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Given a polyhedron P C R n we write PI for the convex hull of the integral points in P. It is 
known that PI can have at most O(~0 n-l) vertices if P is a rational polyhedron with size ~o. Here 
we give an example showing that PI can have as many as f/(~o n-l) vertices. The construction uses 
the Dirichlet unit theorem. 

1. Results 

Given a polyhedron P C R n write P! for the convex hull of integral points in 
P. P is a rational polyhedron if it is given by finitely many inequalities of the form 
aTx < a where a E Qn and a E Q. The size of this inequality is the number of bits 
necessary to encode it as a binary string (see Schrijver [7]). The size of a rational 
polyhedron P C R n is the sum of the sizes of defining inequalities. Strengthening some 
earlier results of Shevchenko [8] and Hayes and Larman [3], Cook, Hartman, Kannan 

and McDiarmid [2] have proved recently that PI can have at most 2mn(12n2~o) n-I 
vertices where m is the number of defining inequalities. For some other results and 
comments see their paper [2]. For n = 2 and n = 3 there are examples in [6] and 
in [5] showing that PI can have as many as f~(~o n-l) vertices. Here we give such a 
construction for every n > 2. 

Theorem 1. For fixed n > 2 and/or any ~0 > 0 there exists a rational simplex P c R n 
n of size at most  ~o such t ~ t  the number  of vertices of  PI is at least c~o - where c is 

a constant depending on/y on n. 

The proof will be based on the following construction. The automorphism group 
of the lattice Z n consists of all integral matrices with determinant 1. We are going 
to construct a subgroup of this group which is isomorphic to Z n-1 in a non-trivial 
way. (A trivial subgroup of this form is the group of all matrices which differ from 
the identity matrix only in the first n -  1 entries of the last column.) More exactly, 
we show the following. 
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Theorem 2. There exist n by n integral matrices A1, A2, . . . ,  An-1 with determinant 
1, with the following properties: 
(1) Every Ak has the same set of eigenvectors {sx,. . . ,  sn}. 
(2) Let )~ki be the eingenvalue of Ak belonging to si; then ~ki >0. 
(3) The vectors Ak �9 R n (k = 1 , . . . , n -  1) are linearly independent over the reals, 

where the i-th component of A k is Aki = log "~ki. 

Clearly, condition (3) is equivalent to the following 
n--1 

(4) The vectors ~ akAk where a = (ax , . . . , an_ l )  T �9 Z n - I  form an ( n - 1 ) -  
k=l  

dimensional lattice L in R n. 

The lattice L is orthogonal to the vector (1, . . . ,  1) T �9 R n. This follows from 
d e t A =  1. Another way to put (3) or (4) is to say that the matrices A1, . . . ,An-1  
multiplicatively generate a free commutative subgroup F of the automorphism group 
of Z n, isomorphic to an ( n -  1)-dimensional lattice. 

As a matter of fact, Theorem 2 can be deduced from the Dirichlet unit theorem 
(see, e.g. [1]). We will explain how this can be done. For the sake of the reader who 
is not familiar with algebraic number theory a separate and selfcontained proof of 
Theorem 2 will be given in the third section. 

2. P r o o f  of  T h e o r e m  1 

We use Theorem 2. Set S---cone{sl, . . . ,  Sn} and consider the convex hull H of 
znNintS.  Note that S and Z n are invariant under F, and therefore so is H. The set 
H is not a polyhedron but its intersection with any supporting hyperplane uTx = 
"~ with  u T s i  > 0 (i -~ 1, . . . ,n)  is a polytope, and if we take u "generic" then this 
intersection is a single vertex v = (Vl,... ,Vn) T.  Define the set 

V = { A v : A E F }  {A~ 1 -~"-~ R n . . . .  n n _  1 V e : a = ( a l , . . .  , a n - l )  T �9 z n - 1 } .  

Clearly V C Z n M i n f ' .  

Claim. Each point of V is an extreme point of H. 

Proof. The hyperplane ( A - l u ) T x  = ~f supports H and has the unique point Av in 
common with it. I 

Consider now ~o �9 R, large enough, and the sets 

B(~o) = {w - WlS 1 - F . . .  + WnSn : 0 <_ wi <_ 2 ~ i = 1 , . . . ,  n} 
and 

g(~o) = B(~o)I = conv(B(~) n zn).  

Then H(~o) is a polytope and every point in VNB(~)  is a vertex of it. The cardinality 
of V N B(~o) is the same as the number of points a �9 Z n-1 with 

n - 1  

E ak log )~ki + log vi < ~o , i = l . . . .  ,.n. 
k=l 
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In view of (4), this number is essentially the same as the (n-1)-dimensional volume 
of the set defined by the inequalities 

n- -1  

~ xklogAki + logvi <_ ~, i = l , . . . , n .  
k-----1 

As this set is a simplex, its volume is c o a s t .  r with the constant depending only 
on A1, . . . ,An-1.  Thus the number of vertices of H(~) is at least const. ~n-1. 

Now we are going to replace B(~) with a polytope Q of small size, such that 
QI = H ( ~ )  (and so QI has const .~  n-1 vertices). The point x =~181 + . . .  +~nSn 6 
R n has components x l , . . .  ,xn in the standard basis of lI~ n. Let vi EZnNB(~o) be the 
point with minimal i-th component in the basis Sl , . . . , sn  (i = 1, . . . ,n) ,  and let mi 
be the i-th component of vi. Then the inequality ~i > mi is implied by n inequalities 
that  define facets of H(~).  These inequalities have the form 

( 1 "'" 1 1 )  = b o + b l x l + . . . + b n x  n (5) 0_>det Wl . . .  wn x 

where wi E H(~). As the Euclidean distance of w i from the origin is at most n2 ~, 
its components in the standard basis are at most n2~ in absolute value. So bi is 
equal to the value of an integral n by n determinant all of whose entries are at most 
n2~ in absolute value. Then the size of the inequality (5) is at most const .~ where 
the constant depends only on A1,. . . ,  An-1. The number of such inequalities is n for 
each v i and so it is n 2 altogether. Similarly, we can replace the inequalities ~i -< 2~ 
by n 2 inequalities with size O(~) such that the resulting 2n 2 inequalities define a 
polytope Q contained in B(~) but containing H(~).  So QI = H(~) as claimed. 

Finally, we cut Q into sin~plices p1 , . . .  , p N  whose vertices are all vertices of Q. 
The number N of such simplices will clearly be bounded by a constant (depending 
only on n). Now every vertex of QI is a vertex of one of the (PJ)I, so at least one 
of them has c o a s t .  ~0 n-1 vertices. Since the size of each PJ is bounded by const. ~, 
this proves the theorem. I 

l~m~rk.  A similar argument shows that  the number of k-dimensional faces (k = 
0,1,. . .  , n - 1 )  of PI is at least const. ~pn-1. It would be interesting to extend the 
results of [2] by showing that PI has at most O(~v n - l )  k-dimensional faces for any 
polytope P of size ~. 

3. P r o o f  o f  T h e o r e m  2 

To avoid some trivial complications, we assume that  n > 2. Define the polynomial 

p(A) = ( A -  2 ) (A-  4 ) . . . ( A -  2n) + 1 = A n + an_lA n-1 + . . .  + ao. 

Clearly, an_ l , . . . a0  are integers. Computing p at A=1 ,3 , . . . , 2n+1  we see that p has 
n real roots A1 < A2 < . . .  < An. The root Ai is close to 2i, more precisely: 

(6) IAi - 2i I < 1 and so IAi - 2jl > 1 when i # j. 

Define the n by n integral matrix A as 
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A = 

0 1 0 . . .  0 0 \ 
0 0 1 . . .  0 0 
: : : . . .  : : 

0 0 0 . . .  0 1 
-ao  - a l  . . . . . .  - a n - 2  - a n - 1  

Then, as it is well-known and actually easy to check 

det(A - AI) = (-1)np(A). 

Hence A has n (real) eigenvectors Sl, . . .  sn with Asi = Aisi. Define now 

A k = A -  2kI, k = 1 , 2 , . . . , n .  

Then Aks i = ( A - 2 k I ) s  i = (Ai-2k)si  and so A k has the same set of eigenvectors as A 
with eigenvalues Aki = A i -  2k. Then de t (Ak)= ( - 1 ) n p ( 2 k ) =  ( -1 )  n and A1. . .An = 

- I ,  because A1.. .  Ansi = [I Aiksi = I I  ()~i- 2k)si = - s i .  Next, we prove that the 
k=l k=l  

vectors A~ are linearly independent, where APkj =log I)u-2k]. Then the requirements 

of the theorem will be satisfied by the matrices A1,A2, . . .  , 2  2 A2n-I" So assume 
n-1 

k=l 
for some real numbers a b . . . ,  an-1.  Defining an = 0 we have 

n 

O~kA ~ = 0 .  
k = l  

Set ]ajl =max{lakl  :k = 1, . . . ,n}.  If j = n  then we are done. So j # n  and consider 
the j - th  component of the above equation: 

Then, using (6), 

aj  log IAj - 2jl 

n 

l o g  I ,j - = o .  

k=l 

= J ~- '~akl~ 2k[I ~ ~ ] ~ k J  l~ - 2k[[ 
k#j k#j 

= ~ I~kl log I)'~ - 2kl < I~jl ~ log I~ - 2kl 
k#j  k#j 

lajl I log [)~j - 2j] 

n 

because A1.. .  An = - I  implies ~ log I)~i- 2k I = 0. But then equality holds through- 
k=l 

out and so [~j[ = lanl =0. | 
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4. R e m a r k s  o n  t h e  c o n s t r u c t i o n  

We make some remarks on the structure of lattice points in the cone S spanned 
by the eigenvectors of a group r with the properties in Theorem 2. 

For x = ~1Sl + . . .  + ~nsn define 
n 

prod (x) = H ~i. 
i=l 

'Then for all x E S and A E r ,  prod (Ax) = prod (x). Indeed, 
n n 

prod (AkX) = H )tkiXi = prod (x) H Akipr~ (x) det(Ak) = prod (x) 
i=1 i=1 

and hence the assertion follows by an easy induction. Moreover, it is easy to see that 
the function f ( x )  = logprod(x) is strictly concave on intS.  Hence the set {x E S : 
prod(x)  _>prod(v)} is convex and each point of V lies on its boundary. 

The function prod assumes only a set of discrete values on the set Z n n  int S. 
This follows immediately if one uses the Dirichlet unit theorem: prod is proportional 
to the norm of the appropriate algebraic integer and the norm takes integral values 
only (see section 5, and also [1], [4]). Another way to see this is to fix any A E F  with 

eigenvalues A1,... ,An. Let M be the Vandermonde matrix with M 0 = A~ -1. Then 
we have the identity 

prod (v) (de t [ s l , . . . ,  sn])(det M) = det[v, A v , . . . ,  An-Iv] .  

Since the right hand side is an integer, prod (v) is a fixed constant multiple of an 
integer. 

Let us choose v E Z n n in t  S so that prod (v) is minimum. Then we have three 
rather similar sets: V = {Av : A E r} ,  v t, the set of all lattice points in S with 
prod (w)=prod  (v), and V t~, the set of all vertices of conv(int (S )nZn) .  Clearly V C 
VtC  V ~r, and all three sets are invariant under the group r .  

The sets K = convV, K l =  convV t and H = convV It are not polyhedra because 
they are the convex hulls of infinitely many points. However, "locally" they are 
polytopes. More generally, let U be a discrete set in int (S) invariant under F and u, 
a vertex of convU. Let Q be the minimal cone having apex u and containing U. We 
define a face of convU as the intersection of convU with a hyperplane H such that 
one halfspace with boundary H contains U. 

Claim- Q is a polyhedral cone. Moreover, each face of convU is bounded (and hence 
a polytope). 

Proof. We show first that  U contains points arbitrarily close to the ray {tsj  : t > O} 
for every j = 1,.. .  ,n. For notational convenience we do so only when j = 1. Since 

n-1 n-1 
A~l --a ,-1 . . . A n _  1 U---~ H ~ AklUl81 + . . .  A- H ak A kn un 8n , 

k=l k=l 

we have to prove the existence of ( a l , . . . ,  an-l) T E Z n-1  with 
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n - 1  

H (i 2,. Aki  U i < 6, -~ �9 

k = l  
for any fixed e > O. But this is the same as 

n--1 

Z akAki  + log v i < log ~, (i = 2 , . . . ,  n). 
k = l  

The existence of such a vector a E Z n-1 is guaranteed by condition (4) and the fact 
that L is orthogonal to the vector of all ones. 

Define now e =  �89  > 0. Let wj  E U be any point closer than 6 to 
the ray { t s j  : t > 0}. Define the cone C with apex u as 

C = u + c o n e { w l  - u , . . . , w n -  u}. 

Clearly C C Q. It is easy to see that  the set S \  C is bounded. Then the discreteness 
of U implies that  S c C  contains finitely many points from U, Vl , . . .  ,Vm, say. Then 

Q = u + c o n e { w l  - U , . . . ,Wn- -U,  Vl -- u , . . . , V m - - U }  

and so Q is a polyhedral cone. It also follows that  every face containing u must be 
the convex hull of points in U N ( S \ C ) ,  and so it is a polytope. II 

Using the above construction one can find highly regular triangulations of ] ~ n - 1  
that  are perhaps new and interesting. Consider K -- convV, and assume each 
facet of it is a simplex. This gives rise to a simplical complex aT with (infinite) 
vertex set where vertices Wl, . . . ,  Wd form a simplex if their convex hull is a face of 
convU, aT is ( n -  1)-dimensional and can be represented as a triangulation T of 
R n - 1  with vertex set Z n - 1  in the following way. For a = (Oq,...,O~n_l) E Z n,  let 
v a = A~I ""An--l--an-Iv': The points al. , .. ., a d E Z n-1  form a simplex if the convex hull 

al  an 1 of the points v , . . . , v  - is a face of K.  The triangulation T is invariant under 
n 1 translations from Z - . The geometric properties of T could be deduced from those 

of the coneQ. When one uses the Dirichlet unit theorem for the construction, the 
triangulation comes from an irreducible polynomial. So most probably, there are 
many different triangulations of this type. We do not go into the study of such 
triangulations in this paper. 

5. Relation to totally real number fields 

The above construction is a particularly transparent case of a general phe- 
nomenon of algebraic number theory. Precisely, given A1,. . . ,  A n - 1  as in Theorem 2, 
let `dQ be the set of all linear combinations, with rational coefficients, of the prod- 
ucts of the Ak's.  Let "dR be defined similarly, but allow real coefficients. And let 
Y be what you get when you restrict yourself to integer coefficients. Then .d R will 
be an n-dimensional vector space and will be an algebra, i.e., closed under multipli- 
cation. Also Y will be a lattice in ,dR, and will also be closed under multiplication. 
Each matrix A k will be a unit of 2, in the sense that  Ak 1 will also be in 2. This is 
so because, since A k is integral with determinant 1, it satisfies an equation 

A n + Cl A n - 1  -I- . . .  --k C n - l A  "4- I = 0 
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where the c / a r e  integers. Hence 
. . . .  A n - l )  Ak 1 - (  a n - i / +  an-2Ak + + clA~ -2 + k 

and the right hand side is obviously in Y. 
The entity MQ is a vector space of dimension n over Q, and is closed under 

multiplication. In fact, MQ is a field: every element in it is invertible. It is a type 
of field known as totally real number field. Precisely, a totally real number field is a 
field generated by the rational numbers Q together with an element x which satisfies 
an equation 

p(x) = x n + clx n - l  + . . .  + cl x + an = 0  

with all ai's in Q. The polynomial p should be irreducible over Q, but should have 
n distinct real roots. 

Given a totally real number field F,  there is a distinguished spanning lattice 
I F in F,  called the ring of integers of F. It consists of all elements of F which 
satisfy polynomials with coefficients in Z and main coefficient 1. It is closed under 
multiplication. Let U be the group of units of IF, i.e. elements A of IF  such that  
A -1 is also in IF. Then the Dirichlet unit theorem [1], [4] guarantees that  U contains 
n -  1 elements A k as required by Theorem 2. Other objects of the discussion can 
also be interpreted as appurtenances of a totally real number field. 
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