SHORT COMMUNICATION

BORSUK'S THEOREM THROUGH COMPLEMENTARY PIVOTING

Imre BÁRÁNY
OTSZK, KTT, Budapest, Hungary

Received 21 December 1977
Revised manuscript received 11 December 1978

Abstract

In this short note a simple and constructive proof is given for Borsuk's theorem on antipodal points. This is done through a special application of the complementary pivoting algorithm.

Key words: Complementary Pivot Algorithms, Triangulations, Vector Labels, Borsuk's Theorem on Antipodal Points.

In this paper we give a new proof of Borsuk's theorem on antipodal points [2]. This proof may be of some interest because it is simple and constructive. The need for such a combinatorial proof emerged in connection with a surprising application of Borsuk's theorem in graph theory [1,5]. We shall make use of the so-called complementary pivoting algorithm (see e.g. [4,6]). The reader is supposed to be familiar with this technique. We mention that our treatment is based mostly on [4].

Let x_{i} denote the i-th coordinate of $x \in \mathbf{R}^{n}$ for $i=1, \ldots, n$. Write $\|\cdot\|$ and $|\cdot|$ for the Euclidean resp. max norm. Put $S^{n}=\left\{x \in \mathbf{R}^{n+1}:\|x\|=1\right\}$ and $C^{n}=$ $\left\{x \in \mathbf{R}^{n+1}:|x|=1\right\}$. If $\delta>0$ and $A \subseteq \mathbf{R}^{n}$, then $\delta A=\left\{\delta x \in \mathbf{R}^{n}: x \in A\right\}$. A function $f: A \rightarrow \mathbf{R}^{n}$ is said to be odd if $x \in A$ implies $-x \in A$ and $f(-x)=-f(x)$ (here $A \subseteq \mathbf{R}^{m}$ for some m). We write $x<y$ for $x, y \in \mathbf{R}^{n}$ if x is lexicographically less than y. If K is a triangulation, then K^{i} denotes its i-dimensional simplices, in particular, K^{0} is the set of vertices of K. Finally, e_{i} denotes the i-th basis vector of \mathbf{R}^{n+1} for $i=1, \ldots, n+1$.

Theorem 1 (Borsuk [2]). If $f: S^{n} \rightarrow \mathbf{R}^{n}$ is continuous and $n \geq 1$, then there exists a point $x \in S^{n}$ with $f(x)=f(-x)$.

It is clear that this theorem is equivalent to the following one.

Theorem 2. If $f: C^{n} \rightarrow \mathbf{R}^{n}$ is an odd continuous map and $n \geq 1$, then there exists a point $x \in C^{n}$ with $f(x)=0$.

We shall prove this second theorem. Now we need some preparations.
First we shall define a special triangulation, L, of \mathbf{R}^{n+1} as follows (L is the same as the triangulation K_{1} of [6, page 29]). L^{0} is the set of all integer lattice points of \mathbf{R}^{n+1}, and a set $\left\{y_{1}, y_{2}, \ldots, y_{n+2}\right\} \subset L^{0}$ with $y_{1}<y_{2}<\cdots<y_{n+2}$ is the set of vertices of an $(n+1)$-simplex of L if there exists a permutation π of the numbers $1,2, \ldots, n+1$ such that for $i=1,2, \ldots, n+1$

$$
\begin{equation*}
y_{i+1}=y_{i}+e_{\pi(i)} . \tag{1}
\end{equation*}
$$

It is shown in [6] that L is indeed a triangulation of \mathbf{R}^{n+1}. Here we claim that L is symmetric with respect to the origin, i.e., $\sigma \in L$ implies $-\sigma \in L$. The proof of this fact is quite easy and is, therefore, omitted.

Now if $t \in \mathbf{R}^{1}$, then $[t]$ denotes the vector $\left(1, t, \ldots, t^{n-1}\right) \in \mathbf{R}^{n}$. Let $0<t_{1}<t_{2}<$ $t_{3}<\cdots<t_{2^{n+1}}<1$ and for $u \in L^{0}$ let $m(u)$ be the integer for which

$$
\begin{align*}
& m(u) \in\left\{1,2,3, \ldots, 2^{n+1}\right\}, \\
& m(u) \equiv \sum_{i=0}^{n} 2^{i} u_{i+1} \bmod 2^{n+1} . \tag{2}
\end{align*}
$$

Clearly, $m(u)$ is well-defined. Now let $h:\left(L^{0}-\{0\}\right) \rightarrow \mathbf{R}^{n}$ be defined in the following way

It is evident that h is odd. We shall need one more property of h : if $u_{1}, \ldots, u_{n} \in$ $L^{0}-\{0\}$ are the vertices of any $\sigma \in L^{n-1}$, then

$$
\begin{equation*}
\operatorname{det}\left[h\left(u_{1}\right), \ldots, h\left(u_{n}\right)\right] \neq 0 . \tag{3}
\end{equation*}
$$

Indeed, if v_{1}, \ldots, v_{n+2} are the vertices of an ($n+1$)-simplex of L, then it is easy to check by (1) and (2) that $m\left(v_{1}\right), \ldots, m\left(v_{n+2}\right)$ are pairwise different integers. Then, a fortiori, $m\left(u_{1}\right), \ldots, m\left(u_{n}\right)$ are again pairwise different and

$$
\operatorname{det}\left[h\left(u_{1}\right), \ldots, h\left(u_{n}\right)\right]=(-1)^{\gamma} \operatorname{det}\left[\left[t_{m\left(u_{u}\right)}\right], \ldots,\left[t_{m\left(u_{n}\right)}\right]\right],
$$

where γ is the number of u_{i} 's with $u_{i}<0$. Clearly, this last determinant is not equal to zero. This proves (3).

Proof of Theorem 2. In what follows a complementary pivoting routine will take place on a (vector labelled) finite triangulation of the set $H=H_{k}=$ $\left\{x \in \mathbf{R}^{n+1}: 1-1 / k \leq|x| \leq 1\right\}$ where $k \geq 2$ is an integer. This triangulation is defined to be $K=K_{k}=\{(1 / k) \sigma: \sigma \in L$ and $(1 / k) \sigma \subset H\}$. It is easy to check that K is a triangulation of H, K is finite and symmetric with respect to the origin, further, $K^{0} \subset \partial H$ and diam $\sigma \leq 1 / k$ for every $\sigma \in K$ (diam is meant in the max norm).

Clearly, $\partial H=B \cup C$ where $B=(1-1 / k) C_{n}$ and $C=C_{n}$. Choose a vector $v \in \mathbf{R}^{n}$ such that $|v|<1-1 / k$ and $\left(v_{1}, \ldots, v_{n}, 1-1 / k\right) \in$ relint σ_{0} for some $\sigma_{0} \in K^{n}$,
of course, $\sigma_{0} \subset B$. Now we define a map $g: B \rightarrow \mathbf{R}^{n}$ by

$$
g(x)=g\left(x_{1}, \ldots, x_{n+1}\right)=\left(x_{1}, \ldots, x_{n}\right)-\frac{k}{k-1} x_{n+1}\left(v_{1}, \ldots, v_{n}\right) .
$$

Clearly, g is odd and $g(x)=0$ if and only if $x= \pm\left(v_{1}, \ldots, v_{n}, 1-1 / k\right)$.
Now let us define the vector labelling $l: K^{0} \rightarrow \mathbf{R}^{n}$ by

$$
l(x)=l_{\epsilon}(x)= \begin{cases}f(x)+\epsilon h(k x) & \text { if } x \in K^{0} \cap C, \\ g(x)+\epsilon h(k x) & \text { if } x \in K^{0} \cap B,\end{cases}
$$

where $\epsilon>0$. Extend this labelling rule to a piecewise linear $l: H \rightarrow \mathbf{R}^{n}$ map. l is odd. Now we claim that there exists a positive $\delta \leq 1 / k$ such that for $0<\epsilon<\delta$ we have
(i) there are exactly two solutions, x_{0} and $-x_{0}$, of the equation $l(x)=0$ satisfying $x \in B$, and one of them, say x_{0}, lies in relint σ_{0};
(ii) $0 \in l(\sigma), \sigma \in K$ implies $\sigma \in K^{n} \cup K^{n+1}$.

Indeed, $\left|l_{\epsilon}(x)-g(x)\right|<\epsilon$ for every $x \in B$. Clearly, for some $\eta>0|g(x)| \geq \eta$ if $x \in B-\left(\right.$ relint $\sigma_{0} \cup$ relint $\left.-\sigma_{0}\right)=D$ whence $\left|l_{\epsilon}(x)\right| \geq \eta-\epsilon$ for every $x \in D$. Thus $l_{\epsilon}(x)=0$ has no solution with $x \in D$ if $\epsilon<\eta$. Further, g and l_{ϵ} are linear maps on σ_{0} and g has exactly one zero in , σ_{0}. So if g and l_{ϵ} are sufficiently near, i.e., $\epsilon<\eta^{\prime}$ for some $\eta^{\prime}>0$, then l_{ϵ}, too, has exactly one zero in σ_{0}, x_{0}. As we have seen x_{0} cannot be on the relative boundary of σ_{0} if $\epsilon<\eta$. So for $0<\epsilon<\min \left(\eta, \eta^{\prime}\right)$ (i) holds true.

Suppose now that $0 \in l_{\epsilon}(\sigma)$ for some $\sigma \in K^{n-1}$. This means that for some $\alpha_{i} \geq 0, i=1, \ldots, n$,

$$
\begin{equation*}
\sum_{i=1}^{n} \alpha_{i} l_{\epsilon}\left(u_{i}\right)=0 \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i}=1, \tag{4}
\end{equation*}
$$

where u_{1}, \ldots, u_{n} are the vertices of σ. Writing $l_{\epsilon}\left(u_{i}\right)=a_{i}+\epsilon h\left(k u_{i}\right)$ (here either $a_{i}=f\left(u_{i}\right)$ or $a_{i}=g\left(u_{i}\right)$) we have from (4),

$$
P(\epsilon)=\operatorname{det}\left[a_{1}+\epsilon h\left(k u_{1}\right), \ldots, a_{n}+\epsilon h\left(k u_{n}\right)\right]=0 .
$$

$P(\epsilon)$ is a polynomial of ϵ and the coefficient of $\epsilon^{n}, \operatorname{det}\left[h\left(k u_{1}\right), \ldots, h\left(k u_{n}\right)\right]$ is different from zero by (3). This implies that $P(\epsilon) \neq 0$ for $\epsilon \in\left(0, \delta_{\sigma}\right)$ for some $\delta_{\sigma}>0$, i.e., (4) cannot be true for $0<\epsilon<\delta_{\sigma}$. This implies that for $0<\epsilon<\delta$ with $\delta=\min \left(1 / k, \eta, \eta^{\prime}, \min _{\sigma \in K^{n-1}} \delta_{\sigma}\right)$ (i) and (ii) hold true.
We mention that in the terminology of [4], the condition (ii) means that 0 is a regular value of the piecewise linear map l_{ϵ}. Now fix ϵ with $0<\epsilon<\delta$.

Put $M=\{z \in H: l(z)=0\}$. We define a graph G as follows. Its nodes are the points $x \in M$ with $x \in \sigma$ for some $\sigma \in K^{n}$ and two different nodes, x and y, form an edge of G iff $x, y \in \tau$ for some $\tau \in K^{n+1}$. The degree of a node of G is the number of edges adjacent to this node. We write $[u, v]$ for the line segment connecting $u \in \mathbf{R}^{n+1}$ and $v \in \mathbf{R}^{n+1}$. Due to the implication (ii) the following facts are true (for the proofs see [4] or [6]).

The degree of a node of G is 1 or 2 according to whether it is contained in ∂H or in int H. Further,

$$
M=\{z \in H: z \in[x, y] \text { for some edge }(x, y) \text { of } G\}
$$

Together these facts imply that M is a 1-manifold (for the definition of 1 -manifold, see [4]) and so it consists of a finite number of pairwise disjoint polygonal paths, and there are two types of these paths, the first type going from a boundary node to a boundary node without cycles and the second type being a a single cycle lying entirely in int H.

The main step in the proof of this facts is that for a node x of G with $x \in \sigma \subset \tau \in K^{n+1}$ and $\sigma \in K^{n}$ there exists exactly one node, x^{\prime}, of G with $x^{\prime} \in \sigma^{\prime} \in K^{n}, \sigma^{\prime} \subset \tau$ for which $\left(x, x^{\prime}\right)$ is an edge of G. To determine x^{\prime} and σ^{\prime} from x, σ and τ is easy, it is done through a linear programming pivot step (see [4] or [6]).

Our algorithm follows a path $l(x)=0$.
Start with the triple $\left(x_{0}, \sigma_{0}, \tau_{0}\right)$ where $\tau_{0} \in K^{n+1}$ is the only $(n+1)$-simplex containing σ_{0}.

Step j for $j=0,1,2, \ldots$. For the triple $\left(x_{j}, \sigma_{j}, \tau_{j}\right)$ determine $x_{j+1} \in \tau_{j}$ as, the only node of G adjacent to x_{j} and $\sigma_{j+1} \in K^{n}$ with $x_{j+1} \in \sigma_{j+1}$. If $x_{j+1} \in \partial H$, then stop, else determine $\tau_{j+1} \in K^{n+1}$ as the only ($n+1$)-simplex containing σ_{j+1} and different from τ_{j}. (The rules for this end are given in [6, p. 35]). Proceed to step $j+1$ with the triple ($x_{j+1}, \sigma_{j+1}, \tau_{j+1}$).

We know that this algorithm produces a path through the nodes $x_{0}, x_{1}, \ldots, x_{p}$ from the boundary node x_{0} to the boundary node $x_{p}(p \geq 1)$. We claim that $x_{p} \in C$. Suppose, on the contrary, that $x_{p} \in B$, then, by property (i) of l, we must have $x_{p}=-x_{0}$. Starting now the algorithm with the triple ($-x_{0},-\sigma_{0},-\tau_{0}$), we shall get the polygonal path through the points $-x_{0},-x_{1}, \ldots,-x_{p}$ because l is odd. These two paths are not disjoint for $x_{p}=-x_{0}$ and so they coincide: $x_{p-1}=$ $-x_{1}, x_{p-2}=-x_{2}, \ldots, x_{0}=-x_{p}$. Let z be the "middle point" of the first path, i.e.,

$$
z= \begin{cases}x_{p / 2} & \text { if } p \text { is even }, \\ \frac{1}{2}\left(x_{(p+1) / 2}+x_{(p-1) / 2}\right. & \text { if } p \text { is odd. }\end{cases}
$$

It is easy to check that $z \in H$ and $z=-z$. Consequently $z=0$ and $0 \in H$. This contradicts to the definition H for $x \in H$ implies $|x| \geq 1-1 / k$.

As we have seen $x_{p} \in C$. Then condition (ii) implies that $\sigma_{p} \subset C$. Writing y_{1}, \ldots, y_{n+1} for the vertices of σ_{p} we have for some $\alpha_{i} \geq 0(i=1, \ldots, n+1)$ that

$$
x_{p}=\sum_{i=1}^{n+1} \alpha_{i} y_{i}, \quad \sum_{i=1}^{n+1} \alpha_{i}=1, \quad \sum_{i=1}^{n+1} \alpha_{i} l\left(y_{i}\right)=0
$$

This implies that

$$
\begin{equation*}
\left|\sum_{i=1}^{n+1} \alpha_{i} f\left(y_{i}\right)\right|=\left|\sum_{i=1}^{n+1} \alpha_{i} \epsilon h\left(k y_{i}\right)\right| \leq \epsilon \sum_{i=1}^{n+1} \alpha_{i} \leq 1 / k . \tag{5}
\end{equation*}
$$

For each $k=2,3, \ldots$ we have an n-simplex $\sigma_{p(k)} \subset C$ whose vertices satisfy (5). There is a subsequence of $\sigma_{p(k)}$ that converges to a point $y \in C$ because C is compact and diam $\sigma_{p(k)}$ tends to zero. By continuity and (5) we must have $f(y)=0$. And this is what we wanted to prove.

Remarks. This proof is not "quite constructive" because δ and so ϵ in the perturbation $\epsilon h(k u)$ is not determined constructively. One may hope that, as usual (see e.g., [4] or [6]), a lexicographic scheme could be used to produce a path between B and C. However, it is not difficult to find an example showing that this is not the case, i.e., an example when the lexicographic scheme produces a path between the two solutions $g(x)=0, x \in B$. In connection with this we mention the following theorem which is similar to Browder's theorem (see [3]).

Theorem 3. Suppose $n \geq 1$ and $f: C^{n} \times[0,1] \rightarrow \mathbf{R}^{n}$ is a continuous map with $f(-x, t)=-f(x, t)$ for $(x, t) \in C^{n} \times[0,1]$. Then there exists a connected set $K \subset$ $C^{n} \times[0,1]$ meeting both $C^{n} \times\{0\}$ and $C^{n} \times\{1\}$ such that $f(x, t)=0$ for every $(x, t) \in K$.

This theorem can be proved combining the ideas of the proof of Browder's theorem in [4, p. 129] and this paper. We omit details.

Acknowledgment

Thanks are due to E.G. Bajmóczy for the many interesting conversations on this paper. I am also indebted to the referee for his valuable comments on an earlier version of this paper and for pointing out an error in it.

References

[1] I. Bárány, "A short proof of Kneser's conjecture", Journal of Combinatorial Theory 25 (1978) 325-326.
[2] K. Borsuk, "Drei Sätze über die n-dimensionalische euklidische Sphäre", Fundamenta Mathematicae 20 (1933) 177-190.
[3] F.E. Browder, "On continuity of fixed points under deformations of continuous mappings", Summa Brasiliensis Mathematicae 4 (1960) 183-191.
[4] B.C. Eaves, "A short course in solving equations with PL homotopies" SIAM-AMS Proceedings 9 (1976) 73-143.
[5] L. Lovász, "Kneser's conjecture, chromatic number and homotopy", Journal of Combinatorial Theory 25 (1978) 319-324.
[6] M.J. Todd, The computation of fixed points and applications (Springer, Berlin, 1976).

