# ON INTEGER POINTS IN POLYHEDRA: A LOWER BOUND 

IMRE BÁRÁNY ${ }^{1}$, ROGER HOWE and LÁSZLÓ LOVÁSZ

Received April 21, 1989
Revised March 12, 1991


#### Abstract

Given a polyhedron $P \subset \mathbb{R}^{n}$ we write $P_{I}$ for the convex hull of the integral points in $P$. It is known that $P_{I}$ can have at most $O\left(\varphi^{n-1}\right)$ vertices if $P$ is a rational polyhedron with size $\varphi$. Here we give an example showing that $P_{I}$ can have as many as $\Omega\left(\varphi^{n-1}\right)$ vertices. The construction uses the Dirichlet unit theorem.


## 1. Results

Given a polyhedron $P \subset \mathbb{R}^{n}$ write $P_{I}$ for the convex hull of integral points in $P . P$ is a rational polyhedron if it is given by finitely many inequalities of the form $a^{T} x \leq \alpha$ where $a \in \mathbb{Q}^{n}$ and $\alpha \in \mathbb{Q}$. The size of this inequality is the number of bits necessary to encode it as a binary string (see Schrijver [7]). The size of a rational polyhedron $P \subset \mathbb{R}^{n}$ is the sum of the sizes of defining inequalities. Strengthening some earlier results of Shevchenko [8] and Hayes and Larman [3], Cook, Hartman, Kannan and McDiarmid [2] have proved recently that $P_{I}$ can have at most $2 m^{n}\left(12 n^{2} \varphi\right)^{n-1}$ vertices where $m$ is the number of defining inequalities. For some other results and comments see their paper [2]. For $n=2$ and $n=3$ there are examples in [6] and in [5] showing that $P_{I}$ can have as many as $\Omega\left(\varphi^{n-1}\right)$ vertices. Here we give such a construction for every $n \geq 2$.

Theorem 1. For fixed $n \geq 2$ and for any $\varphi>0$ there exists a rational simplex $P \subset \mathbb{R}^{n}$ of size at most $\varphi$ such that the number of vertices of $P_{I}$ is at least $c \varphi^{n-1}$ where $c$ is a constant depending only on $n$.

The proof will be based on the following construction. The automorphism group of the lattice $\mathbb{Z}^{n}$ consists of all integral matrices with determinant 1 . We are going to construct a subgroup of this group which is isomorphic to $\mathbb{Z}^{n-1}$ in a non-trivial way. (A trivial subgroup of this form is the group of all matrices which differ from the identity matrix only in the first $n-1$ entries of the last column.) More exactly, we show the following.

[^0]Theorem 2. There exist $n$ by $n$ integral matrices $A_{1}, A_{2}, \ldots, A_{n-1}$ with determinant 1, with the following properties:
(1) Every $A_{k}$ has the same set of eigenvectors $\left\{s_{1}, \ldots, s_{n}\right\}$.
(2) Let $\lambda_{k i}$ be the eingenvalue of $A_{k}$ belonging to $s_{i}$; then $\lambda_{k i}>0$.
(3) The vectors $\Lambda_{k} \in \mathbb{R}^{n}(k=1, \ldots, n-1)$ are linearly independent over the reals, where the $i$-th component of $\Lambda_{k}$ is $\Lambda_{k i}=\log \lambda_{k i}$.
Clearly, condition (3) is equivalent to the following
(4) The vectors $\sum_{k=1}^{n-1} \alpha_{k} \Lambda_{k}$ where $a=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)^{T} \in \mathbb{Z}^{n-1}$ form an ( $n-1$ )dimensional lattice $L$ in $\mathbb{R}^{n}$.
The lattice $L$ is orthogonal to the vector $(1, \ldots, 1)^{T} \in \mathbb{R}^{n}$. This follows from $\operatorname{det} A=1$. Another way to put (3) or (4) is to say that the matrices $A_{1}, \ldots, A_{n-1}$ multiplicatively generate a free commutative subgroup $\Gamma$ of the automorphism group of $\mathbb{Z}^{n}$, isomorphic to an ( $n-1$ )-dimensional lattice.

As a matter of fact, Theorem 2 can be deduced from the Dirichlet unit theorem (see, e.g. [1]). We will explain how this can be done. For the sake of the reader who is not familiar with algebraic number theory a separate and selfcontained proof of Theorem 2 will be given in the third section.

## 2. Proof of Theorem 1

We use Theorem 2. Set $S=$ cone $\left\{s_{1}, \ldots, s_{n}\right\}$ and consider the convex hull $H$ of $\mathbb{Z}^{n} \cap$ int $S$. Note that $S$ and $\mathbb{Z}^{n}$ are invariant under $\Gamma$, and therefore so is $H$. The set $H$ is not a polyhedron but its intersection with any supporting hyperplane $u^{T} x=$ $\gamma$ with $u^{T} s_{i}>0(i=1, \ldots, n)$ is a polytope, and if we take $u$ "generic" then this intersection is a single vertex $v=\left(v_{1}, \ldots, v_{n}\right)^{T}$. Define the set

$$
V=\{A v: A \in \Gamma\}=\left\{A_{1}^{\alpha_{1}} \ldots A_{n-1}^{\alpha_{n-1}} v \in \mathbb{R}^{n}: a=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)^{T} \in \mathbb{Z}^{n-1}\right\}
$$

Clearly $V \subset \mathbb{Z}^{n} \cap \operatorname{int} S$.
Claim. Each point of $V$ is an extreme point of $H$.
Proof. The hyperplane $\left(A^{-1} u\right)^{T} x=\gamma$ supports $H$ and has the unique point $A v$ in common with it.

Consider now $\varphi \in \mathbb{R}$, large enough, and the sets

$$
B(\varphi)=\left\{w=\omega_{1} s_{1}+\ldots+\omega_{n} s_{n}: 0 \leq \omega_{i} \leq 2^{\varphi} \quad i=1, \ldots, n\right\}
$$

and

$$
H(\varphi)=B(\varphi)_{I}=\operatorname{conv}\left(B(\varphi) \cap \mathbb{Z}^{n}\right)
$$

Then $H(\varphi)$ is a polytope and every point in $V \cap B(\varphi)$ is a vertex of it. The cardinality of $V \cap B(\varphi)$ is the same as the number of points $a \in \mathbb{Z}^{n-1}$ with

$$
\sum_{k=1}^{n-1} \alpha_{k} \log \lambda_{k i}+\log v_{i} \leq \varphi, \quad i=1, \ldots, n
$$

In view of (4), this number is essentially the same as the ( $n-1$ )-dimensional volume of the set defined by the inequalities

$$
\sum_{k=1}^{n-1} x_{k} \log \lambda_{k i}+\log v_{i} \leq \varphi, \quad i=1, \ldots, n
$$

As this set is a simplex, its volume is const $\cdot \varphi^{n-1}$ with the constant depending only on $A_{1}, \ldots, A_{n-1}$. Thus the number of vertices of $H(\varphi)$ is at least const $\cdot \varphi^{n-1}$.

Now we are going to replace $B(\varphi)$ with a polytope $Q$ of small size, such that $Q_{I}=H(\varphi)$ (and so $Q_{I}$ has const. $\varphi^{n-1}$ vertices). The point $x=\xi_{1} s_{1}+\ldots+\xi_{n} s_{n} \in$ $\mathbb{R}^{n}$ has components $x_{1}, \ldots, x_{n}$ in the standard basis of $\mathbb{R}^{n}$. Let $v_{i} \in \mathbb{Z}^{n} \cap B(\varphi)$ be the point with minimal $i$-th component in the basis $s_{1}, \ldots, s_{n}(i=1, \ldots, n)$, and let $m_{i}$ be the $i$-th component of $v_{i}$. Then the inequality $\xi_{i} \geq m_{i}$ is implied by $n$ inequalities that define facets of $H(\varphi)$. These inequalities have the form

$$
0 \geq \operatorname{det}\left(\begin{array}{cccc}
1 & \ldots & 1 & 1  \tag{5}\\
w_{1} & \ldots & w_{n} & x
\end{array}\right)=b_{0}+b_{1} x_{1}+\ldots+b_{n} x_{n}
$$

where $w_{i} \in H(\varphi)$. As the Euclidean distance of $w_{i}$ from the origin is at most $n 2^{\varphi}$, its components in the standard basis are at most $n 2^{\varphi}$ in absolute value. So $b_{i}$ is equal to the value of an integral $n$ by $n$ determinant all of whose entries are at most $n 2^{\varphi}$ in absolute value. Then the size of the inequality (5) is at most const $\varphi$ where the constant depends only on $A_{1}, \ldots, A_{n-1}$. The number of such inequalities is $n$ for each $v_{i}$ and so it is $n^{2}$ altogether. Similarly, we can replace the inequalities $\xi_{i} \leq 2^{\varphi}$ by $n^{2}$ inequalities with size $O(\varphi)$ such that the resulting $2 n^{2}$ inequalities define a polytope $Q$ contained in $B(\varphi)$ but containing $H(\varphi)$. So $Q_{I}=H(\varphi)$ as claimed.

Finally, we cut $Q$ into simplices $P^{1}, \ldots, P^{N}$ whose vertices are all vertices of $Q$. The number $N$ of such simplices will clearly be bounded by a constant (depending only on $n$ ). Now every vertex of $Q_{I}$ is a vertex of one of the $\left(P^{j}\right)_{I}$, so at least one of them has const $\cdot \varphi^{n-1}$ vertices. Since the size of each $P^{j}$ is bounded by const $\cdot \varphi$, this proves the theorem.

Remark. A similar argument shows that the number of $k$-dimensional faces ( $k=$ $0,1, \ldots, n-1$ ) of $P_{I}$ is at least const $\cdot \varphi^{n-1}$. It would be interesting to extend the results of [2] by showing that $P_{I}$ has at most $O\left(\varphi^{n-1}\right) k$-dimensional faces for any polytope $P$ of size $\varphi$.

## 3. Proof of Theorem 2

To avoid some trivial complications, we assume that $n>2$. Define the polynomial

$$
p(\lambda)=(\lambda-2)(\lambda-4) \ldots(\lambda-2 n)+1=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{0}
$$

Clearly, $a_{n-1}, \ldots a_{0}$ are integers. Computing $p$ at $\lambda=1,3, \ldots, 2 n+1$ we see that $p$ has $n$ real roots $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n}$. The root $\lambda_{i}$ is close to $2 i$, more precisely:

$$
\begin{equation*}
\left|\lambda_{i}-2 i\right|<1 \text { and so }\left|\lambda_{i}-2 j\right|>1 \text { when } i \neq j \tag{6}
\end{equation*}
$$

Define the $n$ by $n$ integral matrix $A$ as

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right)
$$

Then, as it is well-known and actually easy to check

$$
\operatorname{det}(A-\lambda I)=(-1)^{n} p(\lambda)
$$

Hence $A$ has $n$ (real) eigenvectors $s_{1}, \ldots s_{n}$ with $A s_{i}=\lambda_{i} s_{i}$. Define now

$$
A_{k}=A-2 k I, \quad k=1,2, \ldots, n
$$

Then $A_{k} s_{i}=(A-2 k I) s_{i}=\left(\lambda_{i}-2 k\right) s_{i}$ and so $A_{k}$ has the same set of eigenvectors as $A$ with eigenvalues $\lambda_{k i}=\lambda_{i}-2 k$. Then $\operatorname{det}\left(A_{k}\right)=(-1)^{n} p(2 k)=(-1)^{n}$ and $A_{1} \ldots A_{n}=$ $-I$, because $A_{1} \ldots A_{n} s_{i}=\prod_{k=1}^{n} \lambda_{i k} s_{i}=\prod_{k=1}^{n}\left(\lambda_{i}-2 k\right) s_{i}=-s_{i}$. Next, we prove that the vectors $\Lambda_{k}^{\prime}$ are linearly independent, where $\Lambda_{k j}^{\prime}=\log \left|\lambda_{j}-2 k\right|$. Then the requirements of the theorem will be satisfied by the matrices $A_{1}^{2}, A_{2}^{2}, \ldots, A_{n-1}^{2}$. So assume

$$
\sum_{k=1}^{n-1} \alpha_{k} \Lambda_{k}^{\prime}=0
$$

for some real numbers $\alpha_{1}, \ldots, \alpha_{n-1}$. Defining $\alpha_{n}=0$ we have

$$
\sum_{k=1}^{n} \alpha_{k} \Lambda_{k}^{\prime}=0
$$

Set $\left|\alpha_{j}\right|=\max \left\{\left|\alpha_{k}\right|: k=1, \ldots, n\right\}$. If $j=n$ then we are done. So $j \neq n$ and consider the $j$-th component of the above equation:

$$
\sum_{k=1}^{n} \alpha_{k} \log \left|\lambda_{j}-2 k\right|=0
$$

Then, using (6),

$$
\begin{aligned}
\left|\alpha_{j} \log \right| \lambda_{j}-2 j| | & =\left|\sum_{k \neq j} \alpha_{k} \log \right| \lambda_{i}-2 k| | \leq \sum_{k \neq j}\left|\alpha_{k}\right||\log | \lambda_{j}-2 k| | \\
& =\sum_{k \neq j}\left|\alpha_{k}\right| \log \left|\lambda_{j}-2 k\right| \leq\left|\alpha_{j}\right| \sum_{k \neq j} \log \left|\lambda_{j}-2 k\right| \\
& =\left|\alpha_{j}\right||\log | \lambda_{j}-2 j| |
\end{aligned}
$$

because $A_{1} \ldots A_{n}=-I$ implies $\sum_{k=1}^{n} \log \left|\lambda_{i}-2 k\right|=0$. But then equality holds throughout and so $\left|\alpha_{j}\right|=\left|\alpha_{n}\right|=0$.

## 4. Remarks on the construction

We make some remarks on the structure of lattice points in the cone $S$ spanned by the eigenvectors of a group $\Gamma$ with the properties in Theorem 2.

For $x=\xi_{1} s_{1}+\ldots+\xi_{n} s_{n}$ define

$$
\operatorname{prod}(x)=\prod_{i=1}^{n} \xi_{i}
$$

Then for all $x \in S$ and $A \in \Gamma, \operatorname{prod}(A x)=\operatorname{prod}(x)$. Indeed,

$$
\operatorname{prod}\left(A_{k} x\right)=\prod_{i=1}^{n} \lambda_{k i} x_{i}=\operatorname{prod}(x) \prod_{i=1}^{n} \lambda_{k i} \operatorname{prod}(x) \operatorname{det}\left(A_{k}\right)=\operatorname{prod}(x)
$$

and hence the assertion follows by an easy induction. Moreover, it is easy to see that the function $f(x)=\log \operatorname{prod}(x)$ is strictly concave on int $S$. Hence the set $\{x \in S$ : $\operatorname{prod}(x) \geq \operatorname{prod}(v)\}$ is convex and each point of $V$ lies on its boundary.

The function prod assumes only a set of discrete values on the set $\mathbb{Z}^{n} \cap$ int $S$. This follows immediately if one uses the Dirichlet unit theorem: prod is proportional to the norm of the appropriate algebraic integer and the norm takes integral values only (see section 5, and also [1], [4]). Another way to see this is to fix any $A \in \Gamma$ with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let $M$ be the Vandermonde matrix with $M_{i j}=\lambda_{i}^{j-1}$. Then we have the identity

$$
\operatorname{prod}(v)\left(\operatorname{det}\left[s_{1}, \ldots, s_{n}\right]\right)(\operatorname{det} M)=\operatorname{det}\left[v, A v, \ldots, A^{n-1} v\right]
$$

Since the right hand side is an integer, prod $(v)$ is a fixed constant multiple of an integer.

Let us choose $v \in \mathbb{Z}^{n} \cap \operatorname{int} S$ so that $\operatorname{prod}(v)$ is minimum. Then we have three rather similar sets: $V=\{A v: A \in \Gamma\}, V^{\prime}$, the set of all lattice points in $S$ with $\operatorname{prod}(w)=\operatorname{prod}(v)$, and $V^{\prime \prime}$, the set of all vertices of $\operatorname{conv}\left(\operatorname{int}(S) \cap \mathbb{Z}^{n}\right)$. Clearly $V \subseteq$ $V^{\prime} \subseteq V^{\prime \prime}$, and all three sets are invariant under the group $\Gamma$.

The sets $K=\operatorname{conv} V, K^{\prime}=\operatorname{conv} V^{\prime}$ and $H=\operatorname{conv} V^{\prime \prime}$ are not polyhedra because they are the convex hulls of infinitely many points. However, "locally" they are polytopes. More generally, let $U$ be a discrete set in int $(S)$ invariant under $\Gamma$ and $u$, a vertex of conv $U$. Let $Q$ be the minimal cone having apex $u$ and containing $U$. We define a face of conv $U$ as the intersection of conv $U$ with a hyperplane $H$ such that one halfspace with boundary $H$ contains $U$.

Claim. $Q$ is a polyhedral cone. Moreover, each face of conv $U$ is bounded (and hence a polytope).
Proof. We show first that $U$ contains points arbitrarily close to the ray $\left\{t s_{j}: t>0\right\}$ for every $j=1, \ldots, n$. For notational convenience we do so only when $j=1$. Since

$$
A_{1}^{\alpha_{1}} \ldots A_{n-1}^{\alpha_{n-1}} u=\prod_{k=1}^{n-1} \lambda_{k 1}^{\alpha_{k}} u_{1} s_{1}+\ldots+\prod_{k=1}^{n-1} \lambda_{k n}^{\alpha_{k}} u_{n} s_{n}
$$

we have to prove the existence of $\left(\alpha_{1}, \ldots, \alpha_{n-1}\right)^{T} \in \mathbb{Z}^{n-1}$ with

$$
\prod_{k=1}^{n-1} \lambda_{k i}^{\alpha_{k}} u_{i}<\varepsilon, \quad(i=2, \ldots, n)
$$

for any fixed $\varepsilon>0$. But this is the same as

$$
\sum_{k=1}^{n-1} \alpha_{k} \Lambda_{k i}+\log \nu_{i}<\log \varepsilon, \quad(i=2, \ldots, n)
$$

The existence of such a vector $a \in \mathbb{Z}^{n-1}$ is guaranteed by condition (4) and the fact that $L$ is orthogonal to the vector of all ones.

Define now $\varepsilon=\frac{1}{2} \min \left\{u_{1}, \ldots, u_{n}\right\}>0$. Let $w_{j} \in U$ be any point closer than $\varepsilon$ to the ray $\left\{t s_{j}: t>0\right\}$. Define the cone $C$ with apex $u$ as

$$
C=u+\operatorname{cone}\left\{w_{1}-u, \ldots, w_{n}-u\right\}
$$

Clearly $C \subset Q$. It is easy to see that the set $S \backslash C$ is bounded. Then the discreteness of $U$ implies that $S \subset C$ contains finitely many points from $U, v_{1}, \ldots, v_{m}$, say. Then

$$
Q=u+\operatorname{cone}\left\{w_{1}-u, \ldots, w_{n}-u, v_{1}-u, \ldots, v_{m}-u\right\}
$$

and so $Q$ is a polyhedral cone. It also follows that every face containing $u$ must be the convex hull of points in $U \cap(S \backslash C)$, and so it is a polytope.

Using the above construction one can find highly regular triangulations of $\mathbb{R}^{n-1}$ that are perhaps new and interesting. Consider $K=\operatorname{conv} V$, and assume each facet of it is a simplex. This gives rise to a simplical complex $\mathcal{K}$ with (infinite) vertex set where vertices $w_{1}, \ldots, w_{d}$ form a simplex if their convex hull is a face of $\operatorname{conv} U . \mathcal{K}$ is $(n-1)$-dimensional and can be represented as a triangulation $T$ of $\mathbb{R}^{n-1}$ with vertex set $\mathbb{Z}^{n-1}$ in the following way. For $a=\left(\alpha_{1}, \ldots, \alpha_{n-1}\right) \in \mathbb{Z}^{n}$, let $v^{a}=A_{1}^{\alpha_{1}} \ldots A_{n-1}^{\alpha_{n-1}} v$. The points $a_{1}, \ldots, a_{d} \in \mathbb{Z}^{n-1}$ form a simplex if the convex hull of the points $v^{a_{1}}, \ldots, v^{a_{n-1}}$ is a face of $K$. The triangulation $T$ is invariant under translations from $\mathbb{Z}^{n-1}$. The geometric properties of $T$ could be deduced from those of the cone $Q$. When one uses the Dirichlet unit theorem for the construction, the triangulation comes from an irreducible polynomial. So most probably, there are many different triangulations of this type. We do not go into the study of such triangulations in this paper.

## 5. Relation to totally real number fields

The above construction is a particularly transparent case of a general phenomenon of algebraic number theory. Precisely, given $A_{1}, \ldots, A_{n-1}$ as in Theorem 2, let $\mathbb{A}_{\mathbb{Q}}$ be the set of all linear combinations, with rational coefficients, of the products of the $A_{k}$ 's. Let $\mathbb{A}_{\mathbb{R}}$ be defined similarly, but allow real coefficients. And let $\mathscr{I}$ be what you get when you restrict yourself to integer coefficients. Then $\mathcal{A}_{\mathbb{R}}$ will be an $n$-dimensional vector space and will be an algebra, i.e., closed under multiplication. Also $\mathscr{I}$ will be a lattice in $\mathscr{A}_{\mathbb{R}}$, and will also be closed under multiplication. Each matrix $A_{k}$ will be a unit of $\mathcal{G}$, in the sense that $A_{k}^{-1}$ will also be in $\mathscr{F}$. This is so because, since $A_{k}$ is integral with determinant 1 , it satisfies an equation

$$
A^{n}+c_{1} A^{n-1}+\ldots+c_{n-1} A+I=0
$$

where the $c_{i}$ are integers. Hence

$$
A_{k}^{-1}=-\left(c_{n-1} I+c_{n-2} A_{k}+\ldots+c_{1} A_{k}^{n-2}+A_{k}^{n-1}\right)
$$

and the right hand side is obviously in $\mathcal{F}$.
The entity $\mathscr{A}_{\mathbb{Q}}$ is a vector space of dimension $n$ over $\mathbb{Q}$, and is closed under multiplication. In fact, $\mathscr{A}_{\mathbb{Q}}$ is a field: every element in it is invertible. It is a type of field known as totally real number field. Precisely, a totally real number field is a field generated by the rational numbers $\mathbb{Q}$ together with an element $x$ which satisfies an equation

$$
p(x)=x^{n}+c_{1} x^{n-1}+\ldots+c_{1} x+c_{n}=0
$$

with all $c_{i}$ 's in $\mathbb{Q}$. The polynomial $p$ should be irreducible over $\mathbb{Q}$, but should have $n$ distinct real roots.

Given a totally real number field $F$, there is a distinguished spanning lattice $I_{F}$ in $F$, called the ring of integers of $F$. It consists of all elements of $F$ which satisfy polynomials with coefficients in $\mathbb{Z}$ and main coefficient 1 . It is closed under multiplication. Let $U$ be the group of units of $I_{F}$, i.e. elements $A$ of $I_{F}$ such that $A^{-1}$ is also in $I_{F}$. Then the Dirichlet unit theorem [1], [4] guarantees that $U$ contains $n-1$ elements $A_{k}$ as required by Theorem 2. Other objects of the discussion can also be interpreted as appurtenances of a totally real number field.
Acknowledgement. The authors thank Herb Scarf, Bill Cook, Ravi Kannan and David Shallcross for fruitful discussions, the Cowles Foundation for hospitality, and the referee for suggesting substantial improvements in the presentation.

## References

[1] Z. I. Borevich, and I. R. Safarevich: Number theory, Academic Press, New York and London, 1966.
[2] W. Cook, M. Hartmann, R. Kannan, and C. McDiarmid: On integer points in polyhedra, Combinatorica 12 (1992), 27-37.
[3] A. C. Hayes, and D. G. Larman: The vertices of the knapsack polytope, Discrete Applied Math. 6 (1983), 135-138.
[4] S. Lang: Algebraic number theory, Graduate Texts in Mathematics 110, Springer Verlag, New York etc., 1986.
[5] D. Morgan: Personal communication, 1989.
[6] D. S. Rubin: On the unlimited number of faces in integer hulls of linear programs with a single constraint, Operations Research 18 (1970), 940-946.
[7] A. Schrijver: Theory of linear and integer programming, Wiley, Chichester, 1987.

142 IMRE BÁRÁNY, ROGER HOWE, LÁSZLÓ LOVÁSZ : ON INTEGER POINTS IN POLYHEDRA
[8] V. N. Shevchenko: On the number of extreme points in integer programming, Kibernetika 2 (1981), 133-134.

## Imre Bárány

Mathematical Institute,
Pf. 127, 1964 Budapest,
Hungary
h2923barcella.hu

Roger Howe
Department of Mathematics, Yale University, New Haven, CT 06520, U. S. A.

## László Lovász

Department of Computer Science, Eötvös University, 1088 Budapest, Múzeum krt. 6-8. Hungary
h599loveella.hu
and
Princeton University, Princeton, NJ 08544, U. S. A.


[^0]:    AMS subject classification code (1991): $52 \mathrm{C} \mathrm{07}$,
    ${ }^{1}$ The results of the paper were obtained while this author was visiting the Cowles Foundation at Yale University

