and d = 2. 

�9 To conclude this in t roductory  section we give a sketch of the  proof of 
Theo r em 1. First  we find a representative from each equivalence class in 
the  aligned box T(7)  = {x e R a : 0 < xi <_ 7i , i = 1 , . . . , d }  where the 
vo lume of T(7)  is _< const A. This is done in Theorem 3. Then  we prove 
a s t a t emen t  stronger than  required, namely, tha t  the number  of convex 
lat t ice polytopes  lying in T(7)  is less than  exp { const(l 'Id=l 7i)1/(d+1)} ' 
The  idea is tha t  by a theorem of Minkowski [BF, pp. 118-119] a convex 
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polytope is uniquely determined (up to translation) by the outer normals 
and (d - 1)-dimensional volumes of its facets. The outer normal to a facet 
of a convex lattice polytope P C T(7), with its euclidean length equal to 
the (d - 1)-dimensional volume of the facet, is a vector from the lattice 
(d31)!Z e. Moreover, the j - t h  component of the normal is the volume of 
the projection, onto the hyperplane xj  = 0, of the facet. So the sum of the 
absolute values of the j - t h  components of the normals is less than twice 
~ i ~ j  ~i. Then Theorem 2 shows that  the number of possible collections 

of outer normals is bounded by exp{ const(l-Iid=t 7i) (a-1)l(e+z) }. However, 
some components of the normals can be equal to 0 which is not allowed in 
Theorem 2. This causes difficulties and we have to rely on a theorem of 
Pogorelov [Po] (instead of Minkowski). 

A few words are in place here about notation. When x E R e we write 
X l , . . . , X d  for its components in the standard basis of R e. We will use 
Vinogradov's << notation, the implied constants will depend on dimension 
only. 

The paper is organized as follows. The next section contains the proof 
of Theorem 2. In section 3 we find a representative of each equivalence class 
in the aligned box T(7). The proof of the main theorem is in section 4. 
Finally we prove the Corollary and make some further comments. 

2. P r o o f  of  T h e o r e m  2 

We start with taking the logarithm of (1.4). 

1 
logS(x) = l o g  H ( 1 - x m )  -1 = E l O g l _ x  m 

t 
xk m oo 1 ~-~ 1 ~ Xi k 

meZ~ k=l k = l  meZ~ k=l "= 

where the last equality follows easily from 

d d Xi k 
E Xkm'~-'II(xik+Xi2k'+'' ')  = H  1--Xik ' 

mEZ~ i = 1  i = 1  

which is t rue when all Ixil < 1. Now for every t e (0, 1) 

t k t t k - t  t 

1-t----~ = 1 - t l + t + . . . + t  k-1 <- k ( 1 - t )  " 

(2.1) 
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From now on we assume all x i E (0, I). Then we get from (2.1) that 

~ 1  d E H  x, log f(x) _< k k(1 - xi) 
k=-- i "= 

d 
X i  

= ((d+ llH i - - x i  
i = 1  

(2.2) 

On the other hand, we get, again from (1.4) that p ( n ) x  n < f ( x ) .  So 

d 

logp(n) + E n i l o g x i  <_ logf(x). 
i = l  

This, together with (2.2) shows that if all x, E (0, 1), then 

d d 
X i  

logp(n) < ~-~n, logl+r 111" I l - z ,  
/=1 X i  /=1 

d d 
1 - X i X i  

< E n i - - + r  1)H 1 - - - x ,  
/=1 X i  i=1 

(2.3) 

where we used the inequality log ~ _< 1 _ 1, valid for every t E (0, 1). Now 
we try to choose x (with all x, E (0, 1)) so that the right hand side of (2.3) 
be small. A convenient choice is when all the d + 1 terms in the right hand 
side are equal, i.e., 

1 - -  X i 
n 1 -.~ . . .  - -  ~2 d -  

X i  

d 
- -  X i - -  ~ . 

1 Xd_~(d+l) Hl~x i  
X d  i=1 

A simple computation shows now that 

d / l / ( d + l )  

~= ~(d+ l l I I . ,  and xi -- 
n i  

n i + ~  

which is indeed between 0 and 1. Then we get in (2.3) 

logp(.) < (e+ 11~= (d+ 11 C ( d + l ) l - I . ,  ) . 
i=1 
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Remark: Using the saddle point  me thod  one can actually prove tha t  

( d )l/(d+l) 
logp(n)  = (d + 1) ( (d  + 1) H ni (1 + o(1)) 

i----1 " 

when all the nl axe equal. We hope to re turn  to this question in the com- 
panion paper  [BV]. 

3. Choosing the Proper Polytope 

In the  proof of Theorem 1 we will need a suitable representative from 
each equivalence class of 7 ). This  will be found as follows. Assume B = 
{b l , . . .  b d} is a basis of Z d. Given c~ and /3  in R d define 

d 

T(B,(~,3) = { x  = E ~ibi e R d 
i=l 

:O l i  _< { i  _< /~i f o r  a l l  i}  . 

T(B, a,/3) is, obviously, a convex polytope.  In fact, it is a parallelotope 
d 

whose edges are parallel to the b i. Its volume equals 1-Ii=l(/31 - a i ) .  Given 
P E 7 ~ choose ai  maximal  and/3i  minimal  under  the condit ion tha t  P C 
T(B ,a ,3 )  for every i = 1 , . . . ,  d. Write T(B ,P)  = T(B,  a,/3) with the 
extremal a and /3  which are, of course, uniquely determined.  T(B,  P) is a 
lattice parallelotope. We need the following result. 

T H E O R E M  3. Given P G "P there is a basis B of Z d such that 

vo lT(B ,  P)  << vol P .  

Proof: We prove the theorem first when P is centrally symmetr ic  with 
centre at  the  origin. In this case, as it is well-known, there is an ellipsoid 
E C R d centred at the origin such that  

d-1/2E C P C E .  

Apply now a linear t ransformation T that  carries E to the euclidean 
unit ball of R d. We denote this ball by D. Evidently, L = r Z  d is a lattice 

again. 
Consider now a bas i s /3  = { g t , . . . ,  gd} of L together  with a dual  basis 

C -- { c l , . . . , c n } .  This  is defined (see, for instance, [Ca]) so as to satisfy 
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bicJ = ~ij for all i and j .  The dual basis spans a lattice, L*, which is dual 
to L in the sense that, for a l l x  E L a n d y  E L*, xy E Z. It is also well 
known that det(L)det(L*) = 1 where det(L) and det(L*) are equal to the 
volume of any basis parallelotope of the lattice L and L*, respectively. 

Consider now T(/~, D) = T(/3, - a ,  a). The facets of T(/3, - a ,  a) touch 
the unit ball D and the point ai[~ i is on such a facet. Since the unit nor- 
mal to this facet is ci/[[ci[[ we must have 1 = (~iDi)(ci/Hci[[) = adllciH. 
Consequently 

d d 

volT(/3, D ) =  det(L) H 2hi - -  det(L)2d H ][ci][ . 
i=l i----1 

According to an old theorem of Hermite (see [He] or [CAD, there is a basis 
d C of the lattice L* such that l-L=1Hc'l] << det(L*). Fix a basis C with this 

property, and compute the corresponding dual basis B of L. We know then 
that volT(B, D) <<: det(L) det(L*) -- 1. 

Let us apply now r -1 to B, D, and L. We get a basis B -- r-1/3 of 
Z d : T - 1 L ,  and 

r - I T ( B , D ) = T ( B , E ) .  

Moreover, T(B, P) is a lattice polytope which is contained in T(B, E) since 
P C  E. Now 

volT(B, P) _< volT(B, E) = det T -1 volT(/3, D) 

<;< det T -1 = volE~voiD 

<~< vol P .  

This proves the case when P is centrally symmetric. 
For a g e n e r a l P  E 7 ) we may assume0 E P. Consider Q = P - P .  

Clearly, Q centrally symmetric and is in P .  By a result of [RS], vol Q << 
vol P.  Let now B be the "good" basis for Q whose existence is established 
above. It will be a good basis for P as well since T(B,P)  C T(B,Q) and 

vol T(B, P) < vol T(B, E) << vol Q <:<~ vol P. o 

Remark: There are other ways to prove Theorem 3. We could, for instance, 
choose B to be a Lov~sz-reduced basis (for the definition see [Lo] or [GLS]), 
and argue that r-1/3 satisfies the assertion of the theorem. Or we could 
take a Korkine-Zolotarov basis of L (see [Ca] or [GLS]). Yet another proof, 
in two dimensions, is given in [BP]. 
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4. P r o o f  o f  the  Main  T h e o r e m  

Given any P E :P with vol P = A choose a basis B of Z d according to 
Theorem 3. Then  apply an affine t ransformation carrying B to the s tandard  
basis { e l , . . . ,  e ~} of Z d and choose the origin so tha t  the image of T ( B ,  P) 
is 

T ( { e l , . . . , e d } , o ,  7) 

which we will denote by T(7) from now on. We know tha t  for any P E P 
there is a Q E P ,  equivalent to P that  lies in T(7)  where 7 E Z~ satisfies 

d 
YIi=l 7i << A. 

Fix now 7 �9 Z~_ and set F = I'I,~1 7,. Write N(7)  for the number  of 
convex lattice polytopes  (not necessarily with positive volume) that  lie in 
T(7 ). We are going to show tha t  

d- -1  
l o g N ( 7  ) << r-a'4 "~ . (4.1) 

This will prove the theorem since the  number  of 7 E Z~ with P << A is less 
than A d as one can easily check. 

Let the convex lattice polytope P lie in T(7) and consider the 2 d u n -  

b o u n d e d  polyhedra  

P~ = P +  {x  E R d : eix, < 0 for a l l i}  

where e = (c1 , . . .  , g d )  E R d with ci = +1 or - 1 .  These 2 d polyhedra  
determine P uniquely. Define N~(7) as the number  of different polyhedra  
P~ coming from a lattice polytope in T(7). We will show that ,  for fixed e, 

d - - I  

logN~(7) << r z ~  �9 (4.2) 

This will clearly prove (4.1). By symmetry,  it will be enough to show (4.2) 
when e = ( 1 , . . . ,  1). In this case we denote P~ simply by P+.  

Let pri be the  orthogonal  projection onto the hyperplane xi = 0. Define 

P* = {x  e Rd:  pri(x) e pr i (P+)  for all i } .  

This unbounded  polyhedron is called the profile of P or P+. The  lattice 
polytopes P/ (i = 1 , . . . ,  d) are defined as 

Pi = P* AT(7)  n {x E R d : x, = 0}. 
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They determine P* uniquely. Pi is a (d - 1)-dimensional polytope lying in 
PriT(v), an aligned box in ( d -  1)-dimensions that has volume F/Ti. Write 
N*(7 ) for the number of different profiles of the convex lattice polytopes 
P C T(7). An easy induction, using (4.1) as the inductional hypothesis, 
shows that 

d 

logg*(7)  << ~-'~(V/Ti) ' ; '  << r ';2 . 
i = 1  

(A little extra care is needed when d =  2. Then logY*(7 ) = Iog(7172) and 
this works for the remainder of the proof.) 

Fix now a profile P* coming from some P C T(7), and write N+(P*) 
for the number of different polyhedra with profile P*. We will prove now 
that 

d--1 
logN+(P*) << FZ~ "T (4.3) 

Since N+(7) = ~_,p. N+(P*) <_ N*(V) exp {cF(~+ ~ }, this will prove (4.2). 
Let us now have a closer look at the bounded facets of P+. Notice, 

first, that if P+ has no bounded facets, then P+ = P*. Assume now that 
P+ has a bounded facet F. As P is a lattice polytope there is a unique outer 
normal v(F) to F which is a primitive vector in Z d (actually in Z.~). F is 
a (d - 1)-dimensional lattice polytope in the sublattice, of Z d, orthogonal 
to v(F). The determinant of this sublattice is [[v(F)H. Whence 

z vold_lF= (6 1)----5 II (F)]I' 

for some positive integer z. So the facet F determines the vector u(F) = 
1 Z d which, in turn, gives the outer normal and the (d - Cd:l>,V(F) e , 

1)-dimensional volume of F .  Moreover, the i - th  component of u(F) is equal 
to vold_lPri(F ) as the reader can easily check. Since all the bounded facets 
of P+ lie in T(7) we get 

Z ui(F) = Z v~ < Pri(T(7)) = V/Ti" 
F F 

We call a finite subset U of Z d special if, for all i = 1 , . . . ,  d 

u, < ( 6 -  1)!r/7,. (4.4) 
ufiU 

(Of course, U is special with respect to 7-) We need the unicity part of the 
following result of Pogorelov. 
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LEMMA. Given a profile P* and vectors u 1 , . . .  , u k 6 R~ ,  no two of them 
parallel, there is a unique unbounded polyhedron P+ with profile P* and 
having k bounded facets F1, . . . ,  F~ such that, for j = 1 , . . . ,k ,  the outer 
normal to P+ at F i is u i and the (d - 1)-dimensional volume of  Fj is [[uJ[[. 

A more general result in three-dimensional space is given in Pogorelov's 
book [Po, page 542], and the proof there goes through in higher dimensions. 
For the Convenience of the reader we reproduce Pogorelov's proof at the end 
of this section. 

This means that, given P* and a special U = {u l , . . . ,  u ~} C Z~, there 
is a unique unbounded polyhedron P+ with k bounded facets F1, . . . ,  Fk 
such that uJ is an outer normal to F i and vold_lFj =  llu ll. Not 
every such P+ is a lattice polyhedron, but certainly all P+ coming from a 
lattice polytope P can be represented this way. Consequently 

N+(P*)  <_ number of special sets U satisfying (4.4). (4.5) 

Finally, define n 6 Z~ by ni = (d - 1)!r/Ti. According to Theorem 2 
the number of special sets satisfying (4.4) is 

( d / 

t.<. mS. i=I 

__(i__~ 1 1) ni 

= (d - 1)!dI "e-1 exp { (d + 1) (((d + 1)(d - 1)!er d-~) 1/e+1 } 

(4.6) 
This together with (4.5) proves (4.3). o 

Proof of  the Lemma: Set e = (1, . . . ,  1) E R d and denote by Hj(wj)  the 
hyperplane orthogonal to uJ and intersecting the line {re 6 R d : r 6 R} at 
the point wje. Let us denote by H~(wj )  the halfspace bounded by Hj(wj)  
and containing infinite ray pointing in the direction -e .  Any P+ with 
bounded facets orthogonal to u j (j = 1, . . . ,  k) is of the form 

k 

P(w) = P* N n H~-(wj) 
j - -1  
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where the parameter w is a point from R~_. Write Fj(w) for the intersection 
of P(w)with Hj(wj). Note that  Fj(w) may be empty. 

We first prove the existence. We choose a sufficiently large compact set 
C C R~_ by requiring, say, that  for w E C the set P* n Hj(wj) be nonvoid. 
Define ~ as the of those w E C for which the (d - 1)-volume of Fj(w) is at 
most II ujl[ (J = 1,. . . ,d).  The set ~ is clearly compact and nonempty. So 
the continuous function g : f~ ~-* R defined by 

k 

j = l  

takes its min imum at some point in i2 which we denote by w, too. We claim 
that  P(w) has the required properties. Assume not, then vold_lFj(w) < 
]]uJi] for some j .  Decrease wj a little and leave the other ~i unchanged. Let 
w' be the new w. It follows from continuity that  Vold_lFj(w') < ]IvJll. 
On the other hand, for i # j, Fi(J) C Fi(w) and so vold_l Fi(w') <_ 
vold-1 Fi(w). Thus w' E ~. But g(w') < g(w), a contradiction. 

Now for unicity. This t ime we include the ~j corresponding to the 
unbounded facets of P* into w. Then, of course, we include their outer 
normals into U as well. Suppose there are two solutions P(w) and P(~) 
and let ~f = maxj(wj -&j) .  We assume 5 > 0 (otherwise exchange the 
names). Denote by J the set of those indices j for which 5 = wj - Dj and 
set Q(w) = P(w) - ~e. J is nonempty but does not contain the indices 
corresponding to the unbounded facets since for those wi = @. Clearly 
Q(w) = Nj H~ (w~ -5 )  is a subset of P(~) .  

Denote by Fj (and Fj) the facet of P(&) (and Q(w), respectively,) that 
corresponds to the index j E {1 , . . . ,  k}. Two facets, _~j and Fi axe said 
to be adjacent if they intersect in a (d - 2)-dimensional face of P(~) .  We 
claim that, for j E J , /~ j  is adjacent only to facets Fi with i E J. Assume, 
on the contrary, that there are indices j E J and i ~ J such that  f'j and Fi 
are adjacent. We know that 

k 

h = xj( j) n N 
m--~-i 

and similarly 
k 

= n n H @m - 6). 
m ~ l  
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As Wm >_ w m -  5, we have Fj C /~j. This inclusion is proper because 
wi > wi - 6 and/~j  is adjacent to f'i- But then vold_lFj < vold-a~'j, a 
contradiction. 

The claim implies that all indices axe in J.  But this contradicts the 
fact that  an index corresponding to an unbounded facet is not in J. = 

5. F i n a l  r e m a r k s  

The above proof gives the following theorem. Let F E Z+ and define Pd(r )  
as the set of all convex lattice polytopes lying in an aligned box T(7) for 
some 7 E Z~_ with 1-Ii~l 7i < F. 

T H E O R E M  4. 
d--1 

log IPd(r)l << 

The Corollary follows from here easily. Indeed, let P C T(7) be a 
convex lattice polytope with 1-I 7i _< F and write V for the set of vertices 
of P.  Then cony W C T(7) is a convex lattice polytope, again, for every 
nonempty subset W C V. This way we get 2 Ivl - 1  distinct lattice polytopes, 
SO 

1 < 

d--1 
Thus Theorem 4 implies that  ]V[ << Fz~ -~ . 

The proof of Theorem 1 and the lower bound in (1.2) show that  logp(n) 
is of the order A 1/(d+1) for some values of n E Z d with rI  nl < A. And + 
if logp(n) were smaller for all n, then using this smaller bound in (4.6) we 
would get a smaller bound for log Nd(A),  a contradiction. 

We think it would be interesting to study the family Qd of "dually 
integral" polytopes. A polytope Q is in Qd if the outer normal u(F) to 
its facet F,  with its length equal the (d - 1)-volume of the facet, is in Z~ 
for every facet F.  According to a theorem of Minkowski (see [BF]) such a 
polytope is uniquely determined (up to translation) by the set 

U(Q) = { u ( F ) :  F is a facet of Q } .  

It is clear, further, that  ~ e u ( Q )  u = 0. There is an equivalence relation on 
Q4, namely, two polytopes P and Q E Qd are equivalent if there is a lattice 
preserving affine tranformation T such that  r (V(P) )  = U(Q). It is not 
difficult to see that equivalent polytopes have the same volume. Moreover, 
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Pd is contained in Qd- We hope to return to the determination of the 
number of equivalent classes of dually integral polytopes of fixed volume in 

the near future. 
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