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Classification of Two-Person Ordinal Bimatrix Games 

I. Bfir~iny 1, J. Lee 2, and M. Shubik 3 

Abstract: The set of possible outcomes of a strongly ordinal bimatrix games is studied by 
imbedding each pair of possible payoffs as a point on the standard two-dimensional integral 
lattice. In particular, we count the number of different Pareto-optimal sets of each cardinality; 
we establish asymptotic bounds for the number of different convex hulls of the point sets, for 
the average shape of the set of points dominated by the Pareto-optimal set, and for the aver- 
age shape of the convex hull of the point set. We also indicate the effect of individual ration- 
ality considerations on our results. As most of our results are asymptotic, the appendix in- 
cludes a careful examination of the important case of 2 • 2 games. 

1 Introduction 

The two person bimatr ix  game is one of  the most fundamental  constructions of  
game theory.  Indeed, even the 2 x 2 bimatr ix  game has been used extensively in eco- 
nomics and political science to illustrate problems and paradoxes in compet i t ion and 
cooperat ion.  

A basic class of  bimatrix games which is studied here is given by considering 
payoffs  to each player  as being purely ordinal .  An  r •  m bimatr ix  game, where 
player I (the row player) has r strategies and player  H (the column player) has m 
strategies, has n = r m  cells or outcomes.  Restricting ourselves to ordinal  payoffs ,  
where we assume that  there are no ties in the preferences, we can represent the pre- 
ference ordering o f  each player  by the integers 1, 2 . . . . .  n (denoted henceforth by 
[n]), where x is preferred to y if  x > y .  Such a game is represented by a bimatr ix  

(A, B) for which the entry (a,-j, bij) in row i and column j represents the payoffs  
to players ! and 11, respectively, if  player I plays strategy i, and player H plays 
strategy j .  
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There are many different ways in which one can attempt to categorize bimatrix 
games with strongly ordinal payoffs. Rapoport, Gordon, and Guyer (1976) list all 78 
"strategically different" 2 x 2  strongly ordinal bimatrix games, accounting for re- 
ordering strategies and players. Rapoport et al. (1976) suggest that these 78 classes 
of games can be further aggregated into 24 classes. Although such enumerative 
taxonomies may shed some light on the 2 x 2 game, their utility for games having 
more strategies is not evident. Factors that can be used to classify bimatrix games 
include properties of the Pareto-optimal set, the nature of optimal responses, and 
properties of the set of non-cooperative equilibria. O'Neill (1981) has considered 
some aspects of the Pareto-optimal set. In particular, he determined the distribution 
of the cardinality of the Pareto-optimal set. 

In the present paper, we consider properties of the Pareto-optimal set and of 
the entire payoff set. In Section 2, we establish a formula for the number of differ- 
ent Pareto-optimal sets of each cardinality. We can imbed the n payoffs as points in 
[1, n] x [1, n] and consider the associated convex hulls. Section 3 contains asymp- 
totic bounds on the number of different convex hulls that may arise. In Section 4, 
we consider the average shape of the convex hull of the imbedded Pareto-optimal 
payoffs as well as that of the entire payoff set. We discuss the impact of individual 
rationality considerations in Section 5. In Section 6, we provide a brief description 
of a combinatorial model of the best-response structure of a game. As most of our 
results are asymptotic, we discuss games with few strategies in the appendix. 

The class of payoffs of the games that we consider is in one-to-one correspond- 
ence with the set of perfect matchings of the complete bipartite graph Kn, n (n = rm) 
with vertices [n] on each side of the bipartition, where an edge indicates a pair of 
payoffs corresponding to an outcome of the games. A perfect matching M of K . . .  is 
identified with an n-element outcome set O(M) of R2: 

O(M)=  {(x, y)eR2: the edge (x,y) is in M}. 

The point (x,y) dominates (x',y') if x>x'  and y> y'. The Pareto(-optimal) set 
P(M) consists of those points of O(M) that are not dominated by any other point of 
O(M). We write P<(M) for the set of non-negative points dominated by some point 
of P(M). Finally, we denote the convex hull of O(M) by C(M). See Figure I for an 
example. 



Classification of Two-Person Ordinal Bimatrix Games 

o(~0 p(,u) 

269 

P<(~) c(u) 
Fig .  I 

2 The Number of Pareto Sets 

A simple measure of  the intrinsic level of  competit ive structure of  a game is the 
number  of  points in the Pare to  set. The most  competit ive games have the greatest 
number  of  points in the Pare to  set. Let fn (k) be the number  of  different Pare to  sets 
of  cardinal i ty k. 

Theorem 1. 

= 1 n - 1  
f , (k )  f f ~ - ( k _ l )  ( n k l ) .  

Proof. Let P = {Pi = (xi, y/): i = 1, 2 . . . . .  k} be a subset of  [hi x [n]. We are inter- 
ested in the number  of  such k-sets P that can be Pare to  subsets P(M) of  O(M) 
for some perfect matching M. We may take the points to be ordered 
1 < x l  < x 2 <  �9 �9 �9 < x k _ l  < x k =  n. It must  be, then, that  n =Yl >Yz> " " " >Yk--- 1. Such 
a P is a Pare to  subset of  O(M) for some perfect matching M if  and only if  the 
bipart i te  graph G(P)=(In], In]; E(P)) has a perfect matching. Here (x, y)~E(P) if 
either x = xi for some i = 1, . . . ,  k, and then y = y~, or x~<x<xi+ 1 for some i = 0, . . . ,  
k -  1 (Xo=0 by definition),  and then y=yJ+l. 

The necessary and sufficient condit ion for this to happen is given by the KOnig- 
Hall  theorem: For  any subset X _  [n], the set y(X)  of  yE In], such that  (x, y)~E(P) 
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for some x e X ,  must have cardinality at least [X[.  Taking into account the special 
structure of  P and E(P), the K6nig-HaU condition reduces to 

[y (x i+ l  . . . . .  Xk)I=Xk--Xg>--YD+, for i = 1 , 2 , . . . , k ,  

o r  

xi+Yi+l>_n for i = 1 ,  2, . . . ,  k - 1 .  

Let o~i = n -xg_g (i = 1 . . . . .  k -  1) and fl~=Yk-, + 1 ( i= 1, 2 . . . . .  k -  1). Then we have 
that the number of  k-sets that are the Pareto subset of  some set O(M) is precisely 
the number of  sets {(c~,-, f i t) : /= 1 . . . . .  k -  1} that satisfy 

1 -----.0~ 1 ~ O L 2 ~  " " " < ~ k - - 1  , 

/31 </32< " " " <f lk - i  _ _ n -  1, 

cq <_/3g for i= 1 . . . . .  k - 1 .  

(2.1) 

Considering the multiset { c~g: i ~ [ k -  1] } u {fit: i t  [ k -  1] }, we observe that each value 
(in I n - 1 ] )  appears at most twice. Let g be the number of  doubletons. There are 
(2(k'_-~l_e)) choices for the singletons. The number of  ways to bicolor the singletons, 
aqua and blue, so that for every j e  I n -  1], the number of  blue elements less than j 
never exceeds the number of  aqua elements less than j is the ( k - g - 1 )  ~t Catalan 
number: (2(k~C-11))/(k--f) (see Feller (1968)). Associated with each such coloring of  
the 2 ( k -  1) element multiset is a unique labeling of  the aqua elements as or1, a2 . . . . .  
c~k_, and the blue elements as/31,/32 . . . . .  /3k-, satisfying (2.1). Hence 

~ (  o_1 )(~ 1~,~ 1~)(~,~ ~ 1~ ~ , 
f . ( k )=e=o ~' 2 ( k - l - f )  g \ k - f - 1  ] k - g "  

It is easy to see that this is the same as 

1 ( ~ , )  ~ 1 
Z Z ] S \ T  I + l  k - 1  T=--f,-O ] [ k - 1 ] \ T l + l  S _ [ n - -  1] T~_[n--1] 

ISl=k-1 ITI =k--1 ITI =k--a 

n - k  1 =(;:~,)~'(~ 1 ~) ? ;  1 ) 
e=o k - g  

(;:~1)~' ' (. ~+1)(.;1) 
e=o n - k +  1 k - g  

n - k + l  

~+,' (~ : i ) (n+l )  
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From this it is easy to compute the total number of Pareto sets. 

Corollary 1. 

~ f.(k) = ~ (n+ 1) ~ (1 +o(1)).  k=l 

Proof. Indeed, 

~, fn(k)_ 1 ~, ( n - - I ) (F / ; 1 )  __ __1  n~l ( / ' / ; 1 ) ( ~ + l )  
k=x n + l  k=l k - 1  n + l  k=o \ k + l  

_ 1 ~ 1  ( n k l )  ( n + l ~  I (2nn) 
n + l  ~=o \ n -kJ  = n - ~  " 

The last approximation in the statement of the result follows from Stirling's for- 
mula. �9 

Let F~ (k) denote the number of outcome sets (perfect matchings) with exactly k 
points in the Pareto set. Alternatively, consider the set of all perfect matchings as a 
probability space equipped with uniform distribution and the random variable 

= ~(M) = [P(M) I . Clearly 

1 
- -  F~ (k) = Prob (4 = k). 
n! 

O'Neill (1981) determined the exact value of F~(k): the signless Stirling number of 
the first kind (see Riordan (1958)) 

F,(k)=(-1)k+"s(n, k). 

The expectation and variance of ~ are 

E~ = logn + C 

and 

7"C 2 
D~=logn+C---  

6 '  

respectively, where C is Euler's constant. Moreover, the distribution of 
(~-E~)/]/TD~ tends to the standard normal distribution as n--* co. In particular 

1 1 
Prob(~<log n+~]/ log n) n! k _ ~ , o g ~ + ~ '  Fn(k) .~-~ -~i e-X2/Zdx. 

This follows from Feller (1968), as noted by O'Neill (1981). 
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3 The Number of  Convex Hulls 
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Let v.  denote the number of  different convex hulls C ( M )  of O ( M )  as M ranges over 
the set of  all perfect matchings of  K . , . .  In this section, we establish asymptotic 
bounds on v. .  

Theorem 2. For sufficiently large n, 

- n 2/3 <-- log v,  --< 1 in 2/3 . 
5 

Proo f .  We first prove the upper bound.  Let co, be the number of  piecewise linear 
monotone increasing convex functions g: [1, n ] ~  [1, n] having g(1) = 1, g ( n ) =  n, and 
breakpoints at integer values x such that g(x) is an integer. We have that e) 4 is an 
upper bound for vn as the graph of  such a function g has the shape of  the "the 
south-east corner" of  the boundary of  C ( M ) .  

Let Po = (1, 1), Pl . . . . .  Pk-J ,  Pk = (n, n) be the breakpoints of  g in consecutive 
order. Then the set 

U =  {P l -Po ,  P 2 - p l  . . . . .  P k - - P k - 1 }  

is comprised of  nonnegative (and non-zero) integer vectors whose sum is equal to 
(n - 1, n - 1). Different g functions produce different sets U. So ~o, is not larger than 
the number of  such sets U. 

Only P l - P o  can have zero as a second component,  and there are at most n - 2  
choices for the first component (if the second is zero). Write ki for the number of  
vectors u = (Ul, Uz)e U with u2 > 0 and ul + u2 = i. There are i vectors with this prop- 
erty. Clearly NnZ(n-1) i k i < _ 2 ( n -  1). Hence /,i=1 

co ,<  Z ( n - 2 )  ~I : ~, i k i < _ 2 ( n - 1 )  . (3.1) 
kl, k2, , . . ,kn i=l  ki i=1 

We will evaluate this upper bound on w ,  by first establishing 

2(n-D ( i )  
I-[ <--- exp{2.53n2/3}, (3.2) 
i=l  ki  

where ki_>O (ie [ 2 ( n -  1)]) a n d  Z2(n1-1) i k i < _ 2 ( n -  1). We note that for integers i and 
x with O<_x<_i, 

i )  i i 

X -- xX( i - - x )  i - x  



Classification of Two-Person Ordinal Birnatrix Games 273 

where x ~ = 1 if x = 0, as usual. Hence the left-hand side of  (3.2) is bounded from 
above by 

2(n  -- i )  i i 

sup 1~ 
i = 1  xXiii(i--xi) i - x i  

2 (n- -  1) 

subject to ~, i x i<_2 (n -1 ) ,  O<x~<i,  i ~ [ 2 ( n - 1 ) ] .  
i = 1  

(3.3) 

Observe that this supremum is reached at some point (Xl,)~2 . . . . .  - '~2(n--1)) .  Notice, 
also; that -~i 4 0 for all i, since otherwise ~; = 0 for some i and ~j ~ 0 for some j .  Then 
we would have larger objective value for the feasible point 

0~1 . . . . .  Xi +je  . . . . .  X1 -- ie . . . . .  ~2(n -- 1)) 

than at (-~1, " . - ,  )C2(n- -1) ) .  This follows from a simple computation. It is also clear 
that 

2 ( n - -  1) 

~. i ~ = 2 ( n -  1). (3.4) 
i - -1  

At the optimal solution 

0 f2(~1) i i 2(n-- 1) ) 

OXj ( i = 1  x ~ / ( i - ~ ) i - x i  + i~=1 ix,J = 0 

must hold. From this it follows that 

i 
�9 i t  [2  ( n  - 1 ) 1 ,  Yci = l + eU , , 

for some suitable/~>0. By (3.4), 

2(n - 1) 2(n- 1) i 2 
2 ( n - l ) -  Z iX,= Z 

i=l i=1 l + e  ui" 

The function X2(1 +eU0 -1 has its maximum when 2 = p x e ~ ( 1  +e  u':)-l .  The unique 
solution of  this latter equation satisfies t2xe [2.217, 2.218]. It follows that the maxi- 
mum value of  X2(1 + e  ux) -1 is less than/2-2.  We have 

2 ( ~ 1 )  i 2 2(n--l) X 2 d x  
�9 I - -  < B  - 2 "  

i=1 1 + e  ~' 0 1 + e  ~ 
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Hence, 

2(n--  1) i 2 2(n-- 1) )(2Nx 
2 ( n - 1 ) =  ~, _ _ > _ p - 2 +  I 

i=1 l + e  u' o l + e  ax 

2~t(n-- 1) y 2  dy 
~--" --/L/ --2 + / U - 3  I 

o l + e  y 

It is easily seen that p is about n -1/3, and numerical integration gives/~ < 0.97n - 1 / 3  

Now 

2(n -- 1) i i 2(n -- 1) i i 

I~ ~i,(i_xi)i_xi -- 1-[ (1 +e ai) l + e " '  (1 + e  - u i )  1 +e-U' 
i ~ l  i ~1  

= exp 
2(n -- 1) 

Z 
i=1  

/ l o g o  + e  "i) i log(_l+e-Ui)~ 

" " ~  ~ + l + e -u i  ] 

(x  log (__1 +eUO x l o g ( l + e - U O ~  
< exp i \ 1 + e ~ + ~ +e---------=~ ] dx 

= e x p  p - 2  ! ~vl~ q yl~ / dy 

< exp {2.71# -2} < exp {2.53n2/3}, 

with numerical integration again. 
Hence every summand in (3.1) is less than ( n -  2) exp { 2.53n 2/3}, for sufficiently 

large n. The number of different partitions of 2 ( n -  1) is asymptotically (see Rade- 
macher (1969)) 

exp ]/~ 
1 exp{x 2 ] / ~ ~ 1 ) }  

4]/~ 2(n - 1) < n - 1 

So we have that 

 3 2J3,ex  1 

which implies vn < exp { I In 2/3 } for n sufficiently large. 
For the lower bound, we consider a subset U= {Ul, u2 . . . . .  uk} of  the primitive 

vectors from [0, t] 2n  Z 2 where the vectors are indexed according to increasing slope�9 
The points O, ul, Ul + u2, ul + u2 + u3, �9 . . ,  ul + uz + �9 �9 �9 + uk form the vertices of a 
monotone increasing, convex polygonal path L which we translate by an integral 
vector a so that 0 + a  is on the line y = l  and u l + " "  + u e + a  is on the line x = n .  



Classification of Two-Person Ordinal Bimatrix Games 275 

Clearly 

~.ui<~,{x:x~[O,t]anZ2}=(t(t21)z t ( t+  1)2) 
i=1 ~ 2 

which is no more than ( n - l ,  n - l )  if t=n 1/3 (for sufficiently large n). An easy 
application of  the KOnig-Hall theorem shows now that L + a is the "south-east cor- 
ner" of  the boundary of  C(M) for some perfect matching M. It is also clear that 
different sets U give rise to different polygonal paths L. 

Now the number of  primitive vectors in [0, t ] 2 n Z  2 is asymptotic to 6rt-2t2,  
hence the number of  such sets U is at least 

26/~2n2~3 = exp {log {2 6/n2} n 2/3 } > exp {0.42nZ/3}. 

We remark that with a little more care the lower bound can be improved to 
exp { 1.6n 2/3 }. 

We note that everything above is true for cardinal payoffs as well since the 
Pareto set does not change slope when the payoffs are rescaled keeping the same 
order. 

4 Average Shapes 

Recall that P < ( M )  denotes the set of  points z =  (x, y)ER 2, (X, y)_>0 that are domi- 
nated by some point in the Pareto set P(M). The average Pareto shape is defined as 
the average of  the characteristic functions of  the P<(M) :  

1 
fPar  (Z) = ~ Z •P < (M) (Z). 

n l  M 

A l t e r n a t i v e l y ,  fPar(Z) = Prob(zeP<(M)) where Prob is meant with z fixed and M 
varying over all perfect matchings. One can explicitly compute fp~  (z). 

Theorem 3. Let z = ( a ,  b) with a+b>_n, b>_a and a, b integers. Let c=n-(a-1)  
and d=n-(b-1) .  If  c, d ~ o o  and c, d=o(n2/3), as n ~ o o ,  then 

fPar(Z)= l -exp l -  Cd(l +o(1)) 1 - -  . 

n 

Proof. 

( a -  1) ( a -  2 ) . - .  ( a -  (n - ( b -  r))) 
Prob(zr = 

n (n - 1 ) . . .  (n - (n - ( b -  1))) 
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(The formula for non-integral a, b is obtained by replacing a and b by LaJ and LbJ, 
respectively.) We have 

Prob (z ~P< (M)) = 
(n-c ) . . . (n -c -d+l)  

n . . . ( n - d + l )  

= 1 = exp log 1 . 
i=1 n + l  n + l -  - -  i = l  

Since I log (1 - c /y ) [  is monotone decreasing in y for y E [ n -  d, n], we have 

C C _ C 

l i~ l l~  n + l - i ) - n ! a l ~  < log(1 ~-~_b) I 

I log 1 -  dy= 
n - - d  

Now assume that d-<c-<n/4. Using the inequality I l o g ( l + h ) - h l  <h  2, which is 
valid for [hi_<1/2, we get 

i=ll~ 1 n+-l-i +--n-c-b < ( n - c - d )  2+n(n-c -d )  2+ ~ " 

The result follows. [] 

So the average Shape is almost one when cd is much larger than n and almost 
zero when cd is much less than n. 

We note that the average number of vertices of P< (M) is ~. 7= 1 k Prob ( (=  k). 
This is asymptotic to logn minus a constant. 

Next we consider the average convex shape defined as 

1 
Lonv(Z) = ~.~Xc~MAZ). 

We will give asymptotic estimates of fconv(Z) (and not precise asymptotic bounds). 
As fconv has the symmetry of the square, we only consider the north-east corner, 

Theorem 4. Let z = (a, b) with (a, b) >_ (n/2, n/2) and a, b integers. Let c = n - ( a -  1) 
and d=n-(b-1).  If e, d~oo and c, d=o(n2/3), as n~oo ,  then 

I 1 l god 1 1 - 2 e x p  -Cd(l+o(1)) -<f~onv(Z)-<l-exp - (1+o(1)) . 
n n 

Proof. Clearly, if z~C(M), then O(M) has no point in one of the four rectangles in 
Figure II. 
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R2 RI 

b 

R3 R4 

a n 

Fig. II 

Assume n/2 < a < b, then the rectangles R3 and R4 of Figure II contain points of 
O(M). Thus 

Prob (7. ~ C(M)) <_ Prob (O (M) c~ R1 = 0) + Prob (O (M) n R2 = 0) 

< 2 Prob (O(M) nR1 = 0) 

( a -  1) (a - 2 ) . ' -  (a - (n - (b - 1))) 
=2  

n(b -  1)"  . ( n - ( n - ( n -  1))) 

=2  exp [ -  ~ (1 +o(1)) 1 

when c = n - ( a - 1 )  and d = n - ( b - 1 )  provided c,d--*oo and c,d=o(n z/3) as 
F / ' *  QO ~ 

On the other hand if O(M) has no point in the rectangle 
R=conv{(2a-n,  2b-n) ,  (2a-n,n),  (n,n), (n, 2b-n)} ,  then z=(a,b)q~C(M). 
So 

Prob (zr C(M)) >_ Prob (O(M) nR  = 0) 

I 4Cd(l+o(1))l ' I = exp n 

with the same assumptions as above. The result follows. �9 
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5 Individual Rationality 

I. B~ir~iny, J. Lee, and M. Shubik 

It is natural  to restrict our at tention to payoffs  that  are individually rat ional  for each 
of  the two players.  We define the individually rational levels 

m a x  r a i n  A = m a x  m i n  aij, 
i j 

max min B = max min b U , 
i j 

and the individually rational zone 

I R = { (x, y) e R 2: x >- max min A,  y _ max min B }. 

In considering different solution concepts, it is s tandard to restrict ourselves to out- 
comes in IR. Hence, we should actually consider O(M)r~IR, P ( M ) n l R ,  
P<(M)c~IR and C ( M ) n l R  rather than O(M), P ( M ) ,  P < ( M )  and C(M). However,  
it turns out that  the individually rat ional  levels are quite small, so that  the difference 
is slight. We demonstrate  this with a heuristic argument which can be made precise. 
The argument will indicate that  with high probabi l i ty  

max min A e [ (1  - e)r log r ,  (1 + e ) r  l o g  r ] ,  

max min B e [(1 - e ) m  log m, (1 + e)m log m],  

as r, m--, oo, provided log r = o (m) and log m = o (r). 
Replace the random matrix A having elements from [rm] with a random matr ix  

having entries uniformly and independently distr ibuted in [0, rm]. It is clear that  
the average behavior of  the maxmin for A and A is quite similar (This is where the 
argument is heuristic). Now for t~[0,  1] 

Prob (min ffi, j>_ rmt) = (1 - t)  '~ , 
J 

and so 

Prob (max min 6i,  j < rrnt) = (1 - (1 - t)m) r. 
i j 

When rmt = (1 + e)r log r, then 

(1 - (1 - t)m)r = (1 - e (1 -+~)tog r)r = (1 - r 1 +e)r ,~. exp { - r -+ ~}. 

Hence, 

Prob  (max min A ~ [(1 - e)r log r, (1 + e)r log r]) -- exp { - r -"} - exp { - f } ,  

which is very close to one. Hence under these asymptot ic  assumptions,  we expect the 
area of  IR to be approximate ly  (rm)2-rm log r l o g  m. 
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6 The Best Response Structure 

279 

The sets P ( M )  and O ( M )  do not reflect the matrix structure of  the game 
(A, B), only the pairings of  the payoffs. Let X and Y denote the disjoint copies of  
{1 . . . . .  n} that form the vertices of  the bipartite graph Kn, n. We can capture the 
matrix structure of  the game by partitioning X x  Y into r sets R1, . . . ,  Rr, each of  
size m, corresponding to the rows 1 . . . . .  r, and in sets C1 . . . . .  Cm, each of  size r, 
corresponding to the columns, so that [Rin  Cj] = 1 for all i , j .  The number of  such 
partitionings, ignoring the labeling o f  the rows and columns, is (n!)2/(r!m!).  

We can capture the "best response structure" of  the game by considering a di- 
rected bipartite graph D, with nodes {RI . . . . .  Rr} and {C1 . . . . .  Cm}, with one arc 
leaving every node. (Ri, Cj) is an arc if bi~>bik for all k r  Similarly, (Ci, Ri) is an 
arc if aij.>aej for all k r  i. For an example, see Figure III  in the appendix. The graph 
D describes the best response structure of  the game, in that if play is sequential with 
players announcing their strategy choice, a directed path in D corresponds to a se- 
quence of  best responses by two players who always believe that the game will end 
after their move. We note that D has r + m arcs, while M has rm edges. We also 
mention that each connected component of  D has the structure of  a directed (simple) 
cycle with a set of  merging directed paths, each terminating at a vertex of  the cycle. 
Each cycle of  length 2 corresponds to a noncooperative equilibrium. 

7 Conclusion 

We have demonstrated that for an r •  strongly ordinal bimatrix game, with 
n = rm, asymptotically, 

# Games ~- n 2n >> # Outcome Sets-~ n n >> # Pareto Sets = 4 n >> # Convex Hulls ~ e ~2~ . 

Moreover, these results are not appreciably altered by the restriction to individually 
rational outcomes. Hence, depending on the type of  game theoretic information that 
one is interested in, the number of  different sets that must be considered varies dra- 
matically. 

Appendix 

In the text we have considered properties for general r • m two person strongly ordi- 
nal bimatrix games. Many examples and experiments in the behavioral sciences have 
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utilized the 2 • 2 matrix 4. Fortunately, the number of  strategically different games 
of  this size is sufficiently small that their properties can be examined and enumer- 
ated exhaustively without resorting to approximations. This is no longer true for 
even the 3 • 3 game. The 2 • 2 structure gives rise to 78 strategically different games 
whereas the 3 x 3 matrix produces over 65 billion distinct games. 

As the 2 • 2 game is considered so frequently in both experimentation and expo- 
sition, this appendix is presented as a convenience to those using 2 •  games for 
these purposes and adds somewhat to the previous work of  Rapoport  et al. (1976), 
O'Neill (1988) and others involved in considering the number of  ordinal matrix 
games and their properties. 

There are (4!) a = 576 ordinal 2 • 2 games, of which 78 are strategically different. 
This reduction is obtained by considering the permutation of  rows and columns 
which does not change the game and by considering the interchange of  the row and 
column players. The latter gives a reduction only if the game is not symmetric and 
then at best by a factor of  2. Thus in the approximations for larger games, it is of  
little significance. 

The structure of  the payoff  set for any matrix game can be represented by a 
point set on the lattice of  a two dimensional grid. The r • r game produces r2! such 
sets, thus for the 2 • 2, there are 24 payoff  sets associated with the 78 strategically 
different games. These are illustrated in Figures 1-24. In the figures we note, below 
each one, the number assigned by Rapoport  et al., for ease of  reference. Above each 
figure the different payoff  matrices are given and the noncooperative equilibria are 
indicated by a circle. A letter M above a game indicates that there is no pure strategy 
equilibrium point. 

Pareto Optimality. A simple measure of  the intrinsic level of  the cooperative or com- 
petitive structure of  a game is the number of  points in the Pareto set. The more 
points there are in the Pareto set, the more intrinsically competitive is the payoff  
structure. Figure 1 shows the most cooperative, and Figure 24 the most competitive 
class of  games. 

An exhaustive examination of  the payoff  structures indicate that there are: 

6 structures with a 1-point Pareto set, 
13 structures with a 2-point Pareto set, 
4 structures with a 3-point Pareto set, 
1 structure with a 4-point Pareto set. 

Convex Hulls. In Figures 1-24, lines have been drawn connecting the points to form 
the edges of  the convex hull for each game. Without considering cardinal payoffs, 
little significance can be attached to them. But with cardinal payoffs, they do pro- 
vide a indication of  the size of  the domain of  payoffs arising from the use of  mixed 
strategies (including correlated mixed strategies). 

4 From the point of view of experimentation and work in psychology, the 2x2,  2x 3, and 
3 x 3 matrix games deserve special attention as human perceptions and abilities to plan ap- 
pear to be limited as the size of the strategy and outcome sets grow. The bounds suggested 
sby Miller (1956) are exhausted by the 3 x3 matrix with 18 numbers or 9 pairs. 
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We note that of the 24 diagrams there are only seven distinct shapes, all others 
can be obtained from these seven by rotation or reflextion. The seven basically dif- 
ferent shapes are indicated by Figures 1, 2, 3, 4, 6, 8, and 11, of which we observe 
that all but Figures 4 and 11 are symmetric by interchanging the players (i.e., for any 
point (x, y) in the set, (y, x) is also in the set). Table 1 groups the figures together in 
terms of the baxic seven, with the others obtained by reflection and/or rotation. In 
the table, figure numbers are separated by a slash if the associated figures are related 
by reflection about the line x=y  (i.e., interchange of players). 

Table 1 

1, 24 
2, 7, 18/23 
3, 22 
4/5, 9/13, 12/20, 16/21 
6, !0/19, 15 
8, 17 
11/14 

We caution the reader that if games G1 and G2 are related by interchange of 
players, then although they are equivalent in the sense of Rapoport et al., they may 
be associated with different figures (1-24). Specifically, if G1 and G2 are related in 
the sense of rapoport et al., and G1 and G2 are associated with Figures F1 and F2, 
respectively, then either F1 =F2 or F~ and F2 are related by reflection about the line 
x = y .  

Noncooperative Equilibria. Surveying all 78 games, the distribution of pure strategy 
noncooperative equilibrium points is shown in Table 2. There are a total of 
(0.9) + (1- 58) + (2.11) = 80 noncooperative quilibria, and we indicate the number 
that are and are not Pareto optimal. 

Table 2 

Number of Games Pareto optimal Not optimal 

0 NE 9 0 0 
1 NE 58 57 1 
2 NE 11 16 6 

In essnce the concern with the noncooperative equilibrium (abbreviated as NE) 
is for decentralized decision making. Hopefully a unique Pareto- optimal NE might 
be reached by simple sequential best response, this is true for the 2 • 2 matrix, but it 
is not generally true for a 3 • 3 or larger matrix, the 3 • 3 below provides a counter- 
example. If  the players do not start in either row or column 2, they will cycle on the 
four corners. 
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I 5,6 4,4 8,5 ] 
3,3 9,9 2,2 J 6,7 1,1 7,8 

Fig. III 

The Expected Ranking at an NE.  We may consider three forms of simplistic best 
response. A point is selected randomly, then (1) Player I moves first and selects his 
myopic immediate best response, (2) Player H moves first, and (3) Players I a n d / /  
move simultaneously each selecting his myopic bestz response. 

If we apply these three methods to the 3 • 3 matrix above, we obtain the follow- 
ing for either of the sequential moves there is a probability of 5/9 of attaining (9,9) 
and a probability of 4/9 of going into a 4-cycle on the corners. For the simultaneous 
move, there is a probability of 1/9 of attaining (9,9) and a probability of 4/9 each 
for a 4-cycle on the corners or on the four middle outside cells. 

Individual rationality. Although we have calculated the Pareto set, some of the 
points in this set may not be individually rational. In order to calculate the individ- 
ually rational part of the Pareto set, we must calculate the pure strategy maxmin for 
each player. The maxmin will either be at 2 or 3 for each player. As we should 
expect in Figure 24 (games of pure opposition), if the game has a saddlepoint, it 
coincides with the NE and the Pareto set is reduced to a single point. 

Table 3 shows, for each figure, the number of Pareto optimal outcomes (both 
when we consider the payoffs to be ordinal and cardinal) and the minimum payoff 
to player I among his individually rational payoffs that are Pareto optimal. We have 
also included the area of each convex hull as it gives a measure of the size of the 
payoff set assuming that the payoffs are cardinal and that correlated mixed strate- 
gies are permitted. 

The n x n Grid. The representation of the payoff matrix gives rise to a question con- 
cerning the shapes of the convex hull of the feasible set of payoffs. However, we can 
ask this question more generally about an n x n grid where not all grid sizes are 
related to games. For example, we may ask how many shapes can be obtained with 5 
points placed on a 5 x 5 grid with only one point occupying any row or column. 
There are 23 different shapes for this "V5x]/~ game". In this "game" and all 

smaller there is a l : 1 relationship between the convex hull and the payoffs of the 
game. The first time this does not occur is in the 2 x 3 game (see Figure IV). 
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Fig. IV 

/ 
V 

/ 

On the Interpretation of Limiting Results. In the text  we have  concen t ra ted  on lim- 

i t ing results as the matr ices  become  large.  A caveat should  be stressed. There  are  

special  games,  such as those  o f  pure  oppos i t ion  (where p a y o f f  mat r ix  A = n + 1 - B )  

and  pure  coo rd ina t ion  (where p a y o f f  mat r ix  A = B) which fast  b e c o m e  an insignifi-  

cant  percentage  o f  all games.  But the appl ica t ions  o f  game  theory  to h u m a n  act ivi ty  

f requent ly  depend  on special s t ructure,  hence a class o f  games  which in some general  

sense m a y  tend towards  a set o f  measure  zero,  m a y  in actual i ty  be o f  cons iderable  

significance.  In par t icular ,  this is t rue  o f  games  involv ing  payof f s  wi th  ties. 

Table 3 

Figure Ordinal PO Cardinal PO min 1R POO Area 

1 1 1 1 0 
2 2 2 2 2.5 
3 1 1 1 3 
4 2 2 2 4 
5 2 2 2 4 
6 3 3 1 4 
7 1 1 1 2.5 
8 2 2 2 4 
9 1 1 1 4 

10 2 2 1 4 
11 2 2 2 5 
12 3 3 2 4 
13 1 1 1 4 
14 2 2 2 5 
15 1 1 1 4 
16 2 2 1 4 
17 2 2 1 4 
18 3 2 1 2.5 
19 2 2 1 4 
20 3 3 2 4 
21 2 2 1 4 
22 3 3 1 3 
23 3 2 1 2.5 
24 4 4 1 0 

Averages: 48/24 46/24 31/24 82/24 
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