ON AFFINELY EMBEDDABLE SETS IN THE PROJECTIVE PLANE

I. BÂRÁNY (Budapest)

In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex sets in the real projective plane P^{2}. It will be simpler to formulate the result for convex cones in R^{3} and then show that it implies the conjecture. A cone $C \subset R^{3}$ is called pointed if it contains no line, i.e., when $x \in C$ and $-x \in C$ imply $x=0$. Here is the result:

Theorem 1. Assume $n \geqq 3$ and $C_{1}, \ldots, C_{n} \subset R^{3}$ are closed, pointed, convex cones with common apex the origin O. Assume that for $i \neq j(i, j=1,2, \ldots, n)$ there is an $e(i, j) \in\{-1,+1\}$ such that for all $k=1, \ldots, n, k \neq i, j$ and for both $e=1,-1$

$$
(i, j ; k, e) \quad\left(e C_{k}\right) \cap\left(C_{1}+e(i, j) C_{j}\right)=\{O\} .
$$

Then there is a plane P through O such that for all $i=1, \ldots, n, P \cap C_{i}=\{O\}$.
We will now translate this theorem from R^{3} to P^{2}. For a convex pointed cone $C \subset R^{3}$ set $S(C)=S^{2} \cap C$ where S^{2} is the unit sphere of $R^{3} . P^{2}$ is obtained from S^{2} by identifying antipodal points. With this identification the points of $S(C)$ and $-S(C)=$ $=S(-C)$ give rise to a set $P(C) \subset P^{2}$. Clearly, $P(C)=P(-C)$.

A set $A \subset P^{2}$ is called convex if there exists a line L in P^{2} disjoint from A and A is convex in the affine plane $P^{2} \backslash L$ (cf. [2] or [1]). A convex set A in P^{2} gives rise to two connected subsets $S^{+}(A)$ and $S^{-}(A)=-S^{+}(A)$ of S^{2}, whose cone hulls are $C^{+}(A)$ and $C^{-}(A)$, respectively. Evidently, $C^{+}(A)=-C^{-}(A)$. In this way one can see that $A \subset P^{2}$ is convex if and only if $A=P(C)$ for some pointed convex cone $C \subset R^{3}$.

Now let $A_{1}, A_{2} \subset P^{2}$ be convex. We want to define the convex hull of their union. Then $A_{j}=P\left(C_{j}\right)$ for some pointed convex cone $C_{j} \subset R^{3}$ and also $A_{j}=P\left(-C_{j}\right)$ ($j=1,2$). So the union of A_{1} and A_{2} will have, in general, two convex hulls: $H_{1}\left(A_{1}, A_{2}\right)=P\left(\operatorname{conv}\left(C_{1}, C_{2}\right)\right)$ and $H_{2}\left(A_{1}, A_{2}\right)=P\left(\operatorname{conv}\left(C_{1},-C_{2}\right)\right)$. Of course, H_{1} and H_{2} will be convex only if $C_{1}-C_{2}=\operatorname{conv}\left(C_{1},-C_{2}\right)$ and $C_{1}+C_{2}=\operatorname{conv}\left(C_{1}, C_{2}\right)$ are pointed cones.

We can now formulate Theorem 1 in P^{2}.
Theorem 2. Let A_{1}, \ldots, A_{n} be closed convex sets in $P^{2}(n \geqq 3)$. Assume that for $i \neq j(i, j=1, \ldots, n)$ either $A_{k} \cap H_{1}\left(A_{i}, A_{j}\right)=\emptyset$ for all $k \neq i, j$ or $A_{k} \cap H_{2}\left(A_{i}, A_{j}\right)=\emptyset$ for all $k \neq i, j$. Then there is a line $L \subset P^{2}$ disjoint from each A_{i}.

In [1], the collection of the sets A_{1}, \ldots, A_{n} is called affinely embeddable when the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of convex cones in finite dimensional spaces (cf. [3], [4] or [5]).

When proving Theorem 1 we will obtain its dual form which seems to be worth mentioning:

Theorem 3. Assume $D_{1}, \ldots, D_{n} \subset R^{3}$ ($n \geqq 3$) are closed, pointed, convex cones with common apex the origin. Suppose that for $i \neq j(i, j=1, \ldots, n)$ there is an $e(i, j) \in\{-1,+1\}$ such that for all $k=1, \ldots, n, k \neq i, j$ and for both $e=1$ and -1 $\left(e D_{k}\right) \cap D_{i} \cap\left(e(i, j) D_{j}\right) \neq\{O\}$. Then there are signs $e_{1}, \ldots, e_{n}\left(e_{i}=+1\right.$ or -1$)$ and a vector $p \in R^{3} \backslash\{O\}$ such that $p \in e_{i} D_{i}$ for all $i=1, \ldots, n$.

Proof of Theorem 1. Assume the theorem is false and take a counterexample $C_{1}, \ldots, C_{n} \subset R^{3}$ of closed, convex, pointed cones satisfying condition ($i, j ; k, e$) such that for all planes P through the origin there is an $i \in\{1, \ldots, n\}$ with $P \cap C_{i} \neq\{O\}$.

We will modify this counterexample. We claim first that for $i \neq j$ both $C_{i}+C_{j}$ and $C_{i}-C_{j}$ are pointed and closed convex cones. We prove this for $C_{i}+C_{j}$, the proof for $\boldsymbol{C}_{i}-C_{j}$ is identical. By condition $(i, k ; j,-1)$

$$
\left(-C_{j}\right) \cap C_{i} \subset\left(-C_{j}\right) \cap\left(C_{i}+e(i, k) C_{k}\right)=\{O\}
$$

so C_{i} and ($-C_{j}$) can be separated (strictly, because they are closed), i.e, there exists $v \in R^{3}$ such that $v \cdot x<0$ for all $x \in C_{i} \backslash\{O\}$ and $v \cdot y>0$ for all $y \in\left(-C_{j}\right) \backslash\{O\}$. (Here $v \cdot x$ denotes the scalar product of $v, x \in R^{3}$.) Then $v \cdot z<0$ for all $z \in\left(C_{i}+C_{j}\right) \backslash$ $\backslash\{O\}$ proving that $\left(C_{i}+C_{j}\right)$ is pointed.

Now we prove that $C_{i}+C_{j}$ is closed. Assume it is not, then there are elements $x_{m} \in C_{i}$ and $y_{m} \in C_{j}$ with $x_{m}, y_{m} \in S^{2}$ and positive numbers α_{m}, β_{m} such that $z_{m}=$ $=\alpha_{m} x_{m}+\beta_{m} y_{m}$ is in $\left(C_{i}+C_{j}\right) \cap S^{2}$ but $z=\lim z_{m}$ is not. By the compactness of S^{2} we may assume that $x=\lim x_{m}$ and $y=\lim y_{m}$ exists. Then α_{m} and β_{m} must tend to infinity and so $z_{m} \in S^{2}$ is possible only if $x+y=0$. This implies that $C_{i}+C_{j}$ contains the line through x and $-x=y$ which is impossible because it is a pointed cone.

We define, for a closed pointed cone $C \subset R^{3}$ and for $\alpha>0$ the set

$$
C^{\alpha}=\left\{x \in R^{3}: \text { there is } y \in C \text { with } \varangle x O y \leqq \alpha\right\},
$$

where $\varangle x O y$ denotes the angle of the triangle $x O y$ at vertex $O . C^{\alpha}$ is clearly a convex, pointed cone with nonempty interior provided α is small enough.

Condition ($i, j ; k, e$) says that the two closed and pointed cones $C_{i}+e(i, j) C_{j}$ and $e C_{k}$ are disjoint (except for the common apex). Then there is $\alpha(i, j ; k, e)>0$ such that for $0<\alpha<\alpha(i, j ; k, e)$

$$
\left(e C_{k}^{\alpha}\right) \cap\left(C_{i}^{\alpha}+e(i, j) C_{j}^{\alpha}\right)=\{O\}
$$

and $C_{i}^{\alpha}, C_{j}^{\alpha}, C_{k}^{\alpha}, C_{i}^{\alpha}+e(i, j) C_{j}^{\alpha}$ are all pointed, convex, closed cones. Set $\beta=$ $=\min \alpha(i, j ; k, e)$ and take a closed polyhedral cone B_{i} with nonempty interior satisfying

$$
C_{i} \subset B_{i} \subset C_{i}^{\beta} \quad \text { for } \quad i=1, \ldots, n
$$

We may choose the finitely many halflines generating the cones B_{i} to be in general position. We will clarify later what is meant by general position here.

This is what we have now: The cones B_{i} are convex, closed, pointed and polyhedral with nonempty interior, and they satisfy condition (i,j;k,e). Moreover, for each plane P through the origin $P \cap$ int $B_{i} \neq\{O\}$ for some $i=1, \ldots, n$.

Consider now the polars $D_{i}=B_{i}^{*}$ of B_{i} defined as

$$
D_{i}=\left\{x \in R^{3}: x \cdot y \leqq 0 \text { for } y \in B_{i}\right\} .
$$

The D_{i} 's are convex, closed, pointed, polyhedral cones in R^{3} with nonempty interior. We claim now that condition ($i, j ; k, e$) implies the following condition:

$$
(i, j ; k, e)^{*} \quad\left(-e D_{k}\right) \cap D_{i} \cap\left(e(i, j) D_{j}\right) \neq\{O\},
$$

and the last condition in the theorem implies this one: For each $p \in R^{3} \backslash\{O\}$ there is an $i \in\{1, \ldots, n\}$ such that

$$
\begin{equation*}
p \notin D_{i} \text { and } p \notin-D_{i} . \tag{*}
\end{equation*}
$$

We prove this claim using standard techniques from the theory of convex polyhedral cones (cf. [4] or [5]). Condition ($i, j ; k, e$) for the cones B_{i} is of the form $B_{k} \cap\left(B_{i}+B_{j}\right)=\{O\}$ (here we dropped the signs) that has polar form $D_{k}+\left(D_{i} \cap D_{j}\right)=$ $=R^{3}$. Assume now that $\left(-D_{k}\right) \cap\left(D_{i} \cap D_{j}\right)=\{O\}$, then the cones $-D_{k}$ and $\left(D_{i} \cap D_{j}\right)$ can be separated, i.e., there is $v \in R^{\mathfrak{} \backslash} \backslash\{O\}$ such that $v \cdot x \leqq 0$ for all $x \in-D_{k}$ and $v \cdot y \geqq 0$ for all $y \in D_{i} \cap D_{j}$. But then $v \cdot z \geqq 0$ for all $z \in D_{k}+\left(D_{i} \cap D_{j}\right)$, a contradiction. Let us see now the last condition:

$$
P \cap \text { int } B_{i} \neq\{O\}
$$

and consider $q \in P \cap$ int B_{i} with $q \neq O$. Write p for a normal of the plane P. Then $q \cdot p=0$ and $q \cdot x<0$ for all $x \in B_{i}^{*} \backslash\{O\}=D_{i} \backslash\{O\}$, so indeed, $\pm p \notin D_{i}$.
(As a matter of fact, from now on we will give the proof of Theorem 3 in the case when the sets D_{i} are polyhedral cones in R^{3} with nonempty interior. The general case follows by a standard continuity argument.)

Choose a point $d_{i} \in \operatorname{int} D_{i}$ now for $i=1, \ldots, n$ and shrink each set D_{i} to the point d_{i} linearly and simultaneously with a parameter $t \in[0,1]$, so that the shrinking set $D_{i}(t)$ equals D_{i} when $t=1$ and d_{i} when $t=0$. Write I for the set of indices $i, j, k, e_{i}, e_{j}, e_{k}$ and set

$$
D_{I}(t)=\left(e_{i} D_{i}(t)\right) \cap\left(e_{j} D_{j}(t)\right) \cap\left(e_{k} D_{k}(t)\right)
$$

when $t \in[0,1]$. We assume that the cones B_{i} and the points d_{i} are in general position to ensure that $D_{I}(1) \neq\{O\}$ implies that int $D_{I}(1)$ is nonempty. Moreover, as the cones $D_{i}(t)$ shrink, the cones $D_{I}(t)$ shrink as well and $D_{I}(t)=\{O\}$ for $t<t_{0}(I)$ where $t_{0}(I)$ is the smallest t for which $D_{I}(t)$ is different from $\{O\}$. (If, for some, $D_{I}(1)=$ $=\{O\}$ already, then $t_{0}(I)$ is not defined.) We assume that the cones B_{i} and the points d_{i} are in general position to ensure that $D_{I}(t)$ is a halfline when $t=t_{0}(I)$ and that int $D_{I}(t) \neq \emptyset$ for $t>t_{0}(I)$.

As t decreases, condition (*) remains true because the cones D_{i} get smaller and smaller. But conditions ($i, j ; k, e)^{*}$ will fail for each ($i, j ; k, e$) for some t because $D_{I}(0)=\{O\}$ for all I. The condition $(i, j ; k, e)^{*}$ holds for all $t>t(i, j ; k, e)$ and fails for all $t \leqq t(i, j ; k, e)$ where $t(i, j ; k, e)$ is uniquely determined. Write t_{0} for the largest $t(i, j ; k, e)$, then $t_{0}=t(i, j ; k, e)$ for some $(i, j ; k, e)$. We may assume with-
out loss of generality that $i=1, j=2, k=3$ and $e(1,2)=1$ and $e=-1$. So condition (1,$2 ; 3,-1)^{*}$ fails, i.e.,

$$
D_{1}\left(t_{0}\right) \cap D_{2}\left(t_{0}\right) \cap D_{3}\left(t_{0}\right)=K
$$

where K is a halfline of the form $\{\alpha v: \alpha \geqq 0\}$ with $v \in R^{3} \backslash\{O\}$. We know that $D_{1}(t) \cap$ $\cap D_{2}(t) \cap D_{3}(t)$ is $\{O\}$ for $t<t_{0}$ and has nonempty interior for $t>t_{0}$. We claim now that for each $j=1,2, \ldots, n, v \in D_{j}\left(t_{0}\right)$ or $v \in-D_{j}\left(t_{0}\right)$. This will contradict condition ($*$) and so prove the theorem.

The claim is evident when $j=1,2$ and 3 . We are going to prove it with notation $j=4$. There are two cases to consider.

1st case. When the intersection of two of the cones $D_{j}\left(t_{0}\right)(j=1,2,3)$ is equal to $K, D_{1}\left(t_{0}\right) \cap D_{2}\left(t_{0}\right)=K$, say. From condition (2,$4 ; 1, e=-1$) we get for $t=t_{0}$ that

$$
D_{1}\left(t_{0}\right) \cap D_{2}\left(t_{0}\right) \cap\left(e(2,4) D_{4}\left(t_{0}\right)\right) \neq\{O\} .
$$

But $K=D_{1}\left(t_{0}\right) \cap D_{2}\left(t_{0}\right)$ and so $v \in K \subset e(2,4) D_{4}\left(t_{0}\right)$ indeed.
2nd case. When the intersection of any two cones $D_{j}\left(t_{0}\right)$ have nonempty interior ($j=1,2,3$). Then, by a wellknown theorem (see [3], for instance), there are vectors $a_{j} \in R^{3}$ such that $a_{j} \cdot x \leqq 0$ for all $x \in D_{j}\left(t_{0}\right)(j=1,2,3)$ and O is in the convex hull of a_{1}, a_{2} and a_{3}. The case when some a_{j} is parallel with some other a_{i} has been dealt with in the first case. So we assume that every a_{j} is nonzero and $0=\alpha_{1} a_{1}+\alpha_{2} a_{2}+\alpha_{3} a_{3}$ and every $\alpha_{j}>0$. Then $a_{j} \cdot x \leqq 0 \quad(j=1,2,3)$ implies that $x=\beta v$ for some real number β. Moreover, $a_{j} \cdot v=0$ for $j=1,2,3$.

Assume now that $\pm v \notin D_{4}\left(t_{0}\right)$. Then L, the line through v and $-v$ can be separated from $D_{4}\left(t_{0}\right)$, i.e., there exists a nonzero $a_{4} \in R^{3}$ such that $a_{4} \cdot x<0$ when $x \in D_{4}\left(t_{0}\right) \backslash\{O\}$ and $a_{4} \cdot x=0$ when $x \in L$. This shows that the vectors $a_{i}(i=1,2,3,4)$ are all orthogonal to v and so $a_{4}=\beta_{1} a_{1}+\beta_{2} a_{2}$ for some real numbers β_{1} and β_{2}. We show now that β_{1} and β_{2} are both different from zero. Assume that $\beta_{2}=0$, say. Then a_{1} and a_{4} are parallel and, then $D_{1}\left(t_{0}\right)$ is separated either from $D_{4}\left(t_{0}\right)$ or from $-D_{4}\left(t_{0}\right)$, contradicting condition $(1, j ; 4, \pm 1)^{*}$.

Consider now condition $(1,2 ; 4, e)^{*}$: there exists an $x \in R^{3} \backslash L$ such that

$$
x \in\left(-e D_{4}\left(t_{0}\right)\right) \cap D_{1}\left(t_{0}\right) \cap D_{2}\left(t_{0}\right)
$$

Then $-\boldsymbol{e} a_{4} \cdot x<0, a_{1} \cdot x \leqq 0$ and $a_{2} \cdot x \leqq 0$. This implies that β_{1} and β_{2} cannot be of the same sign. We may assume that $\beta_{1}>0$ and $\beta_{2}<0$.

Suppose now that $e(3,4)=1$ and consider condition $(3,4 ; 2,-1)^{*}$. In the same way as above this implies the existence of an $x \in R^{3} \backslash L$ with $a_{3} \cdot x \leqq 0, a_{4} \cdot x<0$ and $a_{2} \cdot x \leqq 0$. Now a_{1} is a positive linear combination of a_{2} and a_{4}, so $a_{1} \cdot x<0$. But $a_{1} \cdot x<0, a_{2} \cdot x \leqq 0, a_{3} \cdot x \leqq 0$ is impossible. Assume now that $e(3,4)=-1$ and consider condition $(3,4 ; 1,-1)^{*}$. Again, this implies the existence of an $x \in R^{3} \backslash L$ with $a_{3} \cdot x \leqq 0, a_{4} \cdot x>0$ and $a_{1} \cdot x \leqq 0$. Now a_{2} is a positive linear combination of a_{1} and $-a_{4}$, so $a_{2} \cdot x<0$. But $a_{1} \cdot x \leqq 0, a_{2} \cdot x<0, a_{3} \cdot x \leqq 0$ is impossible.

We mention finally that it is possible to extend these results to higher dimensional spaces but, unfortunately, the conditions in the theorems become rather unintelligible.

References

[1] T. Bisztriczky and J. Schaer, Affinely embeddable convex sets, Acta Math. Hung., 49 (1987), 353-363.
[2] J. de Groot and H. de Vries, Convex sets in projective space, Compositio Math., 13 (1958), 113118.
[3] A. D. Ioffe and V. M. Tihomirov, Theory of extremal problems, Nauka (Moscow, 1974) (in Russian).
[4] R. T. Rockafellar, Convex analysis, Princeton University Press (Princeton, 1970).
[5] J. Stoer and C. Witzgall, Convexity and optimization in finite dimension 1, Springer (Berlin, 1970).
(Received October 21, 1987; revised August 10, 1988)

MATHEMATICAL INSTITUTE
 OF THE HUNGARIAN ACADEMY OF SCIENCES
 BUDAPEST, REALTANODA U. 13-15.
 H-1053

