A COLORED VERSION OF TVERBERG'S THEOREM

I. BÁRÁNY and D. G. LARMAN

Abstract

The main result of this paper is that given r red, r white, and r green points in the plane, it is possible to form r vertex-disjoint triangles $\Delta_{1}, \ldots, \Delta_{r}$ in such a way that Δ_{i} has one red, one white, and one green vertex for every $i=1, \ldots, r$ and the intersection of these triangles is non-empty.

Introduction

Let n, d, r with $n \geqslant(d+1) r$ be positive integers and consider a finite set \mathscr{P}_{n} of n distinct points in \mathbb{R}^{d} which are divided into $d+1$ subsets $\mathscr{C}_{1}, \ldots, \mathscr{C}_{d+1}$, called colors, each of cardinality at least r. We say that \mathscr{P}_{n} is r-properly colored. If p_{1}, \ldots, p_{d+1} are points of \mathscr{P}_{n} then we say that $\left\{p_{1}, \ldots, p_{d+1}\right\}$ and the simplex (possibly degenerate) $\operatorname{conv}\left(p_{1}, \ldots, p_{d+1}\right)$ which they determine is multicolored if, after suitable relabelling, $p_{i} \in \mathscr{C}_{i}, i=1, \ldots, d+1$.

One of the best known elementary results in convex sets is Radon's theorem [6].
Radon's Theorem. Any d+2 points in E^{d} can be divided into two disjoint subsets X, Y with $\operatorname{conv} X \cap \operatorname{conv} Y \neq \varnothing$.

The famous extension of Radon's theorem due to Tverberg [7] is as follows.
Tverberg's Theorem. Any $r(d+1)-d$ points in E^{d} can be divided into r disjoint sets X_{1}, \ldots, X_{r} with $\bigcap_{i-1}^{r} \operatorname{conv} X_{i} \neq \varnothing$.

Recently, studies of the well-known k-set problem [1, 2, 4] have aroused considerable interest in the possible existence of a colored version of Tverberg's theorem. The results of this paper will, in particular, yield the bound $O\left(n^{80 / 27}\right)$ on the number of possible ways a set of n points in E^{3} can be divided in half by a hyperplane. This is an improvement over $O\left(n^{191 / 64}\right)$ given in [2]. However, by a different method, the better bound $O\left(n^{8 / 3+\varepsilon}\right)$ has been obtained recently [1].

The colored Tverberg problem

Determine the least value $N(r, d)$ such that if $n \geqslant N(r, d)$ and \mathscr{P}_{n} is an r-properly colored subset of E^{d} then there exist r disjoint multicolored subsets of \mathscr{P}_{n},
such that

$$
\left\{p_{1, j}, \ldots, p_{(d+1), j}\right\}_{j-1}^{r}, \quad \text { say }
$$

$$
\bigcap_{j=1}^{r} \operatorname{conv}\left\{p_{1, j}, \ldots, p_{(d+1), j}\right\} \neq \varnothing .
$$

For obvious reasons, we call the special case when $r=2$ the colored Radon problem.

[^0]Almost nothing is known about this problem. In [2] it is shown that $N(3,2) \leqslant 7$ for $d \geqslant 3, r \geqslant 3$ it is not known that any finite $N(r, d)$ exists. \dagger

We make the conjecture that $N(r, d)=r(d+1)$. We shall prove it for $d=1,2$. The colored Radon theorem $N(2, d)=2(d+1)$ has been proved by many people independently and we shall reproduce the proof due to L. Lovász (1989, private communication).

Theorem. For positive integers r and d
(i) $N(r, 1)=2 r$,
(ii) $N(r, 2)=3 r$,
(iii) $N(2, d)=2(d+1)$.

Note. If we have a set \mathscr{P} in E^{d} which is r-properly colored, we shall say that \mathscr{P} is r-divisible if there exist r disjoint multicolored subsets $\left\{p_{1, j}, \ldots, p_{d+1, j}\right\}_{j-1}^{r}$ with

$$
\bigcap_{j=1}^{r} \operatorname{conv}\left\{p_{1, j}, \ldots, p_{d+1, j}\right\} \neq \varnothing .
$$

We mention further that the case when $r=3$ of (ii) of the theorem has been proved (independently) by J. Jaromczyk and G. Swiatek [5]. Actually, their proof extends easily to the general $(r \geqslant 3)$ case as well.

Proof of the theorem

(i) $N(r, 1)=2 r$. This we can do by induction. Trivially $N(1,1)=2$. Now assume that $N(r, 1)=2 r$ for some $r \geqslant 1$. Let $\mathscr{P}_{2(r+1)}$ be an $(r+1)$-properly colored set of $2(r+1)$ points on the real line. Let $\inf \mathscr{P}=A$ and suppose that A is colored 1. Let B be the largest point of \mathscr{P} that is colored 2 . The removal of A and B from $\mathscr{P}_{2(r+1)}$ yields an r-properly colored subset which we can divide into r multicolored intervals with a common point of intersection which can be chosen in the interval $[A, B]$. The inclusion of the multicolored interval $[A, B]$ yields the required $r+1$ multicolored intervals.
(ii) $N(r, 2)=3 r$. We adopt the Tverberg approach of taking points $P, P_{2}, \ldots, P_{3 r}$ and $Q, P_{2}, \ldots, P_{3 r}$ in algebraically independent positions. Assuming that the set $P, P_{2}, \ldots, P_{3 r}$ is r-divisible we shall prove that the set Q, P_{2}, \ldots, P_{3} is r-divisible. Since there certainly are positions for $P, P_{2}, \ldots, P_{3 r}$ which are r-divisible, (ii) will be established if we can prove the above result.

In fact it will be convenient to prove the stronger result that when the points are in algebraically independent positions then the interiors of the r multicolored triangles contain a common point of intersection. As in Tverberg's approach we consider the set $(1-t) P+t Q, P_{2}, \ldots, P_{3 r}, 0<t<1$, and consider the set T of those t in $[0,1]$ for which $(1-t) P+t Q, P_{2}, \ldots, P_{3 r}$ is r-divisible. The set T is non-empty, since $0 \in T$, and closed; let t_{0} be the maximum of T. We show that $t_{0}=1$ (and the result follows) by showing that if $t_{0}<1$ then there exists $t>t_{0}$ with $t \in T$. Now suppose that $t_{0}<1$ and consider the situation at t_{0}.

Since we are unable to continue using the subdivision of

$$
\left\{(1-t) P+t Q, P_{2}, \ldots, P_{3 r}\right\}
$$

used at t_{0} one of two possibilities must have occurred:
(ii.i) Two of the multicolored triangles used at t_{0} will intersect in a degenerate

[^1]way; that is, if the triangles are T_{1}, T_{2}, then T_{1} and T_{2} are weakly separated by a line l and a vertex of T_{2} will lie on an edge of T_{1}. All other triangles will contain this vertex of T_{2} in their interior.
(ii.ii) Three of the multicolored triangles used at t_{0} will intersect in a single point 0 , say, which lies in the relative interiors of their edges. All other triangles will contain 0 in their interior.

We first consider possibility (ii.i).
Let T_{1} have vertices A, B, C, and T_{2} have vertices $A^{\prime}, B^{\prime}, C^{\prime}$, where A^{\prime} is the point $\left(1-t_{0}\right) P+t_{0} Q$. If l^{+}, l^{-}are the two half-planes determined by l we suppose that T_{1} lies in l^{+}and T_{2} lies in l^{-}. We suppose that A^{\prime} lies in the edge $B C$ and as t increases from t_{0}, A^{\prime} moves to a position A_{t}^{\prime} in the interior of l^{-}and hence the triangles $A B C$, $A_{t}^{\prime} B^{\prime} C^{\prime}$ do not intersect. Another possibility is that B lies on the edge $A^{\prime} C^{\prime}$ but the arguments for this possibility are similar and will therefore be omitted.

What we shall show is that it is possible, as A^{\prime} moves slightly to A_{t}^{\prime}, to rearrange the six points $A, B, C, A_{t}^{\prime}, B^{\prime}, C^{\prime}$ into two multicolored triangles whose interiors meet within any given neighborhood of A^{\prime} (of B if B lies in the edge $A^{\prime} C^{\prime}$) by varying the distance between t and t_{0} accordingly. This ensures that for $t>t_{0}$ and t close to t_{0}, the r multicolored triangles (the two newly distributed triangles and the $r-2$ remaining triangles in the r-division at t_{0}) have a common point in their interiors.

Case 1. In the line 1 the three points A^{\prime}, B, C do not have distinct colors. Let us suppose that the color 3 is not amongst the colors of A^{\prime}, B, C. Then A has color 3 and we suppose that B^{\prime} has color 3 . Then $A A_{\mathrm{t}}^{\prime} C^{\prime}, B^{\prime} B C$ are the required triangles.

1

Case 2. In the line l the three points A^{\prime}, B, C have the distinct colors 1, 2, 3 respectively. If the line through $A A^{\prime}$ meets the interval ($B^{\prime} C^{\prime}$) then the triangles $A B^{\prime} C^{\prime}, A_{t}^{\prime} B C$ will do.

2

Otherwise suppose that $B^{\prime} C^{\prime}$ lies on the same side of the line $A A^{\prime}$ as does B. If B^{\prime} is colored 2 then $B^{\prime} A C, B C^{\prime} A^{\prime}$ will do. If B^{\prime} is colored 3 then $B^{\prime} B A^{\prime}, A C^{\prime} C$ will do. So, if $t_{0}<1$, (ii.i) cannot arise.

We now consider the possibility (ii.ii).
There are three multicolored triangles T_{1}, T_{2}, T_{3}, with the point $\left(1-t_{0}\right) P+t_{0} Q$ in T_{1}, whose intersection is a single point, 0 say, belonging to the relative interiors of the sides of T_{1}, T_{2}, T_{3}. Further, if $T_{1}(t)$ is the multicolored triangle with $\left(1-t_{0}\right) P+t_{0} Q$ replaced by $(1-t) P+t Q$, an increase from t_{0} to t means that $T_{1}(t), T_{2}, T_{3}$ no longer have a common point of intersection.

We consider the nine vertices of T_{1}, T_{2}, T_{3}, three colored 1 , three colored 2 , and three colored 3 which we try to rearrange as the vertices of three multicolored triangles whose intersection still contains 0 but also contains an interior point. Thus when $\left(1-t_{0}\right) P+t_{0} Q$ is moved to $(1-t) P+t Q, t>t_{0}$ but $t-t_{0}$ small, the rearranged triangles still have a non-empty intersection. In fact we shall try to rearrange two of the three triangles so that one contains 0 in its interior and the other contains 0 on its boundary. We may not always succeed but we gain information about the arrangement of points. This will be done in step 1 below. In step 2 we shall rearrange all three triangles using the information gained in step 1 .

The triangles T_{1}, T_{2}, T_{3} have three edges $A B, D E, G H$, one each respectively, passing through 0 , with third vertices C, F, I respectively. We regard the nine vertices as arranged circularly around 0 with each edge $A B, D E, G H$ carrying a normal direction to indicate the half-plane containing the third vertex. Of course, the intersection of the three half-planes is precisely 0 .

Step 1 (when we try to rearrange T_{1} and T_{2}). Consider two of these edges $A B$, $D E$. Two of these vertices, say B, E, will be given the same color, say 3.

Case 1. When A and D have different colors, say 1, 2. Figure 1 indicates the three different possible arrangements.

Fig. 1
(a) If $F \in \hat{A D}$ (the circular arc between A and D taken clockwise) and the segment $F C$ does not meet the sector $D 0 B$ then $F C B, A D E$ are the required triangles. If $F C$ meets $D 0 B$ then $F E C, A B D$ are the required triangles.

Consequently in case (a) we may suppose that F lies in $\hat{E A}$, the common arc of intersection of the triangles T_{1} and T_{2}.
(b) If C lies in $\widehat{D B}$ and the segment $F C$ does not meet the sector $B 0 E$ then $F C E$, $A B D$ are the required triangles. If $F C$ meets the sector $B 0 E$ (and C lies in $\widehat{D B}$), then $A C E, F D B$ are the required triangles. Consequently we may suppose that C lies in $A D$. Symmetry implies that F also lies in $\widehat{A D}$.

Fig. 2

Consequently, in case (b), we may suppose that both C and F lie in $A D$, the common arc of intersection of the triangles T_{1} and T_{2}.
(c) If the segment $F C$ does not meet the sector $B 0 E$ then $A D B$ and $C F E$ are the required triangles.

Consequently, in case (c), we may suppose that the segment $F C$ meets the sector $B 0 E$, the common sector of intersection of the triangles T_{1} and T_{2}.

Case 2. When A, D have the same color, 1 say. Figure 2 indicates the two possible arrangements.
(d) If F is in $\overrightarrow{A D}$ then we may change the region of intersection from $E 0 A$ to $D 0 B$ by interchanging F and C, that is, using the triangles $A B F, D E C$. The intersection $T_{3} \cap A B F \cap D E C$ contains 0 and an interior point, as required. So we may suppose that F and C lie in $\widehat{E A}$, the arc of intersection of the triangle T_{1} and T_{2}.
(e) If C lies in $\widehat{D B}$ and F lies in $\widehat{E A}$ we may change the region of intersection $A 0 D$ to $B O E$ by using the triangles $A B F, C E D$. The intersection $T_{3} \cap A B F \cap D E C$ contains 0 and an interior point, as required.

If C lies in $\widehat{D B}$ and F lies in $\widehat{A D}$ we may change the region of intersection $A 0 D$ to $D 0 B$ by using the triangles $A B F, C E D$. The intersection $T_{3} \cap A B F \cap D E C$ contains 0 and an interior point, as required. So we may suppose that C lies in $\widehat{A D}$.

By symmetry we may suppose that F also lies in $\overparen{A D}$, the arc of intersection of the triangles T_{1} and T_{2}.

So in the cases (a), (b), (d), (e) (at least) one of the points F and C lies in the sector of intersection.

Step 2 (when we rearrange all three triangles). Consider the three diameters $A B$, $D E, G H$ as in Figure 3.

Fig. 3
There will be three regions of pairwise intersections of the triangles T_{1}, T_{2}, T_{3} determined by the arcs $\widehat{D B}, \widehat{H E}, \overparen{A G}$. Consider the pairs $E A, G D, B H$.

Case 1. When one of these pairs, say E and A, receive the same color, 1 say. Then, by (b) and (e) we see that the $\operatorname{arc} D B$ contains both points C and F. The other two regions of pairwise intersection will contain at least one point of C, F, I, and hence produce an obvious contradiction, unless one of the pairwise intersections, corresponding to $A B, G H$, say, falls into case (c). Thus A, G are labelled with the same color 1 and B, H receive different colors, necessarily 2,3 (say B receives color 2). Now either D has color 2 and (a) applies to $D E$ and $G H$ or D has color 3 and (d) applies to $D E$ and $G H$. In both cases $\hat{H E}$ contains I. Consequently C, F and I lie in the arc $\widehat{D E}$ and hence the chord $C I$ does not meet the (interior of) the sector $A 0 G$ as required by (c) applied to $A B, G H$.

Case 2. When none of the pairs $E A, G D, B H$ receives the same color.
Suppose that two of the diameter pairs, say $A B, D E$, are similarly colored. Say A, D colored 1 and B, E colored 3. Then, by (d), both C and F lie in $\widehat{D B}$. Unless case (c) arises amongst the other two sets of diameter pairs an immediate contradiction arises since $\hat{H E}$ and $\widehat{A G}$ will both contain at least one point of C, F and I. So suppose that $D E, H G$ fall into case (c), that is, H is colored 3. But then B and H have the same color; a contradiction.

So we may suppose that no two of the diameters are similarly colored. Now only cases (a) and (c) can arise. Let us suppose that case (a) arises for the diameters $A B$, $D E$ colored $1,3,2,3$ respectively. Then G is colored 1 and H is colored 2. Consequently C lies in $\operatorname{arc} \hat{D B}$ and as the pair $D E, G H$ also falls into case (a), I lies in arc $\hat{H E}$. The pair $A B, G H$ falls into case (c) and so the chord $C I$ must intersect the interior of the sector $A 0 G$ which contradicts C, I lying in $\widehat{D E}$.

Finally, we suppose that only case (c) arises. Let A, B, D, E be colored 2, 3, 3, 1 respectively. Then H is colored 1 and G is colored 2 . The triangle CFI meets the interior of each of the sectors $D 0 B, H 0 I, A 0 G$ and so contains 0 in its interior. Consequently CFI, AHD, BEG are the required triangles.

This completes the proof that if $t_{0}<1$, (ii.ii) cannot arise and hence the proof of (ii) of the theorem is complete.

Remark. It is not possible to carry through the argument in E^{3} as we have done in E^{2}. Notice that in E^{2}, when the intersection of (say) two multicolored simplices S_{1} and S_{2} became a single point 0 it was possible to rearrange the vertices of S_{1} and S_{2} so as to form two other multicolored simplices T_{1} and T_{2} with 0 in their intersection. We give an example of two tetrahedra, $S_{1}=\operatorname{conv}\{A, B, C, D\}$ and $S_{2}=\operatorname{conv}\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right\}$, where this is not possible. Let the points A, B, C, D, A^{\prime}, $B^{\prime}, C^{\prime}, D^{\prime}$ be colored $1,2,3,4,3,4,1,2$, respectively, and let

$$
\begin{aligned}
A=(1,0,0), & B=(-1,0,0), \quad C, D \text { close to }(1,1,1), \\
A^{\prime}=(0,-1,0), & B^{\prime}=(0,1,0), \quad C^{\prime}, D^{\prime} \text { close to }(1,1,-1) .
\end{aligned}
$$

Then $S_{1} \cap S_{2}$ is the origin 0 . Assume that T_{1} and T_{2} are two multicolored tetrahedra with vertices from $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ and $0 \in T_{1} \cap T_{2}$. As $0 \notin \operatorname{conv}\left\{A, C, D, B^{\prime}\right.$, $\left.C^{\prime}, D^{\prime}\right\}, A^{\prime}$ and B must be in different tetrahedra, $A^{\prime} \in T_{1}$ and $B \in T_{2}$, say. Then $A \in T_{2}$ since $0 \notin \operatorname{conv}\left\{B, C, D, B^{\prime}, C^{\prime}, D^{\prime}\right\}$, and similarly $B^{\prime} \in T_{1}$. But now the only way to have all colors in T_{1} and T_{2} is to have

$$
T_{1}=\operatorname{conv}\left\{A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}\right\} \quad \text { and } \quad T_{2}=\operatorname{conv}\{A, B, C, D\}
$$

(iii) $N(2, d)=2(d+1)$. In E^{d+1} consider the cross-polytope X with vertices, $\pm e_{i}$, $i=1, \ldots, d+1$, where e_{1}, \ldots, e_{d+1} are the unit coordinate vectors. Let $\mathscr{P}=\{1, \ldots, d+1$; $\left.1^{\prime}, \ldots,(d+1)^{\prime}\right\}$ be a 2-properly colored set in E^{d} of $2(d+1)$ points such that points i and i^{\prime} are colored i, where $i=1, \ldots, d+1$. We define

$$
\sigma\left(e_{i}\right)=i, \quad \sigma\left(-e_{i}\right)=i^{\prime}, \quad i=1, \ldots, d+1
$$

We can extend σ to a continuous map of ∂X into E^{d} by taking

$$
\sigma(x)=\sum_{i=1}^{d+1} \lambda_{i} \sigma\left(v_{i}\right), \quad \text { where } x=\sum_{i=1}^{d+1} \lambda_{i} v_{i} \in \partial X
$$

$\lambda_{i} \geqslant 0, \sum_{i=1}^{d+1} \lambda_{i}=1, i=1, \ldots, d+1, v_{i}$ are vertices of X.
By the Borsuk-Ulam theorem [3] there exist x and $-x$ in ∂X with $\sigma(x)=\sigma(-x)$. If $\left\{v_{i}\right\}_{i-1}^{d+1}$ are the vertices in the facet of X containing x then $\left\{-v_{i}\right\}_{i=1}^{d+1}$ are the vertices in the facet containing $-x$ and $\left\{\sigma\left(v_{i}\right)\right\}_{i=1}^{d+1},\left\{\sigma\left(-v_{i}\right)\right\}_{i=1}^{d+1}$ are the vertices of two multicolored d-simplices which intersect in the point $\sigma(x)$.

Note added in proof. The finiteness of $N(r, d)$ has recently been established by R.T. Zivaljevic and S. Vrecica in a preprint 'The colored Tverberg problem and complexes of injective functions'.

References

1. B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Giubas and M. Sharir, 'Points and triangles in the plane and halving planes in space', Discrete and Comp. Geometry 6 (1991) 435442.
2. I. Bárány, Z. Füredi and L. Lovász, 'On the number of halving planes', Combinatorica to appear.
3. K. Borsuk, 'Drei Sätze über die n-dimensionale euklidische Sphäre', Fund. Math., 20 (1933) 177190.
4. P. Erdös, L. Lovász, A. Simmons and E. G. Strauss, 'Dissection graphs of planar point sets', a survey of combinatorial theory (ed. J. N. Shrivastava et al.; North-Holland, Amsterdam, 1973) 139149.
5. J. Jaromczyk and G. Swiatek, 'The optimal constant for the colored version of Tverberg's theorem', Geom. Dedicata to appear.
6. J. Radon, 'Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten', Math. Ann. 83 (1921) 113-115.
7. H. Tverberg, 'A generalisation of Radon's theorem', J. London Math. Soc. 41 (1966) 123 d 128.

Department of Operations Research
and Cowles Foundation
Yale University
New Haven
Connecticut 06520
USA
On leave from:
Mathematical Institute
Hungarian Academy of Sciences
PO Box 127
1364 Budapest
Hungary

Department of Mathematics
University College London
Gower Street
London WCIE 6BT

[^0]: Received 3 January 1991.
 1991 Mathematics Subject Classification 52A20.
 The first author was partially supported by the Program in Discrete Mathematics and its Applications at Yale University. Both authors were partly supported by DIMACS.

[^1]: \dagger See note added in proof.

