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Let S C R 3 be an n-set in general position. A plane containing three of the points is called 
a halving plane if it dissects S into two parts of equal cardinality. It is proved that the number Of 
halving planes is at most O(n2"998). 

As a main tool, for every set Y of n points in the plane a set N of size O(n 4) is constructed 
such that the points of N are distributed almost evenly in the triangles determined by Y. 

1. H a l v i n g  p l a n e s  

A point-se t  S ~ R d is in general position if no d +  1 points  of it lie in a hyperplane.  
The  plane de te rmined  by the  non-coll inear points  a, b, c is denoted by P(a, b, c). in 
general, the  affine subspace  spanned  by the  set A is denoted by aff (A). As usual,  
cony(A) s tands  for the  convex hull of A. 

Assume tha t  S is an n-e lement  point-se t  in the three-dimensional  Eucl idean 
space in general  posit ion.  A plane P(a, b,c), where a, b, c E S, is called a halving 
plane if it dissects S into two equal  par ts ,  t ha t  is, on bo th  sides of P there are 
exact ly (n - 3) /2  points  of  S. Denote  the  number  of halving planes by h(S), and set 

h(n) = m a x { h ( S )  : S C R 3, ISI -- n, S is in general position}. 

Clearly, h ( n ) <  ( 3 )  . The  a im of this pape r  is to improve  this tr ivial  bound  proving 

T h e o r e m  1. h(n) <_ O(n2"998). 

The  proof  which is pos tponed  to section 7 is similar to tha t  of the 2-dimensional  
case given in [9], bu t  the crucial s tep requires new tools (Theorem 2.). Actually,  we 
will prove h(n) < O(n 3-a) with  a = 1/343. (Wi th  more  effort, one could prove the~ 
result wi th  a = 1/64.) 
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Define h2(n) as the maximum number of halving lines of a planar n-set. It is 
well-known [6] that  h2(n)>_ ~(n logn) .  This result is used in [4] to give an example 
proving 

h(n) > f~(n 2 logn). 

2. Cover ing  m o s t  of the triangles by crossings 

A point-set S in R d is said to be in totally general position if 

dim affAi  _<max - 1 , ~ d i m ( A i ) - ( s - 1 ) d  
\/----1 

holds for all subsets A i C S. From now on we always suppose, if it is not otherwise 
stated, that  the (finite) point-sets axe in total ly general position. A set F covers t 
triangles from the set Y C R 2 if at least t open triangles (Yl, Y2, Y3) (where Yi E Y) 

contain a point of F.  Obviously, no set can cover more than (IYI)  triangles. 

Theorem 2. For every n element set Y C R 2 there exists a set F with IF[ < n 0"998 

which covers all but at most O(n 2"99s) triangles .from Y.  

Two lines determined by four distinct points of Y intersect in a crossing. Define 
C(Y) as the set of crossings. We have 

1 O(n4). 

Let N(R) denote the number of crossings in the interior of the region R, and 
N(abc) = N(conv(a, b, c)). 

It is perhaps instructive to show at this step that the average number of crossings 
in a triangle with vertices from Y is fl(n4). Our first observation is that  every set 
of nine points, E C Y, contains a triangle such that  at least one of the crossings 
defined by four of the remaining 6 points lies inside the triangle. Indeed, a theorem 
of Tverberg [12] (cf. also aeay  [11]) states that  there is a partition {al,bl,cl} t3 
{a2, b2, c2} U {an, b3, c3} = E such that  the intersection of the three triangular regions 
conv(aibici)(1 < i < 3) is non-empty. Then g)iconv(aibici) is a convex polygon. 
Assume that  the line a363 contains an edge of this polygon. The prolongation of this 
edge in any direction will leave one of the triangles conv(alblcl) or conv(a2bec2) first; 
assume it leaves conv(a2b2c2) first, at a point p. Then p is a crossing, defined by four 
of the points a~b2c2a3b~, and it is contained in the triangle conv(alblcl). 

So every nine-tuple from Y contains an (ordered) seven-tuple abcxyuv such 
that  (aft xy V)aft uv) E int conv(abc). As every seven-tuple is contained in 

"'(n-~7~ nine-tuples we have that  the number of suitable seven-tuples-is at. least 
\ z /  
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(1) 

-- . Hence we have 
7 

Average N(abe ) -  1 E E 1 
a,b, c E Y  ( 3 )  a,b,ceYx,Y,U,veY\ia,b,c} 

aft ~ynaf f  uV6int cony(abe) 

---- - ~  (~  suitable seven-tuples) >_ ( n  4 3)/1260. 

\3]  

Unfortunately, this computation is not enough to guarantee that  most triangles 
contain ~(n  4) crossings. For this we need a colored version of Tverberg's theorem: 

Lemma 3. There is a positive integer t such that the following holds. Assume that 
A , B , C  C R 2 are disjoint sets with at least t elements each, such that their union 
is in general position. Then there exist three disjoint triples aibici, a i E A, b i E B, 
c/E C ( 1 < i < 3 )  such that Niconv(aibici) ~ 0. 

The smallest value of t for which we managed to prove this lemma is 4, and we 
do not have a counterexample even for t = 3. For brevity's sake we give the proof 
f o r t=7 .  

The other tool of the proof is the following lemma, which strengthens the 
averaging in (1). This lemma will imply that  the number of triangles with vertices 
from Y containing "few" crossings is "small". 

Lemma 4. Let t satisfy the previous Lemma. Then there exist positive constants c' 
and e" such that the following holds. Assume that 1 < k < c'n x/t:, and ~ is a set 

of triples from Y with ,,~, > (n3) /k. Then the average number of crossings in the 

members of ~ is at least c'na/k t3-1. 

3. Corol la r ies  a n d  a p o l y n o m i a l  a l g o r i t h m  

In this section t is a value that  satisfies Lcmma 3, k _> 1 and Y C R 2 is an n- 
element set in general position. A straightforward application of Lemma 4 yields the 
following covering theorem, where c is again an absolute constant. 

Theorem 5. There is a set F C R ~ of size at most ck t3-1 such that the number of 

triangles with vertices from Y containing no point of F is at most ( 3 )  /k. 

It is interesting to compare Theorem 5 to a result from [3], which states that  

2 ( n )  triangles from Y. (For higher dimensions, there is a point contained in at least ~ 3 

see [1].) The covering set F in Theorem 5 is obtained by a random process. We have 
a deterministic, polynomial time algorithm to construct a suitable F as well, but 
now F will have larger size: 
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Theorem 6. There is an algorithm, polynomial in n, which supplies a set F wi{h 
IFI _<exp(e'k 9~176176 such that the number of triangles from Y containing no point o f f  

Here c' is another absolute constant. The following corollary of Theorem 5 
concerns the difference between the behavior of a continuous and a discrete measure 
of the planar convex regions. 

Theorem 7. There is a set F C R e of size at most dk  3t~-3 such that any convex 
region R with IR M YI > n / k  contains a point of F.  

This follows from Theorem 5, as if I R M Y] > n /k ,  and F M Y = O, then F avoids 

at least ( n ~ k )  triangles. 

4. T h e  p r o o f  o f  L e m m a  3 

Lemma 8. Let El,  t?,2, E3 C R 2 be finite nonempty subsets and p any point. Then p 
is not contained in any triangle conv(e,e2ea) with ei E Ei if and only if there exist a 
k E {1, 2, 3} and two closed halfplanes H, H' such that p ~ H'  U H",  Ei C H'  M H" if 
i ~ k and E k C H'  U H''. 

Proof. By Theorem 2.3 of [1], p is contained in a triangle conv(eae2e~) if it is 
contained in the convex hull of two of the sets El ,  E2, Ea. So we may suppose that 
p ~t convE i for i = 1, 2, say. Write Ca and C2 for the smallest cone containing E1 
and E2 and having apex p. It is easy to see that if C1 U C2 contains a line, then p 
is contained in a triangle conv(ele2ea). Then the smallest cone containing Ca U C~ 
and having apex p is of the form H1 M/-/2, where H1 and H~ are two halfspaces, it 
follows readily t h a t / / 1  and / / 2  satisfy the requirements. | 

Let U = A U B U C, [U[ = 3t >_ 21, i >_ O. The i-th convex hull, conv/(U), is the 
intersection of all the (open) halfplanes containing at least [U[ - i elements of U. 
Then convi(U) is a convex polygonal region for 0 < i < t - 1. Let p be a point from 
int convt_l (U), such that  U U {p} is in general position. Then for all open halfplanes 
H we have that 

(2) p E H implies IH N U I >_ t. 

We claim that  p is contained in at least three vertex-disjoint multicolored triangles 
of U. 

Suppose, to the contrary, that  one can find only s (s = 0, 1 or 2) triangles aibici 
(i = 1 , . . . , s )  such that p E conv(aibici ). Let U' = U \  {ai,bi,ci : i < s } , A '  = AM U' 
and so on. We have IU'I = 3 t - 3 s .  Apply Lemma 8 to A ' , B  ~,C' and p. We 
obtain two halfplanes H' ,  H" such that  (say) A r U B ~ C H ~ M H I~, C r C H ~ U H" ,  and 
p ~ H '  U H".  The complementary halfplanes H ~ and H" both contain at most 2s 
points from {ai, bi, ci : i < s}. One of them, say H -'-7 contains only at most one half Of 
the points of C ~ from U' .  So altogether H --7 contains at most 2s + (t - s) /2 points of 
U. This contradicts (2) as t > 7 > 3 s .  | 
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5. T h e  p r o o f  of  L e m m a  4. 

A hypergraph H is a pair H=(V,8) ,  where V is a finite set, the set of vertices, and 
is a family of subsets of V, the set of edges. If all the edges have r elements, then 

H is called r-graph, or r-uniform hypergraph. The complete r-partite hypergraph 
K(tl , t2 . . . .  , tr)  has a partition of its vertex set V = V1U-.. UVr, such that  IV/I = ti, 
and ~ = {E : I E  n V~[ = 1} for all 1 < i  < r .  Erd6s [5] proved the following theorem 
in an implicit form. (More explicit formulations are given in Erd6s and Simonovits 
[7] or in Frankl and RSdl [8]). 

Lemma 9. For any positive integers r and tl <_... <_ tr there exist positive constants 
c' and c" such that the following holds. I f  H is an arbitrary r-graph with n vertices 
e>c'n r-e edges where r = 1/ ( tz . .  "tr-z), then H contains at least 

et~ ...t~ 
c I/ nvtl...tr-tl-...t~ 

copies of K ( t l , . . . ,  tr). | 

Now consider the triangle system ~{, and consider it as a 3-regular hypergraph 
with vertex set Y. Lemma 9 implies that  there is a constant c~ such that  the number 
of copies of K(t ,  t, t) in ~ is at least 

(3) cln3t/k ta 

Every copy of K(t ,  t, t) contains three multicolored triangles with a common interior 
point so, as we have seen in the argument leading to (1), it contains a suitable 
seventuple, i.e., seven distinct points {a, b, c, x, y, u, v} such that {a, b, c} E gs and 
(aft xy N aft uv) E conv(abc). Then, by (3), the total number of suitable seven-tuples 

( n - 7 7 ) > c 2 n T / k t ~ .  Then, as in (1), one has is at least (clnat/kt~)/ 3t - - 

N ( abc) > j-~ ( # suitable seven-tuples) :> c3n 4 / k t3-1. | Average 
{a, b, c} E ~  I""  I 

6. T h e  p roofs  of  T h e o r e m  5 a n d  2 

As Theorem 2 is a trivial corollary of 5 (with k = cn 1/t3) we turn to the proof 
of Theorem 5. Define the triangle system .~(i) as the set of triangles {a, b, c} C Y 
satisfying 

c . n 4  i t z -1  ( i  + l ~ t~-z 
< N(abc) < c"n 4 

4k - k 4k ] 

for i = 0, 1 , . . . .  If k > (2n) I/(t~-l), then the bound on IF[ is larger than 2n, and it 
is easy to see ([10] or [2]) that  2n points are always sufficient to cover all triangles 
from Y. So we may suppose that  k <<_ (2n) 1/(t3-1) <_ dn  1/t2. Then Lemma 4 implies 
that 

(4) lgY(0)[ + IZ(1)] + ' " +  I'M(i)l < ( 3 )  
i + 1 

- 4 k "  
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Now we are going to give a random construction for the,covering set F. A 
crossing from C(Y) is put into F with probability p, where p = akta-ln -4 and ~ is 
an absolute constant to be fixed later�9 The expected number of points in F is 

1 n c~kt3_ 1 
2 - 8  " 

We estimate the expected number of triangles from ~(i)  containing no point of F: 

(5) X i =:E(#{a, b, c} E ~ ( i ) :  F M conv(abc) = 0) = 

abcJt(i) 

< I~(i)J exp( -p  rain N(abc)) < J~(i) J exp(-ac" (i/4) t3-1). 

Then (4) and (5) imply that 

(6) E X i <  (3)  ~---~i~>_oe-ac"i/4< (n3) ~--k ( i - t -~-~).  

Then the expectation of the random variable 

IFI 
akt~-~/8+ ( 3 )  l+4/ac"'4k 

So there is a choice of F such that IF I < ak t~ 1/4 and the number 

�9 Choosing (~ properly (a = 4/c"), 
I 

is less than 2. 

~176176 l+4/~d'2k 
one obtains Theorem 5. 

7. The  proof  of  the  main  T h e o r e m  1 

We have to prove the upper bound. Suppose that S C R a is an n-set and P(abc), 
and P(abd) are halving planes, {a, b, c, d} C S. Let Hc and H d be halfspaces with 
boundary planes P(abc) and P(abd), resp., such that {a, b, c, d} C Hc ~Hd. Then 
there is a point x E S outside of Hc U H d such that abx is again a halving triangle. 
This can be seen by rotating (around the line ab) P(abc) into P(abd). 

Now take a plane Q in general position with respect to S, and consider Y, the 
image of S on Q under orthogonal projection. Denote the system of images of the 
halving triangles in S by ~.  Let X denote the sum of the characteristic functions of 
the open triangles in ~ .  By the above observation, X changes by at most 1 when 

onecrossesasegmentuvwithu, vEY .  Thismeansthatxisatmost (2 ) .Topu t  
this differently, every line orthogonal to Q and in general position with respect to S 

intersects at most ( 2 )  halving triangles of S. 
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Let F be a point set according to Theorem 2. Then 

[~} <_ [Fl(n2) + (#  empty triangles) < O(na-1/t3). 
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8. Ske tch  of  t h e  a l g o r i t h m  in T h e o r e m  6 

Lemma 10. Assume 
there are subsets A' 
[C'[ >_ [C[/12 and a 
a E A',b E B' and c 

that A, B and C are sets in general position in the plane. Then 
C A, B' C B and C' C C with [A'[ _> [A[/12, [B'[ _> [B[/12 and 
point p such that p is contained in all triangles abc whenever 
E C'. 

Proof. First, for any direction l, one can find two lines ll and 12 parallel to l which 
divide R: into three regions R0, R1 and R2 (where Ro and R2 are halfplanes with 
boundaries 11 and 12, resp., and R1 is a strip), such that  each Ri contains one 
third of the points of some color class. Say, e.g., A1 =: A fq Ro, IAI[ >_ [AI/3 and 
B1 =: B N RI, IB~I > IBI/3, finally C1 --: C N R2, [C1[ >_ [CI/3. By the Ham-Sandwich 
theorem, there exists a line la that  divides both A1 and C1 into almost equal parts. 
Denote by Ha the halfplane with boundary la and containing the larger part of B1. 
Then let B2 =: B1NHa, we have [B2[ _> [Bl[/2_> [B[/6 and A2 =: A1 \H3, ]A2[ _> [A[/6, 
finally C2 =: C1 \ 143, [C2[ >_ [C[/6. 

One can divide A2 into two equal parts by a hairline hi starting from the 
intersection point of 12 and la. Similarly, a hairline he parallel to I divides B2 into two 
equal parts, and finally, a halflin~ h3 starting from the point 1113 divides C2. Then 
consider the triangle T formed by hi, ha and the continuation of h2. The sides of T 
divide the plane into 7 regions. Let A' the part of A2 contained in the region with 2 
sides. The definition of B' and C I are similar. Then every point p E T satisfies the 
requirements in the Lemma. | 

For the proof of Theorem 6 we only need from the above argument that for 
arbitrary sets A, B and C there is a point p which is contained in at least 

(7) IAIIBIICI/1728 

triangles abc with a E A, b E B, c E C; and moreover, it is easy to find such a point 
p algorithmically. We mention here that  Lemma 10 implies Lemma 3 with t = 36. 

Supposewehaveanalgori thmsupplyingacoverF,  w h i c h a v o i d s a t m o s t ( 3 ) / k  

triangles of Y. Let IF[ = f(k) or briefly f .From any point x E F one can start 
halfiines hl(x) ,h2(x) , . . . ,hm(x)  such that  the cone defined by hi(x) and hi+l(x) 
contains about n / m  points of Y. Let R1, R2 , . . . , /~M be the cell-decomposition of 
the plane defined by the halflines {hi(x) : x E F, 1 < i < m}. Then M <_ (fro) 2. 
Call a three-tuple of the regions Ra, Rb, Rc uncovered if all triangles conv(xyz) with 
x 6 Ra, y E Rb and z E Rc avoid F. They are covered if all triangles contain a point 
from F, and ambiguous if both of the above constraints fail. 
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The number of triangles from Y which are covered by at most 2 regions Ri, Rj 
] \ 

1 ( n )  It is easy to see that  the number of triangles in is at most O ( / m )  3 " ambiguous 
\ / 

t r i p l e s i s a t m o s t ( 9 f / m ) ( 3  ) �9 

The above Lemma yields a point p(a, b, c) for each uncovered triple RaRbR c. 
Then, the set F U  {p(a,b,c) : l<_a,b ,c<M} avoids less than 

triangles by (7). If we choose m = 20 f k, then(S) gives3455(n3)/3456k. This leads 

to the recursion 

(9) f \ 3 - ~  ] <- f 4- <_ (fro) ~ = O(f(k)12k6). 

9. P r o b l e m s  

Define hd(n ) as the maximum number of halving hyperplanes in d dimensions. 
The construction in [4] gives 

hd(n ) = ~(nhd_ 1 (n) ) ---- ~(n d log n). 

The above arguments would give t ha t  for some c = c(d) one has 

(? )  hd(n)  = 

The only thing that  is missing for this is a d-dimensional version of Lemma 3. In this 
d-dimensional version we would need d + 1 multicolored simplices with a common 
point. 

It would be interesting to find the higher dimensional analogues of Lemma 8 and 
of the algorithm in Theorem 6. 

What  is r  the maximum ratio of the number of covered triangles by f points? 
The only known value, as it was mentioned, is r = 2/9. We conjecture that  

--- 

Of course, it would be also interesting to find the best value for the constants in 
our lemmas, like in Lemma 3. 
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