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In this short note a simple and constructive proof is given for Borsuk’s theorem on
antipodal points. This is done through a special application of the complementary pivoting
algorithm.
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In this paper we give a new proof of Borsuk’s theorem on antipodal points
f2]. This proof may be of some interest because it is simple and constructive.
The need for such a combinatorial proof emerged in connection with a surprising
application of Borsuk’s theorem in graph theory [1, 5]. We shall make use of the
so-called complementary pivoting algorithm (see e.g. [4,6]). The reader is
supposed to be familiar with this technique. We mention that our treatment is
based mostly on [4].

Let x; denote the i-th coordinate of x €R" for i =1, ..., n. Write ||-|| and || for
the Euclidean resp. max norm. Put S"={x€R":|x]|=1} and C"=
{x€R"":[x|=1}. If >0 and ACR", then A = {6x ER": x € A}. A function
f:A->R" is said to be odd if x€ A implies —x € A and f(—x)=—f(x) (here
ACR™ for some m). We write x <y for x, y ER" if x is lexicographically less
than y. If K is a triangulation, then K’ denotes its i-dimensional simplices, in
particular, K° is the set of vertices of K. Finally, ¢; denotes the i-th basis vector
of R"'fori=1,..,n+1

Theorem 1 (Borsuk [2]). If f : S” > R" is continuous and n = 1, then there exists a
point x € §" with f(x) = f(—x).

It is clear that this theorem is equivalent to the following one.
Theorem 2. If f : C" - R" is an odd continuous map and n = 1, then there exists a

point x € C" with f(x)=0.
84



1. Bdrdny] Borsuk’s theorem through complementary pivoting 85

We shall prove this second theorem. Now we need some preparations.

First we shall define a special triangulation, L, of R"*! as follows (L is the
same as the triangulation K, of [6, page 29]). L is the set of all integer lattice
points of R"*!, and a set {y;, y2, ... , Yas2} C L° With y, <y, < -+ < y,4, is the set of
vertices of an (n+ 1)-simplex of L if there exists a permutation = of the
numbers 1,2, ...,n+1suchthatfori=1,2,...,n+1

Yit1 = Yi + €qi (H

It is shown in [6] that L is indeed a triangulation of R**'. Here we claim that L is
symmetric with respect to the origin, i.e., o € L implies —o € L. The proof of
this fact is quite easy and is, therefore, omitted.

Now if t ER’, then [t] denotes the vector (1, ¢, ..., t" DVER" Let 0<t; <t <
t; <+ <tm1<1 and for u € L let m(u) be the integer for which

mu)e{l,2,3,...,2""1,
n 2
m(u)= 2'u;,; mod 2"*".
=0

Clearly, m(u) is well-defined. Now let h: (L’ ~{0)—R" be defined in the
following way

_f [twwl HO0<wu€l,
hu) = { ~[tme] if u<0, u€E L.

It is evident that 4 is odd. We shall need one more property of h: if u;, ..., u, €
L° {0} are the vertices of any o € L™, then

det[h(u)), ... , h(u,)] #0. 3

Indeed, if vy, ... , v+, are the vertices of an (n + 1)-simplex of L, then it is easy to
check by (1) and (2) that m(v)), ... , m(v,+,) are pairwise different integers. Then,
a fortiori, m(u,), ... , m(u,) are again pairwise different and

det[h(w), ... , h(u,)] = (=1)" det{[tmqyl, .- 5 [Empll,

where vy is the number of #’s with u; <0. Clearly, this last determinant is not
equal to zero. This proves (3).

Proof of Theorem 2. In what follows a complementary pivoting routine will take
place on a (vector labelled) finite triangulation of the s€t H =H, =
{x ER""'": 1— 1/k =|x| =1} where k =2 is an integer. This triangulation is defined
to be K =K, ={(1/k)o: o0 € L and (1/k)o C H}. It is easy to check that K is a
triangulation of H, K is finite and symmetric with respect to the origin, further,
K°C 4H and diam o < 1/k for every o € K (diam is meant in the max norm).
Clearly, dH =B UC where B=(1-1/k)C, and C = C,. Choose a vector
v €R" such that |v]<1-1/k and (v, ..., v, 1 — 1/k) E relint o, for some o, € K",
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of course, oy C B. Now we define a map g : B—>R" by
k
£(0) = 8(X1, o Xaet) = (K, o, ¥0) = g K015 o 00):

Clearly, g is odd and g(x) =0 if and only if x = (v, ..., v, 1 = 1/k).
Now let us define the vector labelling { : K°—>R" by

_ _[f(x)+ehkx) if xeK'NC,
Hx) = llx) = {g(x) +eh(kx) if x€K°NB,

where € > 0. Extend this labelling rule to a piecewise linear [ : H -»R" map. [ is
odd. Now we claim that there exists a positive 8§ = 1/k such that for 0 <e <8 we
have

(i) there are exactly two solutions, x, and —Xx,, of the equation I[(x)=0
satisfying x € B, and one of them, say x,, lies in relint o;

(i) 0€ (o), o € K implies o € K" U K"\
Indeed, |I.(x) — g(x)| <e for every x € B. Clearly, for some >0 |g(x)|=n if
x € B — (relint oy U relint —oy) = D whence [l.(x)| = n — € for every x € D. Thus
[.(x) = 0 has no solution with x € D if € <. Further, g and [, are linear maps on
o and g has exactly one zero in.oy. So if g and [, are sufficiently near, i.e., e <7’
for some n' >0, then L, too, has exactly one zero in oy, xp. As we have seen x,
cannot be on the relative boundary of oy if € <. So for 0 < e <min(n, ") (i)
holds true.

Suppose now that 0 € (o) for some o € K"'. This means that for some
a;=0,i=1,..,n,

Y al(w)=0 and Y o =1, “@
i=1 i=1

where u,, ..., u, are the vertices of o. Writing [.(#;) = a; + eh(ku;) (here either
a; = f(u;) or a; = g(u;)) we have from (4),

P(e) = detla, + eh(ku)), ..., a, + eh(ku,)] = 0.

P(e) is a polynomial of € and the coefficient of €, det{h(kuy),..., h(ku,)] is
different from zero by (3). This implies that P(e) #0 for € £(0, 5,) for some
8, >0, i.e., (4) cannot be true for 0 < e < §,. This implies that for 0 < e < 8 with
& = min(1/k, 1, ', min e 8,) (i) and (i) hold true.

We mention that in the terminology of [4], the condition (ii) means that 0 is a
regular value of the piecewise linear map [.. Now fix € with 0 <<e < 4.

Put M ={z€ H:l(z) =0). We define a graph G as follows. Its nodes are the
points x € M with x € o for some o € K" and two different nodes, x and y, form
an edge of G iff x,y € 7 for some 7€ K""'. The degree of a node of G is the
number of edges adjacent to this node. We write [u, v] for the line segment
connecting u € R**! and v € R**!. Due to the implication (ii) the following facts
are true (for the proofs see [4] or [6]).
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The degree of a node of G is 1 or 2 according to whether it is contained in 9H
or in int H. Further,

M ={ze€ H:z&]x, y] for some edge (x, y) of G}.

Together these facts imply that M is a l-manifold (for the definition of
1-manifold, see [4]) and so it consists of a finite number of pairwise disjoint
polygonal paths, and there are two types of these paths, the first type going from
a boundary node to a boundary node without cycles and the second type being a
a single cycle lying entirely in int H.

The main step in the proof of this facts is that for a node x of G with
xEocCre K™ and o & K" there exists exactly one node, x', of G with
x'€a’'€ K", o' C 1 for which (x, x') is an edge of G. To determine x’ and o’
from x, o and 7 is easy, it is done through a linear programming pivot step (see
[4] or [6]).

Our algorithm follows a path I{x) =0.

Start with the triple (xy, oo, 7o) where 7€ K"*' is the only (n + 1)-simplex
containing oy.

Step j for j =0, 1,2, .... For the triple (x;, 0}, 7;) determine x;., € 7; as,the only
node of G adjacent to x; and o1 € K" with x;,; € oj41. If X541 € dH, then stop,
else determine 7;,; € K""! as the only (n+ 1)-simplex containing o+ and
different from ;. (The rules for this end are given in [6, p. 35]). Proceed to step
j+ 1 with the triple (xj+1, 0.1, Tir1).

We know that this algorithm produces a path through the nodes x,, xj, ..., X,
from the boundary node x, to the boundary node x, (p =1). We claim that
x, € C. Suppose, on the contrary, that x, € B, then, by property (i) of I, we must
have x, = —x,. Starting now the algorithm with the triple (—x,, —oy, —7,), we shall
get the polygonal path through the points —x, —x), ..., —x, because [ is odd.
These two paths are not disjoint for x, = ~x, and so they coincide: x, ;=
—X1, X, 2= —X3, ... , Xo = —X,. Let z be the “middle point™ of the first path, i.e.,

s { X2 if p is even,
=11 . .
AXp+np+ Xp-n  if p is odd.

It is easy to check that z € H and z = —z. Consequently z =0 and 0 € H. This
contradicts to the definition H for x € H implies |x|=1— 1/k.
As we have seen x, € C. Then condition (ii) implies that o, C C. Writing

Y1, ..., Yoi1 for the vertices of o, we have for some o, =0 (i=1,...,n+1) that
n+l n+l n+l
Xp = 2 Y 21 a; =1, ) ail(y;) = 0.
“

i=1 i=1

This implies that

n+l

n+l
2 af () f = 2; aieh(ky;)

n+l
s6; o; < k. )
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For each k=2,3, ... we have an n-simplex o,4, C C whose vertices satisfy (5).
There is a subsequence of o,y that converges to a point y € C because C is
compact and diam o,y tends to zero. By continuity and (5) we must have
f(y) =0. And this is what we wanted to prove.

Remarks. This proof is not “quite constructive” because 8 and so € in the
perturbation eh(ku) is not determined constructively. One may hope that, as
usual (see e.g., [4] or [6]), a lexicographic scheme could be used to produce a
path between B and C. However, it is not difficult to find an example showing
that this is not the case, i.e., an example when the lexicographic scheme
produces a path between the two solutions g(x) =0, x € B. In connection with
this we mention the following theorem which is similar to Browder’s theorem
(see [3]). '

Theorem 3. Suppose n=1 and f:C"Xx[0,1]->R" is a continuous map with
f(=x,t)=—f(x, t) for (x,t) € C" x[0, 1]. Then there exists a connected set K C
C" x[0,1] meeting both C"x{0} and C"x{1} such that f(x,t)=0 for every
(x,tH)EK.

This theorem can be proved combining the ideas of the proof of Browder’s
theorem in [4, p. 129] and this paper. We omit details.
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