THE CARATHEODORY NUMBER FOR THE *k*-CORE

I. BÁRÁNY* and M. PERLES

Received October 10, 1988 Revised December 16, 1988

The k-core of the set $S \subset \mathbb{R}^n$ is the intersection of the convex hull of all sets $A \subseteq S$ with $|S \setminus A| \leq k$. The Caratheodory number of the k-core is the smallest integer f(d,k) with the property that $x \in \operatorname{core}_k S$, $S \subset \mathbb{R}^n$ implies the existence of a subset $T \subseteq S$ such that $x \in \operatorname{core}_k T$ and $|T| \leq f(d,k)$. In this paper various properties of f(d,k) are established.

1. Definitions and results

The k-core of a set $S \subseteq \mathbb{R}^d$ is the intersection of the convex hulls of all sets $A \subseteq S$ with $|S \setminus A| \leq k$, i.e.,

$$\operatorname{core}_k S = \cap \{\operatorname{conv} A : A \subseteq S, |S \setminus A| \le k \}.$$

Here and in what follows we assume S is a finite multiset in \mathbb{R}^d . This means that the points in S have "multiplicity". Strictly speaking, a multiset is a map $S: F \to \mathbb{R}^d$ and in our case F is finite. Then $\operatorname{core}_k S = \cap \{\operatorname{conv} S(E) : E \subseteq F, |F \setminus E| \le k\}$. From now on we do not say explicitly that the sets in question are multisets. This will make the notation simpler and will not cause confusion.

Alternatively, we can define

 $\operatorname{core}_k S = \cap \{H^+ : H^+ \text{ is a closed halfspace with } |H^+ \cap S| \ge |S| - k\}.$

So the case k = 0 is the usual convex hull. Several properties of the k-core are known, c.f. [5] (or [2] Theorem 2.8). In [1], Boros and Füredi extend the definition of the k-core to every real number $k \ge 0$.

We define the Caratheodory number of the k-core as the smallest integer f(d, k)with the property that $x \in \operatorname{core}_k S$, $S \subset \mathbb{R}^d$ implies the existence of a subset $T \subseteq S$ such that $x \in \operatorname{core}_k T$ and $|T| \leq f(d, k)$. By Caratheodory's theorem, f(d, 0) = d + 1. At the 1982 Oberwolfach conference on convex bodies, Micha Perles posed the problem of determining f(d, k). In this paper various properties of

^{*}Research of this author was partially supported by Hungarian National Science Foundation grant no. 1812.

AMS subject classification (1980): 52 A 20.

f(d,k) are established. We determine, for instance, f(2,k) and f(d,1) exactly. We also establish the order of magnitude of f(d,k) when $d \to \infty$ and k is fixed.

Our first theorem shows that f(d, k) is finite for every $d \ge 1$ and $k \ge 0$.

Theorem 1. If f(d, k - 1) is finite then so is f(d, k) and

$$f(d,k) \le \max\left((k+1)(d+1), d(1+f(d,k-1))\right)$$

It follows from here that $f(d,k) \leq d^{k+1} + 2d^k + d^{k-1} + \ldots + 1$ and this can be improved to $f(d,k) \leq d^{k+1}$ for all $k \geq 1$ and $d \geq 1$ except (d,k) = (2,1) and (2,2).

A simple lower bound on the Caratheodory number is this:

(1)
$$f(d,k) \ge (k+1)(d+1)$$

To see this take for S the set of vertices of a d-dimensional simplex (k + 1)-times. Then the center of the simplex lies in $\operatorname{core}_k S$ but it does not lie in $\operatorname{core}_k T$ if T is a proper subset of S.

It is readily seen that for d = 1 equality holds in (1). This is the case, too, when d = 2.

Theorem 2. f(2,k) = 3(k+1).

One might expect that equality holds in (1) for all d and k. That this is not the case is shown by

Theorem 3. For any n with d > n > k > 0 we have

(2)
$$f(d,k) \ge k + d + \binom{n}{k}(d-n)$$

When k is fixed and $d \to \infty$ we get from here and Theorem 1

$$\frac{1}{e^k(k+1)!}d^{k+1} \le f(d,k) \le d^{k+1},$$

thus establishing the order of magnitude of f(d, k) for fixed k.

Theorem 4. $f(d, 1) = \max(2(d+1), 1 + d + \lfloor d^2/4 \rfloor).$

Our last theorem shows that f(d, k) grows quite fast when $d \ge 5$ is fixed and k tends to infinity.

Theorem 5. If
$$k > d$$
 and $d \ge 5$, then $f(d, k) \ge k + d + \frac{1}{2} \binom{k}{\lfloor (d-1)/2 \rfloor}$.

186

2. Proof of Theorem 1

We start with an observation that will be basic (explicitly or implicitly) for most of the proofs to follow.

Lemma 6. Assume $S \subset \mathbb{R}^d$ and |S| > (d+1)(k+1) and $y \in \operatorname{core}_k S$ but $y \notin \operatorname{core}_k T$ for any proper subset $T \subset S$. Then there is a point x in relbd $\operatorname{core}_k S$ such that $x \notin \operatorname{core}_k T$ for any proper subset $T \subset S$.

Proof of Lemma 6. As $|S| \ge (k+1)(d+1) + 1$, it follows from Tverberg's theorem [6] that there are pairwise disjoint subsets S_1, \ldots, S_{k+1} of S whose conver hulls have a point, say $u \in \mathbb{R}^d$, in common. Then $u \in \operatorname{core}_{k+1}S$ and, consequently, $u \in \operatorname{core}_kT$ for every $T \subset S$ with |T| = |S| - 1. Let x be the last point in core_kS on the halfline stemming from u and passing through y (clearly $u \neq y$). If $x \in \operatorname{core}_kT$ for some subset $T \subset S$ with |T| = |S| - 1, then $u \in \operatorname{core}_kT$ implies $y \in \operatorname{core}_kT$, a contradiction.

Now we prove Theorem 1. Let $S \subset \mathbb{R}^d$ and assume |S| > (k+1)(d+1) and $x \in \operatorname{core}_k S$ but $x \notin \operatorname{core}_k T$ for any proper subset $T \subset S$. Applying Lemma 6 we may assume $x \notin \operatorname{relbd} \operatorname{core}_k S$. Then $x \in \operatorname{bd} \operatorname{conv}(S \setminus A)$ for some $A \subset S$, $|A| \leq k$ (as otherwise $x \in \operatorname{int} \operatorname{conv}(S \setminus A)$ for all A with $|A| \leq k$. Then by Caratheodory's theorem, applied in $\operatorname{bd} \operatorname{conv}(S \setminus A)$, there are points $z_1, \ldots, z_d \in S$ with $x \in \operatorname{corv}\{z_1, \ldots, z_d\}$. Clearly $x \in \operatorname{core}_{k-1}(S \setminus z_i)$ for each $i = 1, \ldots, d$. So (by the induction hypothesis) there exists a subset $T_i \subseteq S \setminus z_i$ with $|T_i| \leq f(d, k-1)$ and $x \in \operatorname{core}_{k-1}T_i$. Define $T = \{z_1, \ldots, z_d\} \cup T_1 \cup \ldots \cup T_d$. We claim that $x \in \operatorname{core}_k T$. Let $K \subset T$ with |K| = k. We have to prove that $x \in \operatorname{conv}(T \setminus K)$. This is obvious if K does not contain any one of the points z_1, \ldots, z_d . So assume $z_i \in K$. Then $|K \cap T_i| \leq k-1$, consequently $x \in \operatorname{core}_{k-1}T_i \subseteq \operatorname{conv}(T \setminus K)$ as claimed.

This shows that $|T| \leq d + df(d, k - 1)$ and proves the theorem.

Remark 7. Using the fact that in Caratheodory's theorem one of the points out of the d+1 can be chosen arbitrarily (and some other arguments) we can give a slightly better estimate of f(d, k). We can prove, for instance, that for all $d, k \ge 1$ except (d, k) = (2, 1) and (2, 2) $f(d, k) \le d^{k+1}$. This can be further improved by using Theorem 4 as the starting step of the introduction. We omit the details.

Remark 8. This proof works in any abstract convexity space (see [2]) as well.

3. Proof of Theorem 2

In view of (1) we have to show that $f(2, k) \leq 3(k+1)$. We prove this by induction on k. The case k = 0 is trivial. So we assume the statement holds for k - 1 and we prove it for k ($k \geq 1$). Let $S \subset \mathbb{R}^2$ and $|S| \geq 3(k+1)$ and $x \in \operatorname{core}_k S$. We distinguish two cases.

Case 1. $x \in S$. Then clearly $x \in \operatorname{core}_{k-1}(S \setminus x)$, and so, by induction, there is a subset $T \subseteq S \setminus x$, $|T| \leq 3k$ such that $x \in \operatorname{core}_{k-1}T$. Then $|T \cup \{x\}| \leq 3k+1 < 3k+3$ and $x \in \operatorname{core}_k(T \cup \{x\})$.

Case 2. $x \notin S$. Then we assume, without loss of generality, that the points of S are on a unit circle with center x, their clockwise order on this circle is z_1, z_2, \ldots, z_n

1

where n = |S|. Observe that $x \in \operatorname{core}_k S$ if and only if every k + 1 consecutive points in the circle span an $\operatorname{arc} \leq \pi$.

Suppose S is minimal with respect to $x \in \operatorname{core}_k S$, i.e., $x \notin \operatorname{core}_k T$ for any proper subset $T \subset S$. Then there are k+3 consecutive point, z_1, \ldots, z_{k+3} say, spanning an arc larger than π , as otherwise $x \in \operatorname{core}_k(S \setminus \{z_i\})$ for every *i*. Consider now the point z_{2k+4} . (If |S| < 2k+4 then we are finished at once.) As $x \notin \operatorname{core}_k(S \subset \{z_{2k+4}\})$ there are k+2 points $z_i, \ldots, z_{2k+3}, z_{2k+5}, \ldots, z_{i+k+2}$ spanning an arc larger than π . Here i+k+2 is meant mod |S|. We have $i \ge k+3$ as i+k+2 cannot be less that 2k+5. Then $i+k+2 \ge |S|+2$, for otherwise the two arcs of size larger than π wouldn't overlap. But $i \le 2k+3$ and so $|S| \le i+k \le 3k+3$.

4. The example proving Theorem 3

Let e_1, \ldots, e_d be an orthonormal basis \mathbb{R}^d . Define $e = \sum_{i=1}^d e_i$ and $e_0 = (1/d)e$ and

$$f_i = e_0 + p(e_0 - e_i)$$
 $(i = 1, ..., d),$

where $p \ge 0$ will be specified later. Define $[t] = \{1, \ldots, t\}$ when t > 0 is an integer. Let $k + 1 \le n < d$. Set $F = \{K : K \subseteq [n], |K| = k\}$ and $D = [d] \setminus [n]$. For $(K, j) \in F \times D$ define

$$e(K,j) = \sum_{i \in [n] \setminus K} e_i + \left(e_j - (d-n)^{-1} \sum_{i \in D} e_i\right).$$

Set, finally

 $S = \{0, \dots, 0, f_1, \dots, f_d\} \cup \{e(K, j) : (K, j) \in F \times D\}$

where 0 is taken k times.

This is the set that will prove the estimate in Theorem 3. To see this we first need a lemma.

Lemma 9. The linear system with variables $\alpha_0, \alpha_i, \alpha(K, j)$

$$e_{0} = \sum_{i=k+1}^{d} \alpha_{i} f_{i} + \Sigma^{*} \alpha(K, j) e(K, j)$$
$$\alpha_{0} + \sum_{k+1}^{d} \alpha_{i} \Sigma^{*} \alpha(K, j) = 1$$
$$\alpha_{0}, \alpha_{i}, \alpha(K, j) \ge 0$$

has a unique solution. Here Σ^* denotes summation over all pairs in $F \times D$.

Proof of Lemma 9. The Lemma means that e_0 is in the relative interior of a sim plex which is a face of the polytope $P = \operatorname{conv}(\{0, f_{k+1}, \ldots, f_n\} \cup \{e(K, j) : (K, j) \ F \times D\})$. Consider the vector $w = (n-d)(e_1 + \ldots + e_k) + k(e_{n+1} + \ldots + e_k)$

and the hyperplane $H = \{x \in \mathbb{R}^d : w \cdot x = 0\}$. One can easily check that $w \cdot e_0 = w \cdot 0 = w \cdot f_{k+1} = \ldots = w \cdot f_n = 0$ while $w \cdot f_{n+1} = \ldots = w \cdot f_d = -pk$ and $w \cdot e(K, j) = (n-d)|[k] \setminus K| \leq 0$, with equality only if K = [k]. This means that H supports P in the face with vertices $0, f_{k+1}, \ldots, f_n, e([k], n+1), \ldots, e([k], d)$ with $\alpha > 0, \beta > 0$ and $\alpha + \beta < 1$ provided p > 0 is large enough. This representation is unique for the points $0, f_{k+1}, \ldots, f_n, e([k], n+1), \ldots, e([k], d)$ are affinely independent. The proof of the last statement is left to the reader.

The Lemma shows that

(3)
$$e_0 \in \operatorname{conv}(S \setminus \{f_i : i \in K\})$$
 for every $K \in F$, and

(4)
$$e_0 \notin \operatorname{conv}\left(S \setminus (\{f_i : i \in K\} \cup \{e(K, j)\})\right) \text{ for any } (K, j) \in F \times D.$$

Claim 10. If $z \in S$, then $e_0 \notin \operatorname{core}_k(S \setminus z)$.

Proof. When z = e(K, j), this is exactly (4). If $z = f_i$ for some $i \in [d]$, then let $A = \{0, \ldots, 0\}$ k times. If z = 0, then let $A = \{f_1\} \cup \{0, \ldots, 0\}$ 0 taken k - 1 times. In both cases, $e_0 \notin \operatorname{conv}(S \setminus A)$. This proves the claim.

Claim 11. $e_0 \in \operatorname{core}_k S$.

Proof. We have to show that $e_0 \in \operatorname{conv}(S \setminus A)$ if $A \subseteq S$ and |A| = k. If $0 \in A$ or if $A \cap \{f_1, \ldots, f_n\} = \emptyset$, then this follows immediately. If $A \subset \{f_1, \ldots, f_n\}$, then this is just (3).

So assume $|A \cap \{f_1, \ldots, f_t\}| = t < k$ (t = 0 is possible), say $A \cap \{f_1, \ldots, f_n\} = \{f_1, \ldots, f_t\}$. Then we look for a set $K \in F$ with $[t] \subset K$ such that $e(K, j) \in S \setminus A$ for every $j \in D$ (when t = 0 let $[t] = \emptyset$). Call such a set "good". As there are at most (k - t) vectors e(K, j) in A, the number of "bad" K-s is at most (k - t). There are altogether $\binom{n-t}{k-t}$ ways to choose K so the number of "good" K-s is at least

$$\binom{n-t}{k-t} - (k-t) \ge (n-t) - (k-t) = n-k \ge 1.$$

Now fix a "good" K. We will show now that

(5)
$$e_0 \in \operatorname{conv}(\{0, f_{t+1}, \dots, f_n\} \cup \{e(K, j) : j \in D\}).$$

As all of these points belong to $S \setminus A$ this will prove the Claim.

Lemma 9 implies $e_0 \in \operatorname{conv}(\{0\} \cup \{f_i : i \in [n] \setminus K\} \cup \{e(K, j) : j \in D\})$. We have $[t] \subset K$ so $[n] \setminus K \subset [n] \setminus [t]$ proving (5).

5. Proof of Theorem 4

Set $g(d) = \max(2(d+1), 1+d+\lfloor d^2/4 \rfloor)$. We have to prove that f(d,1) = g(d). Inequalities (1) and (2) show that $f(d,1) \ge g(d)$.

So we have to prove that $f(d,1) \leq g(d)$. Assume this is false and take a counterexample $S \subset \mathbb{R}^d$ with minimal d. Then $d \geq 3$ and |S| > g(d), dimS = d and $x \in \operatorname{core}_1 S$ for some x but $x \notin \operatorname{core}_1 T$ for any proper subset $T \subset S$. As

|S| > 2(d+1) Lemma 6 applies and so we may assume that $x \in \text{relbd core}_1 S$. Then the alternative definition of the 1-core gives a closed halfspace H^+ with bounding hyperplane H such that $x \in H$ and $|H^+ \cap S| \ge |S| - 1$. If $|H^+ \cap S| = |S|$ were the case here, then $x \in \text{core}_1(S \cap H)$ clearly and this is a contradiction: with $T = S \cap H$ |T| < |S| and $x \in \text{core}_1 T$. So there is a unique point $z_0 \in S \setminus H^+$.

Now $x \in \text{bd conv}(S \setminus z_0)$, so there are affinely independent vectors $z_1, \ldots, z_r \in S$ $(r \leq d)$ with $x \in \text{relint conv}\{z_1, \ldots, z_r\}$. To simplify notation we set x = 0.

Define $C = S \setminus \{z_1, \ldots, z_r\}$ and $E = \{0, 1, \ldots, r\}$. For a subset $B \subset E$ write $z(B) = \{z_i : i \in B\}$. The condition $0 \in \operatorname{core}_1 S$ is the same, by definition, as $0 \in \operatorname{conv}(S \setminus z)$ for all $z \in S$, but $0 \in \operatorname{conv}(S \setminus z)$ is trivially satisfied unless $z = z_i$ for some $i \in [r]$. So $0 \in \operatorname{core}_1 S$ is equivalent to

$$0 \in \operatorname{conv}(z(E \setminus i) \cup C)$$
 for all $i \in [r]$.

Define \mathcal{B} as the collection of sets $B \subset E$ with $0 \in B$ that are minimal with respect to the property

$$0 \in \operatorname{conv}(z(B) \cup C).$$

This means that $0 \in \operatorname{conv}(z(B) \cup C)$ but $0 \notin \operatorname{conv}(z(B') \cup C)$ for any proper subset B' (with $0 \in B'$) of B. If $\{0\} \in \mathcal{B}$, i.e., $0 \in \operatorname{conv}(\{z_0\} \cup C)$, then (by Caratheodory's theorem) we find a subset $C_0 \subset C$, $|C_0| \leq d$ with $0 \in \operatorname{conv}(\{z_0\} \cup c_0)$. Then for $T = z(E) \cup C_0 \subset S$ we have $0 \in \operatorname{core}_1 T$ and $|T| \leq d + 1 + r \leq 2d + 1 < |S|$, a contradiction. So $\{0\} \notin \mathcal{B}$. Clearly, for each $i \in [r]$ there is a $B \in \mathcal{B}$ with $i \notin B$, i.e., $\cap \mathcal{B} = \{0\}$. Let now $\mathcal{B}' \subseteq \mathcal{B}$ be a subfamily minimal with respect to the property $\cap \mathcal{B} = \{0\}$. Set, finally, $\mathcal{B}' = \{B_1, \ldots, B_n\}$.

Claim 12.
$$\sum_{j=1}^{n} (d - |B_j|) \le \lfloor d^2/4 \rfloor.$$

Proof. By the minimality of \mathscr{B}' for every $j \in [n]$ there is an element i(j) missed by B_j only, i.e., $i(j) \in B_k$ iff $k \neq j$. This element is nonzero and is different for different j-s. Then $|B_j \setminus 0| \geq n-1$ and so $|B_j| \geq n$ and

$$\sum_{j=1}^{n} (d - |B_j|) \le n(d - n) \le \lfloor (n + (d - n))^2 / 4 \rfloor = \lfloor d^2 / 4 \rfloor.$$

Now for each $j \in [n]$ choose a subset $C_j \subseteq C$ minimal with respect to the property

(6)
$$0 \in \operatorname{conv}(z(B_j) \cup C_j).$$

Set $T = z(E) \cup C_1, \cup \ldots \cup C_n$. Let us prove now $0 \in \operatorname{core}_1 T$: We have to show that $0 \in \operatorname{conv}(T \setminus z)$ for all $z \in T$. If $z \neq z_i$ for some $i \in [r]$, then $0 \in \operatorname{conv}\{z_1, \ldots, z_r\}$ and if $z = z_i$ for some $i \in [r]$, then defining j by $i \notin B_j$ we have $0 \in \operatorname{conv}(z(B_j) \cup C_j)$.

We would like to show that $|T| \leq g(d)$ as this would prove the theorem. At this point we have only

$$\begin{aligned} |T| &\leq |z(E)| + \sum_{j=1}^{n} |C_j| \\ &\leq (r+1) + \sum_{j=1}^{n} (d+1 - |B_j|) \leq d + 1 + n + \lfloor d^2/4 \rfloor, \end{aligned}$$

which is not good enough. With the Insertion Lemma (see below) one can get an element common to every C_i giving $|T| \leq d+2 + \lfloor d^2/4 \rfloor$ which is g(d) + 1instead of g(d). To get rid of the plus one we will have to consider a few cases. We need the following fact well-known from linear programming or from the proof of Caratheodory's theorem [2]:

Insertion Lemma. Assume $X \subset \mathbf{R}^d$ consists of affinely independent points and $0 \in \operatorname{conv} X$. Assume, further, that $y \in \operatorname{aff} X$. Then there is a $z \in X$ such that $0 \in \operatorname{conv}((X \setminus z) \cup \{y\}).$

Proof. (Which is well-known and we give it rather for further reference.) We have $\sum_{x \in X} \lambda(x)x = 0$ with a convex combination, i.e., $\lambda(x) \ge 0$ and $\Sigma\lambda(x) = 1$. There is

an affine dependence $y + \sum_{x \in X} \gamma(x)x = 0$. Multiplying it by t and adding it to the

convex combination we get

$$ty + \sum_{x \in X} (\lambda(x) + t\gamma(x))x = 0.$$

Set $t_0 = \max\{t \ge 0 : \lambda(x) + t\gamma(x) \ge 0\}$; such a t_0 clearly exists. Let $z \in X$ be defined by $\lambda(z) + t_0\gamma(z) = 0$. Then $t_0y + \sum_{x \in X \setminus z} (\lambda(x) + t_0\gamma(x)) = 0$ is a convex

combination again. So $0 \in \operatorname{conv}((X \setminus z) \cup \{y\})$ indeed.

We say that y pushes z out from X when inserted. The pushed-out element is not uniquely determined but we think of it as fixed.

We return now to the proof of Theorem 4. Condition (6) can be written as

$$\sum_{i \in B_j} \lambda_i z_i + \sum_{c \in C_j} \lambda(c)c = 0$$

with a suitable convex combination. It is easy to see that $\lambda_0 = 0$ if and only if $C_j \subset H$. It follows from the minimality of B_j and C_j that

(7)
$$|B_j| + |C_j| = \dim \operatorname{aff}(z(B_j) \cup C_j) + 1, \text{ if } C_j \not\subset H, \text{ and}$$

(8)
$$|B_j \setminus 0| + |C_j| = \dim \operatorname{aff}(z(B_j \setminus 0) \cup C_j) + 1, \text{ if } C_j \subset H.$$

There are a few cases to consider now. We introduce the sets

$$J_1 = \{j \in [n] : \dim \operatorname{aff}(z(B_j) \cup C_j) = d \text{ and } C_j \not\subset H\},$$

$$J_2 = \{j \in [n] : \dim \operatorname{aff}(z(B_j) \cup C_j) = d - 1 \text{ and } C_j \not\subset H\},$$

$$J_3 = \{j \in [n] : \dim \operatorname{aff}(z(B_j) \cup C_j) \le d - 2 \text{ and } C_j \not\subset H\},$$

$$J_4 = \{j \in [n] : \operatorname{aff}(z(B_j \setminus 0) \cup C_j) = H\}.$$

$$J_5 = \{j \in [n] : \dim \operatorname{aff}(z(B_j \setminus 0) \cup C_j) \le d - 2 \text{ and } C_j \subset H\}.$$

We claim that the sets J_1, J_2, J_3, J_4, J_5 form a partition of [n]. Indeed, these sets are pairwise disjoint and if $j \notin J_1 \cup J_2 \cup J_3 \cup J_5$, then $C_j \subset H$ and dim $\operatorname{aff}(z(B_j \setminus 0) \cup C_j) =$ d-1 implying aff $(z(B_j \setminus 0) \cup C_j) = H$.

Observe now that if $C_j \,\subset H$ for all $j \in [n]$, then $T = S \setminus z_0$ is a proper subset of S with $0 \in \operatorname{core}_1 T$, a contradiction. So there is $c_1 \in C_j$ for some $i \in J_1 \cup J_2 \cup J_3$ with $c_1 \notin H$ and $c_1 \in H^+$. The line segment connecting z_0 and c_1 intersects H at the point c_0 . Insert now c_0 into every $X_j = z(B_j \setminus 0) \cup C_j$ with $j \in J_4$; let the pushed out element be x_j . Set $X'_j = (X_j \setminus x_j) \cup \{z_0, c_1\}$, then $0 \in \operatorname{conv} X'_j$. Assume $x_j \in z(B_j)$. Then $0 \in \operatorname{conv} X'_j = \operatorname{conv}((z(B_j) \setminus x_j)) \cup C_j \cup \{c_1\})$ which contradicts the fact that B_j is minimal. Thus $x_j \in C_j$. Choose now a minimal $C'_j \subseteq (C_j \setminus x_j) \cup \{c_1\}$ with $0 \in \operatorname{conv}(z(B_j) \cup C'_j)$. A straightforward checking shows that $c'_j \notin H$. Replacing now every old $z(B_j) \cup C_j$ by the new $z(B_j) \cup C'_j$ for $j \in J_4$ we get a new system of B_j -s and C_j -s, and J_4 will be empty.

So we may assume $J_4 = \emptyset$ from now on. Suppose $J_1 \neq [n]$ and choose some $a \in C_j$ with $j \in J_2 \cup J_3 \cup J_5$. Insert a into every $z(B_j) \cup C_j$ with $j \in J_1$. We see again that the pushed-out element c_j must come from C_j . Write $C_j(a)$ for the set $(C_j \setminus c_j) \cup \{a\}$. We have a new system B_j , $C_j(a)$ for $j \in J_1$ and B_j , C_j for the rest. Set

$$T=z(E)\cup igcup_{j\in J_1}C_j(a)\cup igcup_{j\in [n]\setminus J_1}C_j,$$

Again we have $0 \in \operatorname{core}_1 T$. Moreover,

$$\left| \bigcup_{j \in J_1} C_j(a) \cup \bigcup_{j \in [n] \setminus J_1} C_j \right| \leq \left| \bigcup_{j \in J_1} (C_j(a) \setminus a) \right| + \sum_{j \in [n] \setminus J_1} |C_j| \leq$$
$$\leq \sum_{j \in J_1} (d - |B_j|) + \sum_{j \in [n] \setminus J_1} (d - 1 - |B_j \setminus 0|) =$$
$$= \sum_{j \in [n]} (d - |B_j|) \leq \lfloor d^2/4 \rfloor$$

according to Claim 12. Here we used (7) and (8) as well. Then $|T| \le 1 + r + \lfloor d^2/4 \rfloor \le g(d) < |S|$, a contradiction.

We have, finally, $J_1 = [n]$; n = 0 or 1 is clearly impossible. So $n \ge 2$. Consider $a \in C_1$ and insert a into every other $z(B_j) \cup C_j$. Again, a pushes out some element from C_j . Write $C_1(a) = C_1$. Setting again $T = z(E) \cup \sum_{j=1}^n C_j(a)$ we have $0 \in \operatorname{core}_1 T$.

The above estimation gives now $|T| \leq 1 + r + \lfloor d^2/4 \rfloor + 1$. We can get one less if $|C_i(a) \cap C_j(a)| \geq 2$ for some $i \neq j$. So assume the sets $C_j(a) \setminus a$ are pairwise disjoint. Observe, further, that the proof of Claim 12 gives $\lfloor d^2/4 \rfloor - 1$ unless $|B_j| = n$ for all $j \in [n]$ and n equals $\lfloor d/2 \rfloor$ or $\lfloor (d+1)/2 \rfloor$. Thus $|C_j| = d+1 - n \geq 2$. Then there is $b \in C_2(a)$ $b \neq a$. Try to insert b into $z(B_1) \cup C_1$. Then $|C_2(a) \cap C_1(b)| \geq 2$ unless b pushes out a from C_1 . Similarly, take $a' \in C_1$, $a' \neq a$ and insert a' into $z(B_2) \cup C_2(a)$ and into every $z(B_j) \cup C_j$ $(j = 3, \ldots, n)$. If a' pushes out a from $C_2(a)$, then $C_1(b)$, $C_2(a)(a')$, $C_3(a'), \ldots, C_n(a')$ is a good system together with the unchanged B_j -s, because $C_1(b)$ and $C_2(a)(a')$ have two elements, a' and b in common. Similarly, if a' pushes out b from $C_2(a)$, then $C_1, C_2(a)(a'), C_3(a'), \ldots, C_n(a')$ is a good system for the first two sets share two elements a and a'.

6. The example proving Theorem 5

First set $n = \lfloor (d-1)/2 \rfloor$. Take a hyperplane $H \subset \mathbb{R}^d$ not passing through the origin and let $P \subset H$ be the set of vertices of an *n*-neighbourly polytope with |P| = k. This means that the convex hull of any *n*-subset of vertices is a face of the polytope. It is well-known that such polytopes exist, see for instance [3] or [4]. Set Q = -convP, this is a (d-1)-dimensional *n*-neighbourly polytope lying in the hyperplane -H. For an n-subset A of P define s(A) as the center of gravity of the pointset -A. Let v be a unit vector parallel with H and in general position relative to the faces of Q. Then at least one of the halflines $\{s(A) + tv : t \ge 0\}$ and $\{s(A) + tv : t \le 0\}$ has a single point, s(A), in common with Q. Then either $\{s(A) + tv : t \ge 0\} \cap Q = s(A)$ or $\{s(A) + tv : t \leq 0\} \cap Q = s(A)$ for at least half of the *n*-subsets A in P. We assume, without loss of generality, that $\{s(A) + tv : t \ge 0\} \cap Q = s(A)$ for at least

half of the *n*-subsets. Denote the set of these *n*-subsets by \mathcal{A} ; then $|\mathcal{A}| \geq \frac{1}{2} \binom{k}{n}$. For any vector u close enough to v we will have

(9)
$$\{s(A) + tu: t \ge 0\} \cap Q = s(A) \text{ for all } a \in \mathcal{A}.$$

Choose now points z_1, \ldots, z_n parallel to H and close to v and points z_{n+1}, \ldots, z_d parallel to H and close to -v with $0 \in \operatorname{conv}\{z_1, \ldots, z_d\}$.

Let L be a hyperplane orthogonal to v and such that $Q + \{tv : t \ge 0\}$ is in one of the open halfspaces determined by L. Define $y(p,i) = L \cap \{-p - tz_i : t \ge 0\}$ for all $p \in P$ and $i \in [n]$. Clearly, y(p, i) is a single point. Set now $Y = \{y(p, i) : p \in V\}$ $P, i \in [n]\}, Z = \{z_1, ..., z_d\}, X = \{s(A) : A \in \mathcal{A}\} \text{ and } S = P \cup Z \cup X \cup Y.$

Claim 13. $0 \in \operatorname{core}_k S$.

Proof. Take away a set K of k points from S; we have to prove that $0 \in \operatorname{conv}(S \setminus K)$. Set $P' = P \cap K$, $Z' = Z \cap K$, $X' = X \cap K$ and $Y' = Y \cap K$. Let $|P'| = k - \alpha$, $|Z'| = \beta$, then $|X' \cup Y'| = \alpha - \beta$. We can assume that $\beta \ge 1$ as otherwise $0 \in \operatorname{conv}(S \setminus K)$ trivially. Clearly $\alpha \ge \beta$. There are three cases to consider.

Case 1. When $\alpha > n$. Then $|P \setminus P'| = \alpha > n$ so there are at least $\binom{\alpha}{n}$ n-subsets in

 $P \setminus P'$ and $\binom{\alpha}{n} \ge \alpha > \alpha - \beta$, so there is an *n*-subset $A \subset P \setminus P'$ with $s(A) \notin X'$. Then

$$0 \in \operatorname{conv}(s(A) \cup A) \subset \operatorname{conv}(S \setminus K).$$

Case 2. When $\alpha \leq n$ and $\beta < n$. If there is a pair $p, i \in P \times [n]$ with $p \notin P'$, $z_i \notin Z'$ and $y(p,i) \notin Y'$, then $0 \in \operatorname{conv}\{p, z_i, y(p,i)\} \subset \operatorname{conv}(S \setminus K)$. The number of pairs with $p \notin tP'$ and $z_i \notin Z'$ $(i \in [n])$ is at least $|P \setminus P'|(n-\beta) = \alpha(n-\beta)$ and $|Y'| \leq \alpha - \beta$. So there is a pair $(p, i) \in P \times [n]$ with $p \notin P'$, $z_i \notin Z'$ and $y(p, i) \notin Y'$ unless $\alpha(n-\beta) \leq \alpha - \beta$, Now $\alpha - \beta \leq n - \beta$, so $\alpha = 1$ must hold. Then $\alpha(n-\beta) \leq \alpha - \beta$ implies n = 1 but we have $d \geq 5$.

Case 3. When $\alpha = \beta = n$. Then $P \setminus P'$ is an *n*-subset of P and $S(P \setminus P')$ is not deleted, so

$$0 \in \operatorname{conv}(s(P \setminus P') \cup (P \setminus P')) \subset \operatorname{conv}(S \setminus K).$$

Claim 14. For any $A \in \mathcal{A}$, $0 \notin \operatorname{core}_k(S \setminus s(A))$.

Sketch of the proof. Set $Z' = \{z_1, \ldots, z_n\}$, $P' = P \setminus A$ and $K = Z' \cup P'$. Take a hyperplane H_1 passing through the origin, containing A and containing Q in one of the closed halfspaces determined by H_1 . Such a hyperplane exists for Q is an *n*neighbourly polytope in H. H_1 has a single point, s(A), in common with $conv(X \cup Y)$. It is not difficult to see from this and from (9) that 0 does not lie in the convex hull of $(S \setminus s(A)) \setminus K$. We omit the details.

By the claim, if $T \subset S$ and $0 \in \operatorname{core}_k T$, then $s(A) \in T$ must hold for all $A \in \mathcal{A}$. This implies $|T| \geq |\mathcal{A}|$. One can see also that T must contain P and Z as well. This proves the theorem.

Acknowledgement. Thanks are due to Helge Tverberg, the referee for simplifying the proofs of Theorem 2 and Lemma 9.

References

- E. BOROS, and Z. FÜREDI: The number of triangles covering the center of an n-set Geom. Ded., 17 (1984), 69-77.
- [2] L. DANZER, B. GRÜNBAUM, and V. KLEE: Helly's theorem and its relatives, Proc. Symp. in Pure Math. VII. Convexity, AMS, Providence, RI (1963).
- [3] B. GRÜNBAUM: Convex polytopes, John Wiley and Sons, London New York Sidney, (1967).
- [4] P. MCMULLEN, and G.C. SHEPHARD: Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971.
- [5] R. RADO: A theorem on general measure, J. London Math. Soc., 21 (1946), 291-200.
- [6] H. TVERBERG: A generalization of Radon's theorem, J. London Math. Soc., 41 (1966), 123-128.

Imre Bárány

Micha Perles

Mathematical Institute of the Hungarian Academy of Sciences H-1364 Budapest, Pf 127 Department of Mathematics Hebrew University of Jerusalem 91904 Israel