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In this paper  we give a new proof  of  Borsuk ' s  theorem on antipodal points 
[2]. This proof  may be of some interest  because  it is simple and constructive.  

The need for such a combinatorial  p roof  emerged in connect ion with a surprising 

application of Borsuk ' s  theorem in graph theory [1, 5]. We shall make  use of  the 

so-called complementa ry  pivoting algorithm (see e.g. [4,6]). The reader  is 
supposed to be familiar with this technique. We mention that  our t rea tment  is 

based most ly  on [4]. 
Le t  xi denote the i-th coordinate  of x E R n for  i -- 1 . . . . .  n. Write H'II and I'[ for  

the Euclidean resp. max norm. Put  S n = { x E R n + I : t l x H - - 1 }  and C ~= 

{ x E  R~+I: Ix[ = l}. I f  8 > 0  and A C_R ~, then 8A = {~x ~R~:  x ~ A}. A function 

f : A - ~ R  ~ is said to be odd if x E A implies - x  ~ A and f ( - x ) = - f ( x )  (here 
A C_ R m for  some m). We write x < y for  x, y ~ R ~ if x is lexicographically less 
than y. I f  K is a triangulation, then K i denotes  its /-dimensional simplices, in 

particular, K ° is the set of  vert ices of  K. Finally, ei denotes  the i-th basis vector  
o f  R n+l for i = 1 . . . . .  n + 1. 

Theorem 1 (Borsuk [2]). I f  f : S ~ --> R n is con t inuous  and n >- 1, then there exists a 

point  x ~ S n with f ( x )  = f ( - x ) .  

I t  is clear that this theorem is equivalent to the following one. 

Theorem 2. [ f  f : C ~ -~ R ~ is an odd con t inuous  map  and  n >>- 1, then there exists a 

poin t  x E C n with f ( x )  = O. 
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W e  shall p r o v e  this s econd  t heo rem.  N o w  we  need  s o m e  p repa ra t ions .  

F i rs t  we  shall define a special  t r iangula t ion,  L,  o f  R "÷~ as fo l lows ( L  is the  

s a m e  as the  t r iangula t ion K ,  o f  [6, page  29]). L ° is the set  o f  all in teger  lat t ice 

poin ts  o f  R "+~, and a set  {yt, yz . . . . .  y.+2} C L ° wi th  yj < y2 < " "  < Yn+2 is the set  o f  
ver t ices  o f  an (n + 1)-s implex of  L if there  exis ts  a p e r m u t a t i o n  7r o f  the 

n u m b e r s  1, 2 . . . . .  n + 1 such  tha t  fo r  i = 1, 2 . . . . .  n + 1 

yi+l = Yi + e=~i). (1) 

I t  is shown  in [6] tha t  L is indeed  a t r iangulat ion of  R "+~. H e r e  we  c la im tha t  L is 

s y m m e t r i c  wi th  r e spec t  to the origin, i.e., or ~ L implies  - o - E  L. The  p r o o f  of  

this f ac t  is qui te  e a s y  and  is, t he re fo re ,  omi t ted .  
N o w  if t ~ R I, then  [t] deno tes  the  vec to r  (1, t . . . . .  t "-~) ~ R". L e t  0 < tt < t2 < 

t3 < ' "  < h ,  +, < 1 and  fo r  u 6 L ° let m ( u )  be the in teger  fo r  which  

re(u) e {1, 2, 3 . . . . .  2"+1}, 
(2) 

_=± m ( u )  21ui+, rood 2 "+1. 
i=0 

Clear ly ,  m ( u )  is well-defined.  N o w  let h :(L°--{0})--->R" be  def ined in the 

fo l lowing  w a y  

[t~(u)] i f 0 < u ,  u 6 L ,  
h(u)  = -[t,~(u)] if u < 0 ,  u E L .  

I t  is ev iden t  tha t  h is odd.  W e  shall need  one  m o r e  p r o p e r t y  of  h: if ul . . . . .  u, E 

L ° ~ {0} are  the  ver t ices  of  any  or E L "-~, then  

de t [h(u l )  . . . . .  h (u , ) ]  # 0. (3) 

Indeed ,  if v~ . . . . .  v,+2 are the ver t ices  of  an (n + D-s imp lex  of  L, then  it is e a sy  to  
c h e c k  b y  (1) and  (2) tha t  m(vO . . . . .  m(v,+2) are  pa i rwise  di f ferent  integers .  Then ,  

a f o r t i o r i ,  m(uO . . . . .  m ( u , )  are again pa i rwise  di f ferent  and  

d e t [ h ( u 0  . . . . .  h (u , ) ]  = ( - 1 )  7 det[[tm(,~)] . . . . .  [tm(u,)]], 

whe re  y is the n u m b e r  of  u,.'s with ui < 0. Clear ly ,  this last  de t e rminan t  is not  

equal  to zero.  This  p r o v e s  (3). 

Proof of Theorem 2. In  wha t  fo l lows a c o m p l e m e n t a r y  p ivo t ing  rou t ine  will t ake  
p lace  on  a (vec to r  labelled) finite t r iangulat ion of  the set  H = H k  = 

{x E R"+~: 1 - l / k  <- [xl <- 1} w h e r e  k -> 2 is an integer.  This  t r iangulat ion is def ined 

to be K = Kk = {(1/k)o-: o" ~ L and  (1/k)o- C H}.  I t  is e a s y  to check  tha t  K is a 
t r iangula t ion o f  H,  K is f i n i t e a n d  s y m m e t r i c  with r e s p e c t  to the origin, fur ther ,  
K ° C a H  and d iam ~r _< I l k  fo r  e v e r y  cr E K (diam is m e a n t  in the  m a x  norm).  

Clear ly ,  a H =  B U C whe re  B = (1 - 1/k)C,  and C = C,. C h o o s e  a vec to r  
v ~ R" such tha t  Ivl < 1 - 1/k and (v~ . . . . .  v,, 1 - 1/k) E rel int  or0 fo r  s o m e  o-0 ~ K" ,  
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of  course ,  o'0 C B. N o w  we define a map  g : B---->R" by  

k 
g ( x )  = g(x l  . . . . .  X,+t) = (Xl . . . . .  x , )  - ~ X,+l(vl . . . . .  v ,) .  

Clearly,  g is odd  and g ( x )  = 0 if and only  if x = +-(vl .... , v,, 1 - l l k ) .  

N o w  let us define the vec to r  labelling I : K ° ~  R" by 

[ [ ( x ) + e h ( k x )  i f x E K  ° n C ,  
l (x )  = I , (x)  = [ g ( x )  + e h ( k x )  if x E K ° n B, 

where  ~ > 0. Ex tend  this labelling rule to a p iecewise  linear l : H ~ R" map.  ! is 
odd. N o w  we claim that  there  exists a posi t ive  6 --- 1/k such that  fo r  0 < e < 6 we  

have 
(i) there  are exac t ly  two solutions,  x0 and -Xo,  of  the equa t ion  l ( x ) =  0 

sat isfying x ~ B, and one of  them,  say x0, lies in relint ~r0; 

(ii) 0 E 1(o-), o- E K implies or ~ K"  O K "+1. 

Indeed ,  II~(x) - g(x) l  < E for  eve ry  x E B. Clearly,  fo r  some "0 > 0 lg(x)l >- n if 

x E B ~ (relint o-0 U relint -o'0) = D w h e n c e  II,(x)l >- ~ - E for  every  x E D. Thus  

l , (x)  = 0 has no solut ion with x ~ D if e < "0. Fur ther ,  g and l, are linear maps  on 

o-0 and g has exac t ly  one  zero  in xr0. So if g and I, are sufficiently near,  i.e., E < rt' 

fo r  some  r~ '>  0, then l,, too,  has exact ly  one  zero  in o-0, xo. As we have  seen xo 

canno t  be on the relat ive b o u n d a r y  of  o'0 if E < ~. So for  0 < ~ < min(rt, rt') (i) 

holds true. 
Suppose  n o w  that  0 ~ I,(~r) fo r  some  o -E  K "-1. This means  that  for  some  

ai---O, i =  1 . . . . .  n, 

ot,l,(ui) = 0 and £ ai = I, (4) 
i=1 i=1 

where  u~ . . . . .  u, are the ver t ices  of  o-. Wri t ing l , ( u i )=  ai + Eh(kui)  (here ei ther  

ai = f(u/) or  a,- = g(ul))  we have f r o m  (4), 

P(E) = det[a l  + eh(ku l ) ,  . . . ,  a ,  + Eh(ku,)]  = O. 

P ( e )  is a po lynomia l  of  e and the coefficient o f  E", d e t [ h ( k u l )  . . . . .  h (ku , ) ]  is 
different f r o m  zero  by  (3). This implies that  P ( ( ) ¢  0 for  e ~ (0, 6~) for  some 

6~ > 0, i.e., (4) canno t  be true for  0 < e < 6~.. This implies that  for  0 < e < 6 with 

6 = rain(l/k,  ~, r/', min~K,,-~ 6~) (i) and (ii) hold true. 

W e  ment ion  that  in the te rminology  of  [4], the condi t ion  (ii) means  that  0 is a 

regular  value of  the p iecewise  linear map I,. N o w  fix ~ with 0 < ~ < 8. 
Pu t  M = {z E H :  l ( z )  = 0}. We define a graph  G as follows.  Its nodes  are the 

points  x E M with x ~ cr for  some  o- @ K"  and two different nodes ,  x and y, f o r m  

an edge of  G iff x, y E ~" for  some  r E K "~1. The  degree  o f  a node  o f  G is the 

number  of  edges  ad jacent  to this node.  We  write [u, v] for  the line segment  
connec t ing  u E R "+~ and v E R "+~. Due to the implicat ion (ii) the fol lowing facts  

are t rue (for the p roofs  see [4] or  [6]). 



L Bdrdmy] Borsuk's theorem through complementary pivoting 87 

The degree of a node of G is 1 or 2 according to whether  it is contained in a H  

or in int H. Further,  

M = {z E H :  z E Ix, y] for  some edge (x, y) of G}. 

Together  these facts imply that M is a 1-manifold (for the definition of 
1-manifold, see [4]) and so it consists of a finite number of pairwise disjoint 
polygonal paths, and there are two types of these paths, the first type going from 
a boundary node to a boundary node without cycles and the second type being a 
a single cycle lying entirely in int H. 

The main step in the proof  of this facts is that for  a node x of G with 
x E t r C  ~ E  K "+~ and t r E K "  there exists exactly one node, x', of  G with 
x ' E  t r ' E  K", t r 'C  ~" for which (x, x') is an edge of G. To determine x'  and o-' 
f rom x, tr and ~" is easy, it is done through a linear programming pivot step (see 
[4] or [6]). 

Our algorithm follows a path l ( x )  = O. 

Start with the triple (x0, o-0, z0) where r o e  K "+1 is the only (n + 1)-simplex 
containing tr0. 

Step ] for  j = 0, 1, 2, .... For  the triple (x# 9 ,  rj) determine xi+~ E ~'j as. the only 
node of G adjacent to xj and trj+l E K "  with Xj+l E ~+1. If xi+~ E OH, then stop, 
else determine T i + ~ E K  "+~ as the only ( n +  1)-simplex containing trj+~ and 
different f rom ~'j. (The rules for  this end are given in [6, p. 35]). Proceed  to step 
] + 1 with the triple (xj+l, %+1, ~'~+1). 

We know that this algorithm produces a path through the nodes x0, xl . . . . .  xp 
from the boundary node x0 to the boundary node xp (p-> 1). We claim that 

xp E C. Suppose, on the contrary,  that xp E B, then, by property (i) of l, we must 
have xp = -x0. Starting now the algorithm with the triple (-x0, -tr0, - z o ) ,  we shall 
get the polygonal path through the points -x0 , -x~  . . . . .  -xp because l is odd. 
These two paths are not disjoint for  xp = - x 0  and so they coincide: xp-1 = 

- x l ,  x~,-2 = - x 2  . . . . .  Xo = - x p .  Let  z be the "middle point" of the first path, i.e., 

_[xp/2  if p is even, 
Z - -  1 

[~(x~p+l)/2 + x~p-l)/2 i f  p is odd. 

It is easy to check that z E H and z = - z .  Consequently z = 0 and 0 E H. This 
contradicts to the definition H for  x E H implies [xl -> 1 - I l k .  

As we have seen xp E C. Then condition (ii) implies that trp C C. Writing 
yj . . . . .  y,+~ for  the vertices of trp we have for some a; >-_ 0 (i = 1 . . . . .  n + 1) that 

n+l  n+l  n+l  

xp = ~ aiyi, ~_, ~ = I,  ~ ail(y~) = O. 
i=l i=l i=I  

This implies that 

i=1 
(5) 
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For each k = 2, 3 .... we have an n-simplex crp(k)C C whose vertices satisfy (5). 
There is a subsequence of  o'p(k) that converges to a point y E C because C is 
compact  and diam trp(k) tends to zero. By continuity and (5) we must have 
f ( y )  = 0. And this is what we wanted to prove. 

Remarks. This proof  is not "quite construct ive" because 6 and so e in the 
perturbation eh(ku) is not determined constructively. One may hope that, as 
usual (see e.g., [4] or [6]), a lexicographic scheme could be used to produce a 
path between B and C. However ,  it is not difficult to find an example showing 
that this is not the case, i.e., an example when the lexicographic scheme 
produces a path between the two solutions g(x) = O, x E B. In connection with 
this we mention the following theorem which is similar to Browder 's  theorem 
(see [3]). 

Theorem 3. Suppose n >-1 and f : C " ×  [0, 1]--->R" is a continuous map with 

f ( - x ,  t) = - f ( x ,  t) for  (x, t) E C" × [0, 1]. Then there exists a connected set K C 
C" x [0, 1] meeting both C" x {0} and C" x {1} such that [(x, t) = 0 for  every 

(x, t) ~ K. 

This theorem can be proved combining the ideas of the proof  of Browder 's  

theorem in [4, p. 129] and this paper. We omit details. 
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