ON THE NUMBER OF HALVING PLANES

I. BÁRÁNY, Z. FÜREDI and L. LOVÁSZ

Received December 8, 1988

Let $S \subset \mathbf{R}^{3}$ be an n-set in general position. A plane containing three of the points is called a halving plane if it dissects S into two parts of equal cardinality. It is proved that the number of halving planes is at most $O\left(n^{2.998}\right)$.

As a main tool, for every set Y of n points in the plane a set N of size $O\left(n^{4}\right)$ is constructed such that the points of N are distributed almost evenly in the triangles determined by Y.

1. Halving planes

A point-set $S \subset \mathbf{R}^{d}$ is in general position if no $d+1$ points of it lie in a hyperplane. The plane determined by the non-collinear points a, b, c is denoted by $P(a, b, c)$. In general, the affine subspace spanned by the set A is denoted by aff (A). As usual, $\operatorname{conv}(A)$ stands for the convex hull of A.

Assume that S is an n-element point-set in the three-dimensional Euclidean space in general position. A plane $P(a, b, c)$, where $a, b, c \in S$, is called a halving plane if it dissects S into two equal parts, that is, on both sides of P there are exactly $(n-3) / 2$ points of S. Denote the number of halving planes by $h(S)$, and set

$$
h(n)=\max \left\{h(S): S \subset \mathbf{R}^{3},|S|=n, S \text { is in general position }\right\}
$$

Clearly, $h(n) \leq\binom{ n}{3}$. The aim of this paper is to improve this trivial bound proving
Theorem 1. $h(n) \leq O\left(n^{2.998}\right)$.
The proof which is postponed to section 7 is similar to that of the 2 -dimensional case given in [9], but the crucial step requires new tools (Theorem 2.). Actually, we will prove $h(n) \leq O\left(n^{3-a}\right)$ with $a=1 / 343$. (With more effort, one could prove the, result with $a=1 / 64$.)

AMS subject classification (1980): 52 A 37
Research supported partly by the Hungarian National Foundation for Scientific Research grant No. 1812

Define $h_{2}(n)$ as the maximum number of halving lines of a planar n-set. It is well-known [6] that $h_{2}(n) \geq \Omega(n \log n)$. This result is used in [4] to give an example proving

$$
h(n) \geq \Omega\left(n^{2} \log n\right)
$$

2. Covering most of the triangles by crossings

A point-set S in $\mathbf{R}^{\boldsymbol{d}}$ is said to be in totally general position if

$$
\operatorname{dim}\left(\bigcap_{i=1}^{s} \operatorname{aff} A_{i}\right) \leq \max \left\{-1, \sum \operatorname{dim}\left(A_{i}\right)-(s-1) d\right\}
$$

holds for all subsets $A_{i} \subset S$. From now on we always suppose, if it is not otherwise stated, that the (finite) point-sets are in totally general position. A set F covers t triangles from the set $Y \subset \mathbf{R}^{2}$ if at least t open triangles (y_{1}, y_{2}, y_{3}) (where $y_{i} \in Y$) contain a point of F. Obviously, no set can cover more than $\binom{|Y|}{3}$ triangles.

Theorem 2. For every n element set $Y \subset \mathbb{R}^{2}$ there exists a set F with $|F|<n^{0.998}$ which covers all but at most $O\left(n^{2.998}\right)$ triangles from Y.

Two lines determined by four distinct points of Y intersect in a crossing. Define $C(Y)$ as the set of crossings. We have

$$
|C(Y)|=\frac{1}{2}\binom{n}{2}\binom{n-2}{2}=\Theta\left(n^{4}\right)
$$

Let $N(R)$ denote the number of crossings in the interior of the region R, and $N(a b c)=N(\operatorname{conv}(a, b, c))$.

It is perhaps instructive to show at this step that the average number of crossings in a triangle with vertices from Y is $\Omega\left(n^{4}\right)$. Our first observation is that every set of nine points, $E \subset Y$, contains a triangle such that at least one of the crossings defined by four of the remaining 6 points lies inside the triangle. Indeed, a theorem of Tverberg [12] (cf. also Reay [11]) states that there is a partition $\left\{a_{1}, b_{1}, c_{1}\right\} \cup$ $\left\{a_{2}, b_{2}, c_{2}\right\} \cup\left\{a_{3}, b_{3}, c_{3}\right\}=E$ such that the intersection of the three triangular regions $\operatorname{conv}\left(a_{i} b_{i} c_{i}\right)(1 \leq i \leq 3)$ is non-empty. Then $\cap_{i} \operatorname{conv}\left(a_{i} b_{i} c_{i}\right)$ is a convex polygon. Assume that the line $a_{3} b_{3}$ contains an edge of this polygon. The prolongation of this edge in any direction will leave one of the triangles conv $\left(a_{1} b_{1} c_{1}\right)$ or conv $\left(a_{2} b_{2} c_{2}\right)$ first; assume it leaves conv $\left(a_{2} b_{2} c_{2}\right)$ first, at a point p. Then p is a crossing, defined by four of the points $a_{2} b_{2} c_{2} a_{3} b_{3}$, and it is contained in the triangle $\operatorname{conv}\left(a_{1} b_{1} c_{1}\right)$.

So every nine-tuple from Y contains an (ordered) seven-tuple abcxyuv such that (aff $x y \cap$ aff $u v$) \in int $\operatorname{conv}(a b c)$. As every seven-tuple is contained in $\binom{n-7}{2}$ nine-tuples we have that the number of suitable seven-tuples is at least
$\binom{n}{9} /\binom{n-7}{2}=\frac{1}{36}\binom{n}{7}$. Hence we have

$$
\begin{align*}
\text { Average } N(a b c) & =\frac{1}{\binom{n}{3}} \sum_{a, b, c \in Y} \sum_{\substack{x, y, u, v \in Y \backslash\{a, b, c\} \\
\text { aff xynaff } u v \in \operatorname{int} \operatorname{conv}(a b c)}} 1 \tag{1}\\
& \left.=\frac{1}{\binom{n}{3}} \text { (\# suitable seven-tuples }\right) \geq\binom{ n-3}{4} / 1260 .
\end{align*}
$$

Unfortunately, this computation is not enough to guarantee that most triangles contain $\Omega\left(n^{4}\right)$ crossings. For this we need a colored version of Tverberg's theorem:

Lemma 3. There is a positive integer t such that the following holds. Assume that $A, B, C \subset \mathbf{R}^{2}$ are disjoint sets with at least t elements each, such that their union is in general position. Then there exist three disjoint triples $a_{i} b_{i} c_{i}, a_{i} \in A, b_{i} \in B$, $c_{i} \in C(1 \leq i \leq 3)$ such that $\cap_{i} \operatorname{conv}\left(a_{i} b_{i} c_{i}\right) \neq \emptyset$.

The smallest value of t for which we managed to prove this lemma is 4 , and we do not have a counterexample even for $t=3$. For brevity's sake we give the proof for $t=7$.

The other tool of the proof is the following lemma, which strengthens the averaging in (1). This lemma will imply that the number of triangles with vertices from Y containing "few" crossings is "small".
Lemma 4. Let t satisfy the previous Lemma. Then there exist positive constants c^{\prime} and $c^{\prime \prime}$ such that the following holds. Assume that $1 \leq k \leq c^{\prime} n^{1 / t^{2}}$, and \mathcal{H} is a set of triples from Y with $|\mathscr{H}|>\binom{n}{3} / k$. Then the average number of crossings in the members of \mathscr{H} is at least $c^{\prime \prime} n^{4} / k^{t^{3}-1}$.

3. Corollaries and a polynomial algorithm

In this section t is a value that satisfies Lemma $3, k \geq 1$ and $Y \subset \mathbf{R}^{2}$ is an n element set in general position. A straightforward application of Lemma 4 yields the following covering theorem, where c is again an absolute constant.

Theorem 5. There is a set $F \subset \mathbf{R}^{2}$ of size at most $c k^{t^{3}-1}$ such that the number of triangles with vertices from Y containing no point of F is at most $\binom{n}{3} / k$.

It is interesting to compare Theorem 5 to a result from [3], which states that there is a point contained in at least $\frac{2}{9}\binom{n}{3}$ triangles from Y. (For higher dimensions, see [1].) The covering set F in Theorem 5 is obtained by a random process. We have a deterministic, polynomial time algorithm to construct a suitable F as well, but now F will have larger size:

Theorem 6. There is an algorithm, polynomial in n, which supplies a set F with $|F| \leq \exp \left(c^{\prime} k^{9000}\right)$ such that the number of triangles from Y containing no point of \dot{F} is at most $\binom{n}{3} / k$.

Here c^{\prime} is another absolute constant. The following corollary of Theorem 5 concerns the difference between the behavior of a continuous and a discrete measure of the planar convex regions.
Theorem 7. There is a set $F \subset \mathbb{R}^{2}$ of size at most $c^{\prime} k^{3 t^{3}-3}$ such that any convex region R with $|R \cap Y| \geq n / k$ contains a point of F.

This follows from Theorem 5, as if $|R \cap Y| \geq n / k$, and $F \cap Y=\emptyset$, then F avoids at least $\binom{n / k}{3}$ triangles.

4. The proof of Lemma 3

Lemma 8. Let $E_{1}, E_{2}, E_{3} \subset \mathbf{R}^{2}$ be finite nonempty subsets and p any point. Then p is not contained in any triangle conv $\left(e_{1} e_{2} e_{3}\right)$ with $e_{i} \in E_{i}$ if and only if there exist a $k \in\{1,2,3\}$ and two closed halfplanes H, H^{\prime} such that $p \notin H^{\prime} \cup H^{\prime \prime}, E_{i} \subset H^{\prime} \cap H^{\prime \prime}$ if $i \neq k$ and $E_{k} \subset H^{\prime} \cup H^{\prime \prime}$.
Proof. By Theorem 2.3 of [1], p is contained in a triangle conv $\left(e_{1} e_{2} e_{3}\right)$ if it is contained in the convex hull of two of the sets E_{1}, E_{2}, E_{3}. So we may suppose that $p \notin \operatorname{conv} E_{i}$ for $i=1,2$, say. Write C_{1} and C_{2} for the smallest cone containing E_{1} and E_{2} and having apex p. It is easy to see that if $C_{1} \cup C_{2}$ contains a line, then p is contained in a triangle conv $\left(e_{1} e_{2} e_{3}\right)$. Then the smallest cone containing $C_{1} \cup C_{2}$ and having apex p is of the form $H_{1} \cap H_{2}$, where H_{1} and H_{2} are two halfspaces. It follows readily that H_{1} and H_{2} satisfy the requirements.

Let $U=A \cup B \cup C,|U|=3 t \geq 21, i \geq 0$. The i-th convex hull, $\operatorname{conv}_{i}(U)$, is the intersection of all the (open) halfplanes containing at least $|U|-i$ elements of U. Then $\operatorname{conv}_{i}(U)$ is a convex polygonal region for $0 \leq i \leq t-1$. Let p be a point from int $\operatorname{conv}_{t-1}(U)$, such that $U \cup\{p\}$ is in general position. Then for all open halfplanes H we have that

$$
\begin{equation*}
p \in H \text { implies }|H \cap U| \geq t \tag{2}
\end{equation*}
$$

We claim that p is contained in at least three vertex-disjoint multicolored triangles of U.

Suppose, to the contrary, that one can find only s ($s=0,1$ or 2) triangles $a_{i} b_{i} c_{i}$ $(i=1, \ldots, s)$ such that $p \in \operatorname{conv}\left(a_{i} b_{i} c_{i}\right)$. Let $U^{\prime}=U \backslash\left\{a_{i}, b_{i}, c_{i}: i \leq s\right\}, A^{\prime}=A \cap U^{\prime}$ and so on. We have $\left|U^{\prime}\right|=3 t-3 s$. Apply Lemma 8 to $A^{\prime}, B^{\prime}, C^{\prime}$ and p. We obtain two halfplanes $H^{\prime}, H^{\prime \prime}$ such that (say) $A^{\prime} \cup B^{\prime} \subset H^{\prime} \cap H^{\prime \prime}, C^{\prime} \subset H^{\prime} \cup H^{\prime \prime}$, and $p \notin H^{\prime} \cup H^{\prime \prime}$. The complementary halfplanes $\overline{H^{\prime}}$ and $\overline{H^{\prime \prime}}$ both contain at most $2 s$ points from $\left\{a_{i}, b_{i}, c_{i}: i \leq s\right\}$. One of them, say $\overline{H^{\prime}}$ contains only at most one half of the points of C^{\prime} from U^{\prime}. So altogether $\overline{H^{\prime}}$ contains at most $2 s+(t-s) / 2$ points of U. This contradicts (2) as $t \geq 7>3 s$.

5. The proof of Lemma 4.

A hypergraph \mathbf{H} is a pair $\mathbf{H}=(V, \mathfrak{E})$, where V is a finite set, the set of vertices, and \mathscr{E} is a family of subsets of V, the set of edges. If all the edges have r elements, then \mathbf{H} is called r-graph, or r-uniform hypergraph. The complete r-partite hypergraph $\mathbf{K}\left(t_{1}, t_{2}, \ldots, t_{r}\right)$ has a partition of its vertex set $V=V_{1} \cup \cdots \cup V_{r}$, such that $\left|V_{i}\right|=t_{i}$, and $\mathscr{E}=\left\{E:\left|E \cap V_{i}\right|=1\right\}$ for all $1 \leq i \leq r$. Erdős [5] proved the following theorem in an implicit form. (More explicit formulations are given in Erdős and Simonovits [7] or in Frankl and Rödl [8]).
Lemma 9. For any positive integers r and $t_{1} \leq \ldots \leq t_{r}$ there exist positive constants c^{\prime} and $c^{\prime \prime}$ such that the following holds. If \mathbf{H} is an arbitrary r-graph with n vertices $e>c^{\prime} n^{r-\varepsilon}$ edges where $\varepsilon=1 /\left(t_{1} \cdots t_{r-1}\right)$, then \mathbf{H} contains at least

$$
c^{\prime \prime} \frac{e^{t_{1} \cdots t_{r}}}{n^{r t_{1} \cdots t_{r}-t_{1}-\ldots t_{r}}}
$$

copies of $\mathbf{K}\left(t_{1}, \ldots, t_{r}\right)$.
Now consider the triangle system \mathscr{H}, and consider it as a 3 -regular hypergraph with vertex set Y. Lemma 9 implies that there is a constant c_{1} such that the number of copies of $\mathbf{K}(t, t, t)$ in \mathscr{H} is at least

$$
\begin{equation*}
c_{1} n^{3 t} / k^{t^{3}} \tag{3}
\end{equation*}
$$

Every copy of $\mathbf{K}(t, t, t)$ contains three multicolored triangles with a common interior point so, as we have seen in the argument leading to (1), it contains a suitable seventuple, i.e., seven distinct points $\{a, b, c, x, y, u, v\}$ such that $\{a, b, c\} \in \mathscr{H}$ and (aff $x y \cap a f f u v) \in \operatorname{conv}(a b c)$. Then, by (3), the total number of suitable seven-tuples is at least $\left(c_{1} n^{3 t} / k^{t^{3}}\right) /\binom{n-7}{3 t-7} \geq c_{2} n^{7} / k^{t^{3}}$. Then, as in (1), one has

$$
\begin{aligned}
& \text { Average } \quad N(a b c) \geq \frac{1}{|\mathscr{H}|}(\# \text { suitable seven-tuples }) \geq c_{3} n^{4} / k^{t^{3}-1} \text {. } \\
& \{a, b, c\} \in \mathscr{H}
\end{aligned}
$$

6. The proofs of Theorem 5 and 2

As Theorem 2 is a trivial corollary of 5 (with $k=c n^{1 / t^{3}}$) we turn to the proof of Theorem 5. Define the triangle system $\mathscr{H}(i)$ as the set of triangles $\{a, b, c\} \subset Y$ satisfying

$$
c^{\prime \prime} n^{4} \frac{i^{t^{3}-1}}{4 k} \leq N(a b c)<c^{\prime \prime} n^{4}\left(\frac{i+1}{4 k}\right)^{t^{3}-1}
$$

for $i=0,1, \ldots$. If $k>(2 n)^{1 /\left(t^{3}-1\right)}$, then the bound on $|F|$ is larger than $2 n$, and it is easy to see ([10] or [2]) that $2 n$ points are always sufficient to cover all triangles from Y. So we may suppose that $k \leq(2 n)^{1 /\left(t^{3}-1\right)} \leq c^{\prime} n^{1 / t^{2}}$. Then Lemma 4 implies that

$$
\begin{equation*}
|\mathscr{H}(0)|+|\mathscr{H}(1)|+\cdots+|\mathscr{H}(i)| \leq\binom{ n}{3} \frac{i+1}{4 k} . \tag{4}
\end{equation*}
$$

Now we are going to give a random construction for the , covering set F. A crossing from $C(Y)$ is put into F with probability p, where $p=\alpha k^{t^{3}-1} n^{-4}$ and α is an absolute constant to be fixed later. The expected number of points in F is

$$
E(|F|)=p \frac{1}{2}\binom{n}{2}\binom{n-2}{2} \leq \frac{\alpha}{8} k^{t^{3}-1}
$$

We estimate the expected number of triangles from $\mathscr{H}(i)$ containing no point of F :

$$
\begin{align*}
X_{i}= & : E(\#\{a, b, c\} \in \mathscr{H}(i): F \cap \operatorname{conv}(a b c)=\emptyset)= \tag{5}\\
& \sum_{a b c \in \mathscr{H}(i)}(1-p)^{N(a b c)} \leq|\mathscr{H}(i)|(1-p)^{\min N(a b c)} \\
& \leq|\mathscr{H}(i)| \exp (-p \min N(a b c)) \leq|\mathscr{H}(i)| \exp \left(-\alpha c^{\prime \prime}(i / 4)^{t^{3}-1}\right) .
\end{align*}
$$

Then (4) and (5) imply that

$$
\begin{equation*}
\sum X_{i} \leq\binom{ n}{3} \frac{1}{4 k} \sum_{i \geq 0} e^{-\alpha c^{\prime \prime} i / 4}<\binom{n}{3} \frac{1}{4 k}\left(1+\frac{4}{\alpha c^{\prime \prime}}\right) \tag{6}
\end{equation*}
$$

Then the expectation of the random variable

$$
\frac{|F|}{\alpha k^{t^{3}-1} / 8}+\frac{\sum X_{i}}{\binom{n}{3} \frac{1+4 / \alpha c^{\prime \prime}}{4 k}}
$$

is less than 2. So there is a choice of F such that $|F| \leq \alpha k^{t^{3}-1} / 4$ and the number of triangles avoiding F is at most $\binom{n}{3} \frac{1+4 / \alpha c^{\prime \prime}}{2 k}$. Choosing α properly $\left(\alpha=4 / c^{\prime \prime}\right)$, one obtains Theorem 5.

7. The proof of the main Theorem 1

We have to prove the upper bound. Suppose that $S \subset \mathbf{R}^{3}$ is an n-set and $P(a b c)$, and $P(a b d)$ are halving planes, $\{a, b, c, d\} \subset S$. Let H_{c} and H_{d} be halfspaces with boundary planes $P(a b c)$ and $P(a b d)$, resp., such that $\{a, b, c, d\} \subset H_{c} \cap H_{d}$. Then there is a point $x \in S$ outside of $H_{c} \cup H_{d}$ such that $a b x$ is again a halving triangle. This can be seen by rotating (around the line $a b$) $P(a b c)$ into $P(a b d)$.

Now take a plane Q in general position with respect to S, and consider Y, the image of S on Q under orthogonal projection. Denote the system of images of the halving triangles in S by \mathscr{H}. Let χ denote the sum of the characteristic functions of the open triangles in \mathscr{H}. By the above observation, χ changes by at most 1 when one crosses a segment $u v$ with $u, v \in Y$. This means that χ is at most $\binom{n}{2}$. To put this differently, every line orthogonal to Q and in general position with respect to S intersects at most $\binom{n}{2}$ halving triangles of S.

Let F be a point set according to Theorem 2. Then

$$
|\mathscr{H}| \leq|F|\binom{n}{2}+(\# \text { empty triangles }) \leq O\left(n^{3-1 / t^{3}}\right) .
$$

8. Sketch of the algorithm in Theorem 6

Lemma 10. Assume that A, B and C are sets in general position in the plane. Then there are subsets $A^{\prime} \subset A, B^{\prime} \subset B$ and $C^{\prime} \subset C$ with $\left|A^{\prime}\right| \geq|A| / 12,\left|B^{\prime}\right| \geq|B| / 12$ and $\left|C^{\prime}\right| \geq|C| / 12$ and a point p such that p is contained in all triangles abc whenever $a \in A^{\prime}, b \in B^{\prime}$ and $c \in C^{\prime}$.

Proof. First, for any direction l, one can find two lines l_{1} and l_{2} parallel to l which divide \mathbf{R}^{2} into three regions R_{0}, R_{1} and R_{2} (where R_{0} and R_{2} are halfplanes with boundaries l_{1} and l_{2}, resp., and R_{1} is a strip), such that each R_{i} contains one third of the points of some color class. Say, e.g., $A_{1}=: A \cap R_{0},\left|A_{1}\right| \geq|A| / 3$ and $B_{1}=: B \cap R_{1},\left|B_{1}\right| \geq|B| / 3$, finally $C_{1}=: C \cap R_{2},\left|C_{1}\right| \geq|C| / 3$. By the Ham-Sandwich theorem, there exists a line l_{3} that divides both A_{1} and C_{1} into almost equal parts. Denote by H_{3} the halfplane with boundary l_{3} and containing the larger part of B_{1}. Then let $B_{2}=: B_{1} \cap H_{3}$, we have $\left|B_{2}\right| \geq\left|B_{1}\right| / 2 \geq|B| / 6$ and $A_{2}=: A_{1} \backslash H_{3},\left|A_{2}\right| \geq|A| / 6$, finally $C_{2}=: C_{1} \backslash H_{3},\left|C_{2}\right| \geq|C| / 6$.

One can divide A_{2} into two equal parts by a halfline h_{1} starting from the intersection point of l_{2} and l_{3}. Similarly, a halfine h_{2} parallel to l divides B_{2} into two equal parts, and finally, a halfline h_{3} starting from the point $l_{1} l_{3}$ divides C_{2}. Then consider the triangle T formed by h_{1}, h_{3} and the continuation of h_{2}. The sides of T divide the plane into 7 regions. Let A^{\prime} the part of A_{2} contained in the region with 2 sides. The definition of B^{\prime} and C^{\prime} are similar. Then every point $p \in T$ satisfies the requirements in the Lemma.

For the proof of Theorem 6 we only need from the above argument that for arbitrary sets A, B and C there is a point p which is contained in at least

$$
\begin{equation*}
|A||B||C| / 1728 \tag{7}
\end{equation*}
$$

triangles $a b c$ with $a \in A, b \in B, c \in C$; and moreover, it is easy to find such a point p algorithmically. We mention here that Lemma 10 implies Lemma 3 with $t=36$.

Suppose we have an algorithm supplying a cover F, which avoids at most $\binom{n}{3} / k$ triangles of Y. Let $|F|=f(k)$ or briefly f.From any point $x \in F$ one can start halflines $h_{1}(x), h_{2}(x), \ldots, h_{m}(x)$ such that the cone defined by $h_{i}(x)$ and $h_{i+1}(x)$ contains about n / m points of Y. Let $R_{1}, R_{2}, \ldots, R_{M}$ be the cell-decomposition of the plane defined by the halflines $\left\{h_{i}(x): x \in F, 1 \leq i \leq m\right\}$. Then $M \leq(f m)^{2}$. Call a three-tuple of the regions R_{a}, R_{b}, R_{c} uncovered if all triangles conv $(x y z)$ with $x \in R_{a}, y \in R_{b}$ and $z \in R_{c}$ avoid F. They are covered if all triangles contain a point from F, and ambiguous if both of the above constraints fail.

The number of triangles from Y which are covered by at most 2 regions R_{i}, R_{j} is at most $O(1 / m)\binom{n}{3}$. It is easy to see that the number of triangles in ambiguous triples is at most $(9 f / m)\binom{n}{3}$.

The above Lemma yields a point $p(a, b, c)$ for each uncovered triple $R_{a} R_{b} R_{c}$. Then, the set $F \cup\{p(a, b, c): 1 \leq a, b, c \leq M\}$ avoids less than

$$
\begin{equation*}
\binom{n}{3}\left(\left(\frac{1}{k}-\frac{10 f}{m}\right) \frac{1727}{1728}+\frac{10 f}{m}\right) \tag{8}
\end{equation*}
$$

triangles by (7). If we choose $m=20 f k$, then (8) gives $3455\binom{n}{3} / 3456 k$. This leads to the recursion

$$
\begin{equation*}
f\left(\frac{3456}{3455} k\right) \leq f+\binom{M}{3} \leq(f m)^{6}=O\left(f(k)^{12} k^{6}\right) \tag{9}
\end{equation*}
$$

9. Problerns

Define $h_{d}(n)$ as the maximum number of halving hyperplanes in d dimensions. The construction in [4] gives

$$
h_{d}(n)=\Omega\left(n h_{d-1}(n)\right)=\Omega\left(n^{d} \log n\right) .
$$

The above arguments would give that for some $c=c(d)$ one has

$$
\begin{equation*}
h_{d}(n)=O\left(n^{d-c}\right) \tag{?}
\end{equation*}
$$

The only thing that is missing for this is a d-dimensional version of Lemma 3. In this d-dimensional version we would need $d+1$ multicolored simplices with a common point.

It would be interesting to find the higher dimensional analogues of Lemma 8 and of the algorithm in Theorem 6.

What is $\varepsilon(f)$, the maximum ratio of the number of covered triangles by f points? The only known value, as it was mentioned, is $\varepsilon(1)=2 / 9$. We conjecture that $\varepsilon(\sqrt{n})=O(1 / \sqrt{n})$.

Of course, it would be also interesting to find the best value for the constants in our lemmas, like in Lemma 3.
Acknowledgements The authors are grateful to J. Beck, J. Pach, W. Steiger, E. Szemerédi and J. Töröcsik for stimulating discussions.

References

[1] I. Bárány: A generalization of Caratheodory's theorem, Discrete Math., 40 (1982), 141-152.
[2] I. Bárány, and Z. Füredr: Empty simplices in Euclidean space, Canad. Math. Bull., 30 (1987), 436-445.
[3] E. Boros, and Z. Füredi: The number of triangles covering the center of an n-set, Geometriae Dedicata, 17 (1984), 69-77.
[4] H. Edelsbrunner: Algorithms in combinatorial geometry, Springer, Berlin Heidelberg, (1987).
[5] P. Erdős: On extremal problems of graphs and generalized graphs, Israel J. Math., 2 (1964), 183-190.
[6] P. Erdős, L. Lovász, A. Simmons, and E.G.Straus: Dissection graphs of planar point sets, in A Survey of Combinatorial Theory (J. N. Shrivastava et al., eds.), North-Holland, Amsterdam, (1973), 139-149.
[7] P. Erdös, and M. Simonovits: Supersaturated graphs and hypergraphs, Combinatorica, 3 (1983), 181-192.
[8] P. Frankl, and V. Rödl: Hypergraphs do not jump, Combinatorica, 4 (1984), 149159.
[9] L. Lovász On the number of halving lines, Annales Univ. R. Eötvös, 14 (1971), 107108.
[10] M. Katchalski, and A. Meir: On empty triangles determined by points in the plane, Acta Math. Hungar., 51 (1988), 323-328.
[11] J. Reay: An extension of Radon's theorem, Illinois J. Math., 12 (1968), 184-189.
[12] H. Tverberg: A generalization of Radon's theorem, J. London Math. Soc., 41 (1966), 123-128.

Imre Bárány and Zoltán Füredi
Hungarian Academy of Sciences, 1364 Budapest, P.O.B. 127, Hungary
László Lovász
Department of Computer Science,
Eötvös Loránd University
1088 Budapest, Múzeum krt. 6.-8.,
Hungary
and
Princetan University,
Princeton, NJ 08544,
U.S.A.

Department of Computer Science, Eötvös Loránd University
1088 Budapest, Múzeum krt. 6.-8., Hungary
and
Princetan University, Princeton, NJ 08544, U.S.A.

