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IMRE BARANY

Abstract. Let K<= Rd be a convex body and choose points xl,x2 xn

randomly, independently, and uniformly from K. Then Kn = conv {x, , . . . , *„}
is a random polytope that approximates K (as n -»<x>) with high probability.
Answering a question of Rolf Schneider we determine, up to first order
precision, the expectation of vol K -vol Kn when K is a smooth convex body.
Moreover, this result is extended to quermassintegrals (instead of volume).

§1. Introduction and the theorems. Assume K<= Rd is a convex body (a
convex compact set with nonempty interior) and let x , , . . . , xn be points chosen
randomly, independently, and uniformly from K. Set Xn = {x , , . . . , xn} and
call Kn = convXn a random polytope. In this paper we determine E(K,n),
the expectation of vol(X\Xn) for smooth convex bodies up to first order
precision when n tends to infinity.

The asymptotic behaviour of E(K, n) has been known for different classes
of convex bodies. Renyi and Sulanke [8 and 9] proved that for a polygon
PczR2

E(P, «)=§(# vert P)(Area P) ̂ ^ + O( - ) ,
n \n/

and for smooth convex bodies K<= R2 (with positive curvature K)

dK

Wieacker [13] determined the asymptotic behaviour of E(Bd, n) where Bd

is the Euclidean unit ball of Rd:

where co(d) is an explicit constant. This can be improved using a recent result
of Affentranger [1] to

/ l d ) H d ) (1.2)

(for d~»7> only, for d = 2 one has (1.1)). This improvement is implicit in [1]
and, in fact, if the computations there are carried out to second order precision
then one obtains (1.2).

The asymptotic behaviour of E(P, n) was determined by van Wei [14] and
also by Affentranger and Wieacker [2] for simple polytopes P<^Rd and by
Barany and Buchta [4] for general ones.

In this paper we answer a question of Schneider and Wieacker [12, p. 69]
which is repeated as a conjecture in Schneider [11, p. 222].
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THEOREM 1. IfK <= Rd is a <<?3 convex body with positive Gauss Kronecker
curvature K, then

E(K,n) = c(d) J K V(" + u^- jL_j +O(«-3/(d+1)log2n),
3K

where c(d) is a constant.

This has been known for d =2 and also for d = 3 [13]. The idea behind
the proof of the theorem is that K is very close to an ellipsoid E near z € dK
and so Kn is close to Em, the random polytope in E with m points for some
suitable m. The main difficulty in the proof is to show that Kn near zedK
does not depend on the x,'s far from z. This means that the shape of Kn near
z is "independent" of the shape of K far from z—a fact that has been
successfully applied to determine E(P, n) where P is a polytope (see [4]).

The same idea works when one wants to determine, up to first order
precision, the expectation of the difference between the quermassintegrals of
K and Kn. Denote by W\d)(K)= W^K) the i-th quermassintegral of K
(i = 0,l,...,d-l), see [5] or [10] for a definition. This includes and general-
izes the cases of volume, surface area, and mean width that are constant
multiples of Wo, Wi and Wd_,. We introduce the notation

i,n) = E(Wi(K)-Wi(Kn)).

Affentranger [1] determined E(Bd, i, n) up to first order precision:

E(B", i, n) = co(d, i)n-2/id+1)(l + o(l)). (1.3)

Here and in the next theorem, o(l) could be replaced by O(n~1/(d+1> log2 n),
again.

THEOREM 2. IfK c Rd is a C3 convex body with positive Gauss Kronecker
curvature K, then

E(K,i,n) = c(d,i) J K [ ' / (d-1) ]+[1 / (d+1) ]dz(^y2 /<d+1)(l + o(l)). (1.4)
dK

This has been known for i = d-\, i.e., for the mean width [12]. The case
i = 0 is Theorem 1 and the proof will be very similar so I will give only a sketch.

Let fi(P) denote the number of i-dimensional faces of the polytope P<= Rd.
It is clear (at least for the author) that there will be a similar theorem for the
expectation of fi(Kn) and that this theorem will have the following form

f

J x
f /

Eft(Kn) = b{d,i) J xmd+i)dz\—^) (l + o(l)), (1.5)

for some constant b(d, i) provided K satisfies the conditions of Theorem 1
(cf. [3]). (1.5) is known to be true for i = d - l [13] and i = d-2 since
fd-2 = \dfd-\ for a simplicial d-polytope, and for i = 0 it follows from Theorem
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1 and from an identity due to Efron [7] saying

As Kn is a simplicial polytope with probability one the numbers Efj(Kn)
satisfy the Dehn-Sommerville equations. This shows that conjecture (1.5) is
true for i = 0 , 1 , . . . , d - 1 when d = 3,4, 5. When d > 5 the conjecture is open
even for K = Bd, the unit ball.

§2. Preliminaries. We will need several properties of smooth convex
bodies. So assume K <= Rd is a <#3 convex body with positive curvature
K = K(Z) at every ze.dK. Then there is a constant to>0 such that xeK,
dist (x, dK) = t=£ t0 implies x can be written uniquely as

x = z-ta, (2.1)

where z e dK and a is the outer unit normal to K at z. Here z, a, t all depend
on x but we will usually not denote this dependence. The constant t0 depends
on K only. This will be true for all the constants Ao, bx, b2,. • •, clt c2,...,
to come (unless stated otherwise).

Assume now that the principal radii of K at ze.dK are all equal,
R = Rl = R2 = ... = Rd_t = K-l/id-l\ Let H' be the halfspace

H' = {yeRd:(y-(z-at)).a^0}, (2.2)

with the notation of (2.1). Also, write B(y, r) for the ball with centre y and
radius r. Then, for t =£ A

(2.3)

provided A^A0 for some constant Ao>0. Consequently

< d 1 ) / 2 ( d 1 ) / 2 < d 1 ) / 2 ( d + 1 ) / 2 (2.4)

where the constant b, depends only on d. Write D = B{z-(R + A)a, /? + A).
We can estimate vol (HAnK) with small error

|vol(HAnA:)-vol(HAnD)|«fe2A (d+2) /2- (2.5)

Define now u: K -* R by

u(x) = vol(K n(x- K)).

The region K n(x- K) is centrally symmetric with respect to x. Moreover,
if x is close to dK then Kn(x-K) is close to ( H ' n K ) u ( x - ( H ' n K ) )
with t and H' coming from (2.1) and (2.2). More precisely, for xeK and
t = dist(x,dK)<t0

b3t<
d+l)/2^u(x)^b4t

{d+1)/2. (2.6)

This follows from (2.4) if K is "circular" around z {i.e., Rx = R2 =.. . = Rd-\).
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Otherwise (2.4) changes to

W-A)] /(d+1)/2^vol(H'nK)«^n (

and JljJ"/ /?, = K so (2.6) follows again.
A proof of the above facts can be found in [12] pages 71-72 of Schneider

and Wieacker.
We will often use the following inequality (see [6] or [3] for a proof)

Here Prob (x& Kn) is meant with x fixed and Kn, the random polytope in K
varying.

§3. Proof of Theorem 1. We assume d 5*3 (for d = 2 see [8] or (1.1)) and
also that vol K = l. The proof is split into several steps.

Step 1. The theorem is true for the ball rBd.

Proof. If K = rBd then K = r"^"1 ' and (1.4) says

K 1 / ( d + 1 ) d z ( - ^ ) +O(/r 3 / ( d + 1 ) log2 n)

= c(d)da,(/+3)/<d+1)rd
M-2/(d+1)+ O(«-3 / (d+1) log2 n), (3.1)

which is correct according to (1.2).

Step 2. There is a constant c, such that with

n)= JE(K,n)= J Prob (x£Kn)dx+O(n-1), (3.2)

where the integration is taken over all x e K with f = dist (x, dK) =s f,.

/Voo/ Clearly £(X, «) = JK Prob (xi£ Kn)dx. According to (2.6) f3=f,
implies M(X) ̂  3((log n)/n) with f, = c,((log «)/n)2 / (d+1) . Then

= J Prob(x(2Kn)dx^ J
a(i)»3(logn)/n



RANDOM POLYTOPES IN SMOOTH CONVEX BODIES

Set Ao= [3 log n] and apply (2.7). Then, the same way as in [6],

85

I
u(x)s=3(log n)/n

n

> I 2

/

I
dx

£ 2

4+f
2 2

Let x € K with x = z - ta as in (2.1). Assume 0 «s t =£ ^ . It is easy to see that

2/(d

Using this in (3.2) we get

Prob {x£Kn)dx

(3.3)

Near the point z, X looks like an ellipsoid E(z). If one applies an affine
transformation T=T(z) of determinant 1 that leaves every point of the
line z-ta unchanged and the tangent plane to K at z invariant, then
Prob (x £ Kn) = Prob (x £. (TK)n) identically for every x = z - ta, t s* 0. Choose
such a T that carries £ (z ) to a ball B(z). Clearly B(z) = B(z- ra, r) where
r = K-i/(d-i) wj tjj K = K ( Z ) . From now on we assume that T(z) has been
applied at z. Set m = [niodr

d J. The basic idea of this proof is that Kn is similar
to B(z)m near the point z. More precisely our aim is to prove

?xob{x£Kn)dx-

-3/(d+l) log2 n). (3.4)

Here in the second integral x:f=sr, means {xe B{z): dist (x, dB(z))=£ f,}.
Notice that f, = c',((log m)/m)2/(d+l) for some constant c',.

5<ep 3. (3.4) implies the theorem.

Proof. According to (3.1)

E{B(z), m) = c(d)dio<d
d+3Wd+1)rdm-2/(d+»+ O(m"3/<d+1) log2 m).
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Step 2, applied to K = B(z) and n = m and (3.3) give

E(B(z),m) = J I Prob (x£B(z)m)dt dz+Oim'1).

The expression in the brackets does not depend on z so we get from the two
representations of E(B(z), m) that, with the particular choice z = z,

\
Prob (x£B(z)m)dt = c(d)a>2

d
/<d+1)rm-2/(d+1)+ O(m-3/(d+1) log2 m)

= c(d)K1/(d+1)«-2/(d+1)+ O(n"3/(d+1) log2 n).

Then (3.2), (3.3), (3.4) and (3.5) prove that, indeed

J
dK

(3.5)

). (3.6)

From now on I will drop z from the notation if there is no ambiguity. So
B = B(z), a = a(z), etc. Set A = c2((log n)/n)2/(d+1) where c2 will be fixed later
and will be much larger than c,. Recall notation (2.2),

H' = {ye Rd: (y-(z-at)).

Write D = B(z-( r + A)a, r + A) and

Then, by (2.3), (2.4) and (2.5) we get

vol(DA\KA)^b2A
(d+2)/2,

provided A is small enough (i.e., n is large enough).
Set p = L««d(r + A)dJ. We mention at once that

Prob(xgDp)dx- , - 3 ( d +1)log2n).

This follows from (3.5) immediately. (Notice that t, = c;'((log p)/p)2/(d+i) and
r, = c',((log m)/m)2/<d+1) with suitable constants c[, c".) This shows, in turn,
that it is enough to prove (3.4) with D and p instead of B and m, i.e.,

Prob(x£Kn)dx-

= O(n~3/<d+1)log2n).

Prob (x£Dp)dx

(3.7)
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Next I show that Kn n HA is essentially independent of the x,'s not lying

Step 4. If dist (x,3K)«(, , then

|Prob {xi conv (Xn n KA)) -Prob (x£ conv XJ | = O{n~x), (3.8)

where Xn = {x, , . . . , xn} is the random n-set from K.
We need the following lemma (see [4] for a similar statement with a similar,

if more involved, application). We write ray (x,y) = {x + ry: T> 0}.

LEMMA. Ifx,x1,...,xn are in general position and x e KA n conv Xn but
xi conv (Xn n KA), then there is an xt e Xn\K

A with

ray (x, x,) n conv (Xn\(K( u {x,})) = 0 .

fVoo/ o/ //ie lemma. Identify x with the origin for this proof. Then
the conditions say that coneXn = Rd but cone (Xn n KA) # J?d and
cone(X n \X')^« d . But cone Xn = cone (XnnKA) + cone (Xn\X r) so
cone (Xn\K') must contain an extreme ray, defined by some x,r 6 Xn\K' which
is not in cone (Xn n KA). Then x, £Xnn KA as well and the ray does not meet
conv (Xn\(X'n{x,})) as required.

Proof of Step 4. Clearly

0=£Prob (x£ conv (Xn n XA))-Prob (x(gconv X J

= Prob (xg conv (XnnKA) but xeconvXJ

« Prob (3x, e Xn\K
A: ray (x, x,) n conv (X n \ ( ^ ' u {x,-})) = 0 )

(by the Lemma)

I Prob (ray {x,y)n conv {Xn_,\K') =

Fix r e [0, tt] and write u, for the w-function of the convex set K\K'. Let
yoe ray (x, y) be the point maximizing M, on ray (x, y). We claim that if c2 is
large enough then

ut(y0)»4d(log n)/n.

Indeed,

By (2.6) u(x)^b4t\
d+l)/2 and w ^ ^ ^ t d i s t (yo,dK)](d+x)n. As X is very

close to a ball near z, dist (y0, dJC) 3= A/4 follows quite easily. So

-2bAd+l)/2)

4 d ,

as claimed if c2 is large enough. Evidently u,(yo)^ 1.
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Now with a =vol K' we get

Prob (ray (x, y) n conv (Xn_,\X') = 0 )

= V
j=0

1

j-o

Prob (Jo* (X\K')n-j-,)(" 7 * V u -a)-'"-' (by (2.7))
\ J /J=O

V VYI
i / \ 2 ( l - a )A 2(1-a)

Now we apply Step 4 with K = D and n = p to get

|Prob (x*! conv (Yp n DA)) - Prob (x £ conv Yp)\ = O{n~'), (3.9)

where Yp = {yl,...,yp} is a random p-set in D.
Write now /3=vo\KA and -y = vol DA/vol D. Clearly

= £
fc=o

= £ Prob(x£KA)("W(l-/3)"-'1, (3.10)

and analogously

Prob (*£conv (ypnDA))= £ Prob (xt DA)(fW(l -y)p~k. (3.11)
k=o \k/

We know that j8 == y(r + A)dwd =const (log n)/n and p = n(r + A)d«>d. The
next two steps follow easily from the properties of the binomial distribution
and the choice of y and p (we omit the proofs).
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Step 5. There are numbers k, = [c3 log n\ and k2 = [c4 log n ] with ^ < k2

such that the contribution of the terms with k< fcj and fc> k2 in both (3.10)
and (3.11) is less than O(n~l).

Step 6. For k = ki,kl + l,...,k2

Step 7. For f e [0, /,] and for fc = fc,,..., fc2

|Prob (x<* KA)-Prob (xt. Dt)\ = o( ( - J - J log n ).

fVoo/ Let Zfc = {z, , . . . , zfc} denote the random fc-set in DA. Set
5 = vol (DA\XA)/vol DA. Then 8 < b5A

1/2 by (2.5) and (2.6). Define

P, = |Prob (xt£ conv (Zt n XA)) -Prob

P2 = |Prob (x £ conv(Zk n XA)) - Prob (x £ DA)|.

Clearly |Prob (xi XA)-Prob (x£ Dt)\^Pi + P2- Moreover,

k

P,« I |Prob (x & conv (Zk n KA) \ \Zk nK*\ = k -j)

-Prob

= | |Prob

Quite similarly,

k

IProb (x£ conv (Zfc n XA) | \Zk nKA\ = k -j)

- Prob (x £ conv Zk \ \Zk nKA\ = k -j)\ ( J 8j(l - 8)k~j

j-o
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Finally, we prove (3.7)

\Prob(x£Km)-Pr6b(xf£Dp)\

^ |Prob (x £ conv (Xn n KA)) - Prob (JC & conv (Yp n DA))| + O(«"')

I

k2

I

/3*(1-£)""*-Prob

( d + 2 ) / ( d + 1 )

Integrating this on [0, /,] with f, = c,((log n) /n) 2 / ( d + 1 ) we get (3.7).

§4. Sketch of the proof of Theorem 2. Recall first [5,10] that

W\d\K)= vold_i (projF (K))<MF),

FEG

where G = G(d,d-i) is the Grassmannian of the (d-i)-dimensional sub-
spaces of Rd, a) is the (unique) rotation-invariant measure on G normalized
suitably, and proj F : Rd -* F denotes orthogonal projection onto F e G. Then

E(K, i, n) = E( W\d\K) - W\d)(Kn))

vold_, (projF (K)\projF ( ^ J ) ^= E J

= E vold_, (projF (X)\projF {Kn))dw

a

"I (4.1)

Now Step 1 follows as before using (1.3). Also, Step 2 goes the same way
because Prob (xgpro j F (Kn)) is very small when x is far from the boundary
of p ro j F (X) .
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Write f = dist (x,<9projF (K)), x = z-dt with zedprojF(.K) and a the
outer unit normal to projF (K) at z. Clearly z = projFz for a unique ze.dK
where a = a is the outer normal to K at z.

So we get from Step 2 and (4.1) with f,=£ c,((log n)/n)V(d+x)

E{K,i,n) = PTob(xipw)F(Kn))dxd<o(F) + O(n~1)

O xeF
fas*!

=

" I I I
zedK x = z-ta F<EG

K(I aeF

±)nKn=0)d(o(F)dtdz+O(n-1),

(4.2)

because x£projF(Xn), if, and only if, (x + F±)nKn = 0 where x = z-ta,
ae F. (Fx denotes the orthogonal complementary subspace of F.)

Apply now the same affine transformation T as in the previous proof.
Then, for x = z - ta and aeF,

Prob ((x + F x ) n Xn = 0 ) = Prob ((x + ( rF) x )n (TX)n = 0 )

identically in x. Our aim is to prove (with the same notation as earlier) that

I I
FeG
aeF

(Prob ((x + Fx) n Kn = 0 ) - Prob ((x + Fx) n Bm = 0))da{F)dt

/(d+l)). (4.3)

Now Step 3 says that (4.3) implies the theorem and the proof is analogous.
Set A = x + Fx . This is an i-dimensional affine subspace. For yeAnK

dist {y, dK)^t where t comes from (2.1), i.e., from x = z-ta. Moreover,

max {dist (y, dK): y e A n K}'•= t.

Letting A = c2((log n)/«)2/(d+1) again, Step 4 says that

|Prob (A n conv (Xn n KA) = 0 ) -Prob (A nconvXn = 0 ) | = o(l).

The proof of this follows the same lines. The auxiliary lemma we need
here is

LEMMA. If A, Xj, x 2 , . . . , xn are in general position and An Kcz K*,
A n conv Xn # 0 but A n conv (Xn n KA) = 0 , then there exists an x, <= Xn\K

A

with

(A + ray (0,x,-x))nconv (Xn\(K'u d{Xi})) = 0.

The rest of the proof is the same.
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