ON AFFINELY EMBEDDABLE SETS IN THE PROJECTIVE PLANE

I. BÁRÁNY (Budapest)

In this note we prove a conjecture of Bisztriczky and Schaer [1] about convex sets in the real projective plane P^2 . It will be simpler to formulate the result for convex cones in R^3 and then show that it implies the conjecture. A cone $C \subset R^3$ is called pointed if it contains no line, i.e., when $x \in C$ and $-x \in C$ imply x=0. Here is the result:

THEOREM 1. Assume $n \ge 3$ and $C_1, ..., C_n \subset R^3$ are closed, pointed, convex cones with common apex the origin O. Assume that for $i \ne j$ (i, j=1, 2, ..., n) there is an $e(i, j) \in \{-1, +1\}$ such that for all $k=1, ..., n, k \ne i, j$ and for both e=1, -1

$$(i, j; k, e)$$
 $(eC_k) \cap (C_1 + e(i, j)C_j) = \{O\}.$

Then there is a plane P through O such that for all $i=1, ..., n, P \cap C_i = \{O\}$.

We will now translate this theorem from R^3 to P^2 . For a convex pointed cone $C \subset R^3$ set $S(C) = S^2 \cap C$ where S^2 is the unit sphere of R^3 . P^2 is obtained from S^2 by identifying antipodal points. With this identification the points of S(C) and -S(C) = S(-C) give rise to a set $P(C) \subset P^2$. Clearly, P(C) = P(-C).

A set $A \subset P^2$ is called convex if there exists a line L in P^2 disjoint from A and A is convex in the affine plane $P^2 \setminus L$ (cf. [2] or [1]). A convex set A in P^2 gives rise to two connected subsets $S^+(A)$ and $S^-(A) = -S^+(A)$ of S^2 , whose cone hulls are $C^+(A)$ and $C^-(A)$, respectively. Evidently, $C^+(A) = -C^-(A)$. In this way one can see that $A \subset P^2$ is convex if and only if A = P(C) for some pointed convex cone $C \subset R^3$.

Now let $A_1, A_2 \subset P^2$ be convex. We want to define the convex hull of their union. Then $A_j = P(C_j)$ for some pointed convex cone $C_j \subset R^3$ and also $A_j = P(-C_j)$ (j=1, 2). So the union of A_1 and A_2 will have, in general, two convex hulls: $H_1(A_1, A_2) = P(\text{conv}(C_1, C_2))$ and $H_2(A_1, A_2) = P(\text{conv}(C_1, -C_2))$. Of course, H_1 and H_2 will be convex only if $C_1 - C_2 = \text{conv}(C_1, -C_2)$ and $C_1 + C_2 = \text{conv}(C_1, C_2)$ are pointed cones.

We can now formulate Theorem 1 in P^2 .

THEOREM 2. Let $A_1, ..., A_n$ be closed convex sets in P^2 $(n \ge 3)$. Assume that for $i \ne j$ (i, j=1, ..., n) either $A_k \cap H_1(A_i, A_j) = \emptyset$ for all $k \ne i, j$ or $A_k \cap H_2(A_i, A_j) = \emptyset$ for all $k \ne i, j$. Then there is a line $L \subset P^2$ disjoint from each A_i .

In [1], the collection of the sets A_1, \ldots, A_n is called affinely embeddable when the conclusion of Theorem 2 holds.

In the proof of Theorem 1 we will use standard techniques from the theory of convex cones in finite dimensional spaces (cf. [3], [4] or [5]).

I. BÁRÁNY

When proving Theorem 1 we will obtain its dual form which seems to be worth mentioning:

THEOREM 3. Assume $D_1, ..., D_n \subset \mathbb{R}^3$ $(n \ge 3)$ are closed, pointed, convex cones with common apex the origin. Suppose that for $i \ne j$ (i, j=1, ..., n) there is an $e(i, j) \in \{-1, +1\}$ such that for all $k=1, ..., n, k \ne i, j$ and for both e=1 and -1 $(eD_k) \cap D_i \cap (e(i, j)D_j) \ne \{O\}$. Then there are signs $e_1, ..., e_n$ $(e_i = +1 \text{ or } -1)$ and a vector $p \in \mathbb{R}^3 \setminus \{O\}$ such that $p \in e_i D_i$ for all i=1, ..., n.

PROOF OF THEOREM 1. Assume the theorem is false and take a counterexample $C_1, \ldots, C_n \subset \mathbb{R}^3$ of closed, convex, pointed cones satisfying condition (i, j; k, e) such that for all planes P through the origin there is an $i \in \{1, \ldots, n\}$ with $P \cap C_i \neq \{O\}$.

We will modify this counterexample. We claim first that for $i \neq j$ both $C_i + C_j$ and $C_i - C_j$ are pointed and closed convex cones. We prove this for $C_i + C_j$, the proof for $C_i - C_j$ is identical. By condition (i, k; j, -1)

$$(-C_j)\cap C_i \subset (-C_j)\cap (C_i+e(i,k)C_k) = \{0\},\$$

so C_i and $(-C_j)$ can be separated (strictly, because they are closed), i.e., there exists $v \in \mathbb{R}^3$ such that $v \cdot x < 0$ for all $x \in C_i \setminus \{0\}$ and $v \cdot y > 0$ for all $y \in (-C_j) \setminus \{0\}$. (Here $v \cdot x$ denotes the scalar product of $v, x \in \mathbb{R}^3$.) Then $v \cdot z < 0$ for all $z \in (C_i + C_j) \setminus \{0\}$ proving that $(C_i + C_j)$ is pointed.

Now we prove that $C_i + C_j$ is closed. Assume it is not, then there are elements $x_m \in C_i$ and $y_m \in C_j$ with $x_m, y_m \in S^2$ and positive numbers α_m, β_m such that $z_m = \alpha_m x_m + \beta_m y_m$ is in $(C_i + C_j) \cap S^2$ but $z = \lim z_m$ is not. By the compactness of S^2 we may assume that $x = \lim x_m$ and $y = \lim y_m$ exists. Then α_m and β_m must tend to infinity and so $z_m \in S^2$ is possible only if x + y = 0. This implies that $C_i + C_j$ contains the line through x and -x = y which is impossible because it is a pointed cone.

We define, for a closed pointed cone $C \subset R^3$ and for $\alpha > 0$ the set

$$C^{\alpha} = \{x \in R^3: \text{ there is } y \in C \text{ with } \triangleleft x O y \leq \alpha\},\$$

where $\triangleleft xOy$ denotes the angle of the triangle xOy at vertex O. C^{α} is clearly a convex, pointed cone with nonempty interior provided α is small enough.

Condition (i, j; k, e) says that the two closed and pointed cones $C_i + e(i, j) C_j$ and eC_k are disjoint (except for the common apex). Then there is $\alpha(i, j; k, e) > 0$ such that for $0 < \alpha < \alpha(i, j; k, e)$

$$(eC_k^{\alpha}) \cap (C_i^{\alpha} + e(i, j)C_j^{\alpha}) = \{O\};$$

and C_i^{α} , C_j^{α} , C_k^{α} , $C_i^{\alpha} + e(i, j)C_j^{\alpha}$ are all pointed, convex, closed cones. Set $\beta = \min \alpha(i, j; k, e)$ and take a closed polyhedral cone B_i with nonempty interior satisfying

$$C_i \subset B_i \subset C_i^\beta$$
 for $i = 1, ..., n$.

We may choose the finitely many halflines generating the cones B_i to be in general position. We will clarify later what is meant by general position here.

This is what we have now: The cones B_i are convex, closed, pointed and polyhedral with nonempty interior, and they satisfy condition (i, j; k, e). Moreover, for each plane P through the origin $P \cap \text{int } B_i \neq \{O\}$ for some i=1, ..., n.

Acta Mathematica Hungarica 56, 1990

Consider now the polars $D_i = B_i^*$ of B_i defined as

$$D_i = \{x \in \mathbb{R}^3 \colon x \cdot y \leq 0 \text{ for } y \in B_i\}.$$

The D_i 's are convex, closed, pointed, polyhedral cones in R^3 with nonempty interior. We *claim* now that condition (i, j; k, e) implies the following condition:

$$(i, j; k, e)^* \qquad (-eD_k) \cap D_i \cap (e(i, j)D_j) \neq \{O\},\$$

and the last condition in the theorem implies this one: For each $p \in \mathbb{R}^{\mathbb{N}} \setminus \{0\}$ there is an $i \in \{1, ..., n\}$ such that

$$(*) $p \notin D_i ext{ and } p \notin -D_i.$$$

We prove this claim using standard techniques from the theory of convex polyhedral cones (cf. [4] or [5]). Condition (i, j; k, e) for the cones B_i is of the form $B_k \cap (B_i + B_j) = \{O\}$ (here we dropped the signs) that has polar form $D_k + (D_i \cap D_j) = R^3$. Assume now that $(-D_k) \cap (D_i \cap D_j) = \{O\}$, then the cones $-D_k$ and $(D_i \cap D_j)$ can be separated, i.e., there is $v \in R^3 \setminus \{O\}$ such that $v \cdot x \leq 0$ for all $x \in -D_k$ and $v \cdot y \geq 0$ for all $y \in D_i \cap D_j$. But then $v \cdot z \geq 0$ for all $z \in D_k + (D_i \cap D_j)$, a contradiction. Let us see now the last condition:

$$P \cap \operatorname{int} B_i \neq \{O\},\$$

and consider $q \in P \cap \text{int } B_i$ with $q \neq O$. Write p for a normal of the plane P. Then $q \cdot p = 0$ and $q \cdot x < 0$ for all $x \in B_i^* \setminus \{O\} = D_i \setminus \{O\}$, so indeed, $\pm p \notin D_i$.

(As a matter of fact, from now on we will give the proof of Theorem 3 in the case when the sets D_i are polyhedral cones in R^3 with nonempty interior. The general case follows by a standard continuity argument.)

Choose a point $d_i \in int D_i$ now for i=1, ..., n and shrink each set D_i to the point d_i linearly and simultaneously with a parameter $t \in [0, 1]$, so that the shrinking set $D_i(t)$ equals D_i when t=1 and d_i when t=0. Write I for the set of indices i, j, k, e_i, e_j, e_k and set

$$D_{\mathbf{I}}(t) = (e_i D_i(t)) \cap (e_j D_j(t)) \cap (e_k D_k(t))$$

when $t \in [0, 1]$. We assume that the cones B_i and the points d_i are in general position to ensure that $D_I(1) \neq \{O\}$ implies that int $D_I(1)$ is nonempty. Moreover, as the cones $D_i(t)$ shrink, the cones $D_I(t)$ shrink as well and $D_I(t) = \{O\}$ for $t < t_0(I)$ where $t_0(I)$ is the smallest t for which $D_I(t)$ is different from $\{O\}$. (If, for some, $D_I(1) =$ $= \{O\}$ already, then $t_0(I)$ is not defined.) We assume that the cones B_i and the points d_i are in general position to ensure that $D_I(t)$ is a halfline when $t = t_0(I)$ and that int $D_I(t) \neq \emptyset$ for $t > t_0(I)$.

As t decreases, condition (*) remains true because the cones D_i get smaller and smaller. But conditions $(i, j; k, e)^*$ will fail for each (i, j; k, e) for some t because $D_I(0) = \{O\}$ for all I. The condition $(i, j; k, e)^*$ holds for all t > t(i, j; k, e) and fails for all $t \le t(i, j; k, e)$ where t(i, j; k, e) is uniquely determined. Write t_0 for the largest t(i, j; k, e), then $t_0 = t(i, j; k, e)$ for some (i, j; k, e). We may assume without loss of generality that i=1, j=2, k=3 and e(1, 2)=1 and e=-1. So condition $(1, 2; 3, -1)^*$ fails, i.e.,

$$D_1(t_0) \cap D_2(t_0) \cap D_3(t_0) = K$$

where K is a halfline of the form $\{\alpha v : \alpha \ge 0\}$ with $v \in R^3 \setminus \{O\}$. We know that $D_1(t) \cap D_2(t) \cap D_2(t)$ is $\{O\}$ for $t < t_0$ and has nonempty interior for $t > t_0$. We claim now that for each j=1, 2, ..., n, $v \in D_j(t_0)$ or $v \in -D_j(t_0)$. This will contradict condition (*) and so prove the theorem.

The claim is evident when j=1, 2 and 3. We are going to prove it with notation j=4. There are two cases to consider.

1st case. When the intersection of two of the cones $D_j(t_0)$ (j=1, 2, 3) is equal to $K, D_1(t_0) \cap D_2(t_0) = K$, say. From condition (2, 4; 1, e = -1) we get for $t = t_0$ that

$$D_1(t_0) \cap D_2(t_0) \cap (e(2, 4)D_4(t_0)) \neq \{O\}.$$

But $K = D_1(t_0) \cap D_2(t_0)$ and so $v \in K \subset e(2, 4)D_4(t_0)$ indeed.

2nd case. When the intersection of any two cones $D_j(t_0)$ have nonempty interior (j=1, 2, 3). Then, by a wellknown theorem (see [3], for instance), there are vectors $a_j \in \mathbb{R}^3$ such that $a_j \cdot x \leq 0$ for all $x \in D_j(t_0)$ (j=1, 2, 3) and O is in the convex hull of a_1 , a_2 and a_3 . The case when some a_j is parallel with some other a_i has been dealt with in the first case. So we assume that every a_j is nonzero and $0 = \alpha_1 a_1 + \alpha_2 a_2 + \alpha_3 a_3$ and every $\alpha_j > 0$. Then $a_j \cdot x \leq 0$ (j=1, 2, 3) implies that $x = \beta v$ for some real number β . Moreover, $a_j \cdot v = 0$ for j=1, 2, 3.

Assume now that $\pm v \notin D_4(t_0)$. Then L, the line through v and -v can be separated from $D_4(t_0)$, i.e., there exists a nonzero $a_4 \in R^3$ such that $a_4 \cdot x < 0$ when $x \in D_4(t_0) \setminus \{0\}$ and $a_4 \cdot x = 0$ when $x \in L$. This shows that the vectors a_i (i=1, 2, 3, 4) are all orthogonal to v and so $a_4 = \beta_1 a_1 + \beta_2 a_2$ for some real numbers β_1 and β_2 . We show now that β_1 and β_2 are both different from zero. Assume that $\beta_2 = 0$, say. Then a_1 and a_4 are parallel and, then $D_1(t_0)$ is separated either from $D_4(t_0)$ or from $-D_4(t_0)$, contradicting condition $(1, j; 4, \pm 1)^*$.

Consider now condition $(1, 2; 4, e)^*$: there exists an $x \in \mathbb{R}^3 \setminus L$ such that

$$x \in (-eD_4(t_0)) \cap D_1(t_0) \cap D_2(t_0).$$

Then $-ea_4 \cdot x < 0$, $a_1 \cdot x \le 0$ and $a_2 \cdot x \le 0$. This implies that β_1 and β_2 cannot be of the same sign. We may assume that $\beta_1 > 0$ and $\beta_2 < 0$.

Suppose now that e(3, 4)=1 and consider condition $(3, 4; 2, -1)^*$. In the same way as above this implies the existence of an $x \in R^{3} \setminus L$ with $a_3 \cdot x \le 0$, $a_4 \cdot x < 0$ and $a_2 \cdot x \le 0$. Now a_1 is a positive linear combination of a_2 and a_4 , so $a_1 \cdot x < 0$. But $a_1 \cdot x < 0$, $a_2 \cdot x \le 0$, $a_3 \cdot x \le 0$ is impossible. Assume now that e(3, 4) = -1 and consider condition $(3, 4; 1, -1)^*$. Again, this implies the existence of an $x \in R^{3} \setminus L$ with $a_3 \cdot x \le 0$, $a_4 \cdot x > 0$ and $a_1 \cdot x \le 0$. Now a_2 is a positive linear combination of a_1 and $-a_4$, so $a_2 \cdot x < 0$. But $a_1 \cdot x \le 0$, $a_2 \cdot x < 0$, $a_3 \cdot x \le 0$ and $a_1 \cdot x \le 0$. Now a_2 is a positive linear combination of a_1 and $-a_4$, so $a_2 \cdot x < 0$. But $a_1 \cdot x \le 0$, $a_2 \cdot x < 0$, $a_3 \cdot x \le 0$ is impossible.

We mention finally that it is possible to extend these results to higher dimensional spaces but, unfortunately, the conditions in the theorems become rather unintelligible.

Acta Mathematica Hungarica 56, 1990

References

- [1] T. Bisztriczky and J. Schaer, Affinely embeddable convex sets, Acta Math. Hung., 49 (1987), 353-363.
- [2] J. de Groot and H. de Vries, Convex sets in projective space, Compositio Math., 13 (1958), 113-118.
- [3] A. D. Ioffe and V. M. Tihomirov, *Theory of extremal problems*, Nauka (Moscow, 1974) (in Russian).
- [4] R. T. Rockafellar, Convex analysis, Princeton University Press (Princeton, 1970).
- [5] J. Stoer and C. Witzgall, Convexity and optimization in finite dimension I, Springer (Berlin, 1970).

(Received October 21, 1987; revised August 10, 1988)

MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES BUDAPEST, REÁLTANODA U. 13-15. H-1053