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The k-core of the set § C R™ is the intersection of the convex hull of all sets A C § with
]S\ A| < k. The Caratheodory number of the k-core is the smallest integer f(d, k) with the property
that z € core;S, § C R™ implies the existence of a subset T C § such that z € corexT and
|IT| € f(d,k). In this paper various properties of f(d, k) are established.

1. Definitions and results

The k-core of a set S C RY is the intersection of the convex hulls of all sets
AC Swith |S\ 4] <k, ie,

core;S = N{convA: AC S, |S\ A] < k}.

Here and in what follows we assume S is a finite multiset in R%. This means that the
points in § have “multiplicity”. Strictly speaking, a multiset is a map S: F’ — R4
and in our case F is finite. Then core;S = N{convS(E): E C F, |F\ E| < k}.
From now on we do not say explicitly that the sets in question are multisets. This
will make the notation simpler and will not cause confusion.

Alternatively, we can define

corer,S = N{H* : H* is a closed halfspace with |[H* N S| > |S| - k}.

So the case k = 0 is the usual convex hull. Several properties of the k-core are known,
c.f. {5] (or {2] Theorem 2.8). In [1], Boros and Fiiredi extend the definition of the
k-core to every real number k > 0.

We define the Caratheodory number of the k-core as the smallest integer f(d, k)
with the property that £ € corerS, § C R? implies the existence of a subset
T C S such that z € core;T and |T| < f(d,k). By Caratheodory’s theorem,
f(d,0) = d + 1. At the 1982 Oberwolfach conference on convex bodies, Micha
Perles posed the problem of determining f(d, k). In this paper various properties of
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f(d, k) are established. We determine, for instance, f(2,k) and f(d,1) exactly. We
also establish the order of magnitude of f(d, k) when d — oc and k is fixed.

Our first theorem shows that f(d, k) is finite for every d > 1 and k > 0.
Theorem 1. If f(d,k — 1) is finite then so is f(d, k) and
fld k) < max ((k+1)(d +1),d(1 + f(d. k- 1))

It follows from here that f(d,k) < d**! + 2d* + d*-! + ... + 1 and this can be
improved to f(d, k) < d*+! for all k > 1 and d > 1 except (d, k) = (2,1) and (2,2).
A simple lower bound on the Caratheodory number is this:

(1) f(d.k) 2 (k+1)(d+1).

To see this take for S the set of vertices of a d-dimensional simplex (k + 1)-times.
Then the center of the simplex lies in core;S but it does not lie in core, T if T is a
proper subset of S.

It is readily seen that for d = 1 equality holds in {1). This is the case, too, when
d=2.

Theorem 2. f(2,k) = 3(k +1).

One might expect that equality holds in (1) for all d and k. That this is not the
case is shown by

Theorem 3. For any n withd > n > k > 0 we have

(2) Fdk) > k+d+ (Z) (d—n).

When k is fixed and d — oo we get from here and Theorem 1

1

Tl STeR S

thus establishing the order of magnitude of f(d, k) for fixed k.
Theorem 4. f(d,1) = max(2(d + 1),1+d + [d?/4]).

Our last theorem shows that f(d, k) grows quite fast when d > 5 is fixed and &
tends to infinity.

Theorem 5. Ifk > d and d > 5, then f(d, k) > k+d+ %([(d _kl)/g_l)'
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2. Proof of Theorem 1

We start with an observation that will be basic (explicitly or implicitly) for most
of the proofs to follow.

Lemma 6. Assume S C RY and 1S] > (d+1)(k + 1) and y € corerS but y ¢ core;.T
for any proper subset T C S. Then there is a point x in relbd core;S such that
z ¢ core, T for any proper subset T C S.

Proof of Lemma 6. As |S| > (k+ 1)(d + 1) + 1, it follows from Tverberg's theorem
[6] that there are pairwise disjoint subsets S, ..., Sg,, of S whose conver hulls have

a point, say © € R", in common. Then u € coreg,S and, consequently, u € core,T
for every T C S with |T| = |S| — 1. Let z be the last point in corexS on the
halfline stemming from u and passing through y (clearly u # y). If x € core T
for some subset T C S with |T| = |S| — 1, then u € core,T implies y € core;T, a
contradiction. 1

Now we prove Theorem 1. Let S C R¢ and assume |S] > (k+1)(d+ 1) and
z € corepS but z ¢ corepT for any proper subset T C S. Applying Lemma 6
we may assume & ¢ relbd coregS. Then z € bdconv(S \ A) for some A C S,
|A] < k (as otherwise z € int conv(S \ A) for all A with |4] € k. Then by
Caratheodory’s theorem, applied in bd conv(S \ A), there are points 2y,...,24 € §
with z € conv{zi,...,24}. Clearly x € corep_,(S\ %) for each i =1,...,d. So (by
the induction hypothesis) there exists a subset T; C S\ z; with |T;] < f(d,k—1) and
z € core_,T;. Define T = {z,...,24} UT; U...UT;. We claim that z € core,T.
Let K C T with |K| = k. We have to prove that z € conv(T \ K). This is obvious

if K does not contain any one of the points z;,...,24. So assume z; € K. Then
|[K NT;] <k -1, consequently z € coreg_,T; C conv(T \ K) as claimed.
This shows that |T| < d + df(d, k — 1) and proves the theorem. 1

Remark 7. Using the fact that in Caratheodory’s theorem one of the points out of
the d+1 can be chosen arbitrarily (and some other arguments) we can give a slightly
better estimate of f(d,k). We can prove, for instance, that for all d,k > 1 except
(d,k) = (2,1) and (2,2) f(d,k) < d*+'. This can be further improved by using
Theorem 4 as the starting step of the introduction. We omit the details.

Remark 8. This proof works in any abstract convexity space (see [2]) as well.

3. Proof of Theorem 2

In view of (1) we have to show that f(2,k) < 3(k+1). We prove this by induction
on k. The case £ = 0 is trivial. So we assume the statement holds for k¥ — 1 and
we prove it for k¥ (k > 1). Let S C R” and |S| > 3(k + 1) and z € corexS. We
distinguish two cases.

Case 1, z € S, Then clearly = € coreg_,(S \ ), and so, by induction, there is a
subset T C §\z, |T| < 3k such that z € coreg_,T. Then [TU{z}| <3k+1 < 3k+3
and z € coreg(T' U {z}).

Case 2, z ¢ S. Then we assume, without loss of generality, that the points of S
are on a unit circle with center x, their clockwise order on this circle is z;, z2,...,2n
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where n = |§|. Observe that z € core; S if and only if every k + 1 consecutive points
in the circle span an arc< .

Suppose § is minimal with respect to & € core;S, i.e., x ¢ core,T for any proper
subset T C S. Then there are k + 3 consecutive point, z4,..., 2k, 3 say, spanning an
arc larger than 7, as otherwise & € corei(S \ {z;}) for every i. Consider now the
point 2y, . (If |S| < 2k+4 then we are finished at once.} As z ¢ coreg(S C {2,3,4})
there are k + 2 points 2;,..., 2y, 3, Zokys: - - - » Zip k2 SPANNIng an arc larger than 7.
Here i + k 4 2 is meant mod [S|. We have i > k + 3 as i + k + 2 cannot be less that
2k + 5. Then i+ k + 2 > |S| + 2, for otherwise the two arcs of size larger than 7
wouldn’t overlap. But ¢ < 2k +3 and so |S| <i+ k <3k +3. |

4. The example proving Theorem 3

d
Let e, .. .,e4 be an orthonormal basis R%. Define e = 3 e; and ey = (1/d)e and
t=1

fi=60+p(60—€i) (’i=1,...,d),

where p > 0 will be specified later. Define [t] = {1,...,f} when ¢ > 0 is an integer.
Let k+1<n<d Set F={K: K C|n], |[K| =k}and D = {[d]\ [n]. For
(K,7) € F x D define

el )= Y ei+(e—(d-m) Y e).
e\ K teD
Set, finally
§={0,...,0, f1,..., fa} U{e(K,j) : (K,j) € F x D}

where 0 is taken &k times.
This is the set that will prove the estimate in Theorem 3. To see this we first
need a lemma.

Lemma 9. The linear system with variables ap, a;, a(K, §)

d
o= aifi+T (K, j)e(K,j)
i=k+l )
d
Qg + Eaiz*a(K,j) =1
k41

aOaaha(va) 20
has a unique solution. Here L* denotes summation over all poirs in F x D,

Proof of Lemma 9. The Lemma means that ey is in the relative interior of a sim
plex which is a face of the polytope P = conv({0, fx ..., fn} U{e(K,j): (K,j)
F x D}). Consider the vector w = (n — d)(ey + ... + €x) + kleny1 + ... + €
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and the hyperplane H = {z € R : w-z = 0}. One can easily check that
we=w-0=w-f,,=...=w- fp=0whilew: fo, =...=w- f; = —pk and
w-e(K,j)=(n— )[[k] \ K| £ 0, with equality only if K = [k]. This means that
H supports P in the face with vertices 0, fx,y,..., fn,e([k],n +1),...,e([k],d) with
a>0,8>0and a+ 8 < 1 provided p > 0 is large enough. This representation
is unique for the points 0, fx,,,..., fn,e([k],n+1),...,e([k], d) are affinely indepen-
dent. The proof of the last statement is left to the reader 1

The Lemma shows that
(3) eg € conv(S\ {f;: i€ K}) for every K € F, and
(4)  eogoonv(S\({fi: i € K}U{e(K,5)}) for any (K,j) € F x D.

Claim 10. If 2 € S, then e, ¢ corer (S \ 2).

Proof. When z = e(K,j), this is exactly (4). If z = f; for some i € [d], then let
A={0,...,0} k times. If z =0, thenlet A= {f,}U{0,...,0} 0 taken k — 1 times.
In both cases, ey ¢ conv(S \ A). This proves the claim. ]

Glaim 11. e € corey,S.

Proof. We have to show that eg € conv(S\ A)f AC S and |[A|=k. If0 € Aorif
An{f1,--.,fn} =0, then this follows immediately. If A C {fi,..., fn}, then this is
just (3).

So assume |[AN {f1,..., fi}| =t < k (t = 0 is possible), say AN {fi,...,fr} =
{f1,..., ft}. Then we look for a set K € F with [t] C K such that e(K,j) € S\ A
for every 7 € D (when t = 0 let [t} = 0). Call such a set “good”. As there are at
most (k —t) vectors e(K, §) in A, the number of “bad” K-s is at most (k —t). There

-1
are altogether Z t) ways to choose K so the number of “good” K-s is at least

(:::) ~(k=t)>(n—t)—(k—t)=n—k2>1.
Now fix a “good” K. We will show now that

(5) e0 € conv({0, fir1,-- -, fu} U{e(K,5) : j € D}).

As all of these points belong to S\ A this will prove the Claim.
Lemma 9 implies e; € conv({0} U {f; : i € [n]\ K} U {e(K,j): j € D}). We
have [t] C K so [n]\ K C [n]\ [t] proving (5). ]

5. Proof of Theorem 4

Set g(d) = max(2(d + 1),1 +d + |d*/4]). We have to prove that f(d,1) = g(d).
Inequalities (1) and (2) show that f(d,1) > g(d).

So we have to prove that f(d,1) < g(d). Assume this is false and take a
counterexample S C R? with minimal d. Then d > 3 and |S| > g(d), dimS = d
and z € core;S for some z but £ ¢ core;T for any proper subset T C S. As
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|S| > 2(d + 1) Lemma 6 applies and so we may assume that z € relbd core; S. Then
the alternative definition of the 1-core gives a closed halfspace H+ with bounding
hyperplane H such that z € H and [H* N §| > |§| - 1. If |[H* N S| = |S| were the
case here, then z € core; (8N H) clearly and this is a contradiction: with T =SnNH
iT| < |8| and z € core;T. So there is a unique point 2, € S\ H*.

Now 2 € bd conv(S \ zg), so there are affinely independent vectors zy,...,2z, €
S (r < d) with z €relint conv{z,,..., 2 }. To simplify notation we set z = 0.

Define C = S\ {z1,...,2-} and E = {0,1,...,7}. For a subset B C E write
z(B) = {z; : i € B}. The condition 0 € core;S is the same, by definition, as
0 € conv(S \ z) for all z € S, but 0 € conv(S \ z) is trivially satisfied unless z = z;
for some 7 € [r]. So 0 € core S is equivalent to

0 € conv(z(E\i)UC) for all i € [r].
Define & as the collection of sets B C E with 0 € B that are minimal with respect
to the property
0 € conv(2(B) U C).

This means that 0 € conv(z(B) U C) but 0 ¢ conv(z(B') U C) for any proper subset
B’ (with 0 € B') of B. If {0} € 8, i.e., 0 € conv({20} UC), then (by Caratheodory’s
theorem) we find a subset Cy C C, |Gy} < d with 0 € conv{{z} U ¢y). Then for
T =2z2(E)UCo C S we have 0 € core;T and [T < d+1+7r <2d+1 < |5}, a
contradiction. So {0} ¢ B. Clearly, for each ¢ € [r] thereisa B € B withi ¢ B, i.e,,
NB = {0}. Let now B’ C B be a subfamily minimal with respect to the property
NB = {0}. Set, finally, 3’ = {By,...,Bn}.

n
Claim 12. Y (d - |B;{) < [d*/4].
j=1
Proof. By the minimality of &' for every j € [n] there is an element i(j) missed by
B; only, i.e., i(j) € By, iff k # j. This element is nonzero and is different for different

j-s. Then |B; \ 0] > n —1 and so [B;| > n and

n
> (d—1B;)) < n(d—n) < |(n+(d— n))*/4] = |4*/4]. '
Jj=1
Now for each j.€ [n] choose a subset C; € C minimal with respect to the
property
(6) 0 € conv(z(B;) U Cy).
Set T'= z(E) U Cy,U...UCy. Let us prove now 0 € core,T: We have to show that
0 € conv(T \z) forall z € T. If z # 2; for some ¢ € [r], then 0 € conv{z,..., 2} and
if 2 = z; for some ¢ € [r], then defining j by i ¢ B; we have 0 € conv(z(B;) UCj).
We would like to show that |T| < g(d) as this would prove the theorem. At this
point we have only

T < (B + ) IG5
J=1

S(r+1)+Y (d+1-[Bj)) Sd+1+n+|d/4],

i=1
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which is not good enough. With the Insertion Lemma (see below) one can get
an element common to every C; giving |T| < d + 2 + |d?/4] which is g(d) + 1
instead of g(d). To get rid of the plus one we will have to consider a few cases. We
need the following fact well-known from linear programming or from the proof of
Caratheodory’s theorem [2]:

Insertion Lemma. Assume X C R% consists of affinely independent points and
0 € convX. Assume, further, that y € atX. Then there is o z € X such that
0 €conv((X \ z2)U{y}).

Proof. (Which is well-known and we give it rather for further reference.) We have

Y A(z)z = 0 with a convex combination, i.e., A(z) > 0 and EA(z) = 1. There is

reX

an affine dependence y + 5 ~(z)z = 0. Multiplying it by ¢ and adding it to the
rzeX

convex combination we get

ty + Z (Mz) + ty(z))z = 0.
zeX

Set to = max{t > 0: A(z) + ty(z) > 0}; such a ¢, clearly exists. Let z € X be

defined by A(z) + tgy(2) = 0. Then toy + Y. (A (z) + ty¥(z)) = 0 is a convex
rzeX\z

combination again. So 0 € conv({X \ z) U {y}) indeed. 1

We say that y pushes z out from X when inserted. The pushed-out element is
not uniquely determined but we think of it as fixed.
We return now to the proof of Theorem 4. Condition (6) can be written as

Z Az + Z Ae)e=0
ieB; ceC;

with a suitable convex combination. It is easy to see that Ag = 0 if and only if
C;j C H. It follows from the minimality of B; and C; that

(7 |B;| +|C;| = dim aff(2(B;) U Cj) + 1, if C; ¢ H, and

(8) |B; \ 0] +|C;| = dim aff(2(B; \0)UCj) + 1, if C; C H.
There are a few cases to consider now. We introduce the sets

Ji ={j € [n]: dim aff(2(B;) UC;) =d and C; ¢ H},

J2={j € [n]: dim aff(2(B;)UC;)=d~1and C; ¢ H},

Js={j € [n]: dim aff(2(B;)UC;) <d-2and C; ¢ H},

Ji={j € [n]: aff(2(B;\0)UC;) = H}.

Js ={j € [n] : dim aff(2(B;\0)UC;) <d-2and C; C H}.

We claim that the sets Jy, Jo, Ja, Jy, J5 form a partition of [n]. Indeed, these sets are
pairwise disjoint and if j ¢ J;UJ,UJ3UJ5, then C; C H and dim aff(2(B;\0)UC;) =
d — 1 implying aff(z(B; \0) U C;) = H.
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Observe now that if C; C H for all j € [n], then T = §'\ 2 is a proper subset
of § with 0 € core;7, a contradiction. So there is ¢; € C; for some i € J; U J, U J;
with ¢; ¢ H and ¢; € H*. The line segment connecting z, and ¢; intersects H at the
point ¢p. Insert now ¢, into every X; = z(B;\0)UC; with j € Jy; let the pushed out
element be ;. Set X = (X;\ z;) U {20,c1}, then 0 € convX}. Assume z; € 2(B;).
Then 0 € convX; = conv((2(B;) \ z;)) U C;j U {c1}) which contradicts the fact that
B; is minimal. Thus zj € Cj. Choose now a minimal C} C (C; \ z;) U {c:} with
0 € conv(z(B;) U C;-). A straightforward checking shows that c}- ¢ H. Replacing
now every old z(B;) U C; by the new z(B;) U C; for j € J; we get a new system of
Bj-s and Cj-s, and J, will be empty.

So we may assume J; = @ from now on. Suppose J; # [n] and choose some
a € C; with j € J, U J3U Js. Insert a into every 2(B;) U C; with j € J;. We see
again that the pushed-out element c; must come from C;. Write C;(a) for the set
(SCj \ ¢;)U{a}. We have a new system B}, C;(a) for j € J; and Bj, C; for the rest.

et

T=zE)u ] Ciu |J ¢
jedy jelmnJ
Again we have 0 € core;T. Moreover,

|Ua@u U ol s [UG@\a|+ X Ici<

jed Jjelr]\J jeJi Jelnngy
<Y @-1Bi)+ Y. (d—1-|Bj\0) =
jedi Jeln\Jr
=) (d—|Bj]) < [&*/4
Jem)

according to Claim 12. Here we used (7) and (8) as well. Then |T| < 1+r+|d?/4] <
g(d) < |S|, a contradiction.

We have, finally, J; = [n]; n = 0 or 1 is clearly impossible. So n > 2. Consider
a € C; and insert @ into every other z(B;) U C;. Again, a pushes out some element

n
from C;. Write Cy(a) = C,. Setting again T' = z(E)U 3~ Cj(a) we have 0 € core,T.

7=1
The above estimation gives now |T| < 1+ r + |d?/4] + 1. We can get one less if
|C;(a)NCj(a)] > 2 for some i # j. So assume the sets Cj(a)\ a are pairwise disjoint.
Observe, further, that the proof of Claim 12 gives |d°/4] ~ 1 unless | B;| = n for all
J € [n] and n equals |d/2} or |(d +1)/2]. Thus {Cj| = d+1~n > 2. Then there is
b € Cyla) b # a. Try to insert & into 2(B,)} U C;. Then |Cy(a) N C;(b)] > 2 unless b
pushes out a from C;. Similarly, take ¢’ € Cy, a’ # a and insert a’ into z2(B,)UCs{a)
and into every 2(B;) UC; (j = 3,...,n). If o’ pushes out a from Cs(a), then C;(b),
Ca(a)(a’), Cs(a'),...,Cn(a’) is a good system together with the unchanged Bj-s,
because C;(b) and C,{a)(a’) have two elements, o’ and b in common. Similarly, if o’
pushes out b from Cy(a), then Cy, Cao(a)(a’), Cs(a’),...,Cr(a’) is a good system for
the first two sets share two elements o and a’. [}
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6. The example proving Theorem 5

First set n = |(d — 1)/2]. Take a hyperplane H C R? not passing through the
origin and let P C H be the set of vertices of an n-neighbourly polytope with |P| = k.
This means that the convex hull of any n-subset of vertices is a face of the polytope. It
is well-known that such polytopes exist, see for instance [3] or [4]. Set Q@ = —convP,
this is a (d — 1)-dimensional n-neighbourly polytope lying in the hyperplane —H.
For an n-subset A of P define s(A) as the center of gravity of the pointset —A. Let
v be a unit vector parallel with H and in general position relative to the faces of Q.
Then at least one of the halflines {s(A) +tv: ¢t >0} and {s(A)+tv: t <0} hasa
single point, s(A), in common with Q. Then either {s(4) +tv: t > 0} NQ = s(A4)
or {s(A)+tv: t < 0}NQ = s(A) for at least half of the n-subsets A in P. We
assume, without loss of generality, that {s(A) +tv: t > 0} N Q = s(A) for at least

half of the n-subsets. Denote the set of these n-subsets by «; then 4] > %(:) For

any vector u close enough to v we will have

(9) {s(AY+tu: t20}NQ =3s(A) for all a € .
Choose now points z),...,z, parallel to H and close to v and points zp,1,...,24
parallel to H and close to —v with 0 € conv{zi,...,24}.

Let L be a hyperplane orthogonal to v and such that @ + {tv: ¢ > 0} is in one
of the open halfspaces determined by L. Define y(p,i) = LN {-p —tz; : t > 0} for
all p € P and i € [n]. Clearly, y(p,?) is a single point. Set now Y = {y(p,i): p €
Pienl}, Z={z,...,29}, X ={s(4): Aed}and S=PUZUXUY.

Claim 13. 0 € coreyS.

Proof. Take away a set K of k points from S; we have to prove that 0 € conv(S\ K).
Set P'= PNK, 2’ = ZNK, X' = XNK and Y’ = YNK. Let |P'| = k—a, |Z/| = B,
then | X' UY’| = a — 3. We can assume that 8 > 1 as otherwise 0 € conv(S \ K)
trivially. Clearly & > 3. There are three cases to consider.

Case 1. When a > n. Then |P\ P'| = a > n so there are at least (:) n-subsets in

P\ P’ and (z) > a > a— f3, so there is an n-subset A C P\ P’ with s(A) ¢ X'

Then
0 € conv(s(A) U A) C conv(S \ K).

Case 2. When a < n and 8 < n. If there is a pair p,i € P x [n] with p ¢ P’,
z ¢ Z' and y(p,i) ¢ Y', then 0 € conv{p, z;, y(p,7)} C conv(S \ K). The number
of pairs with p ¢ tP' and z; ¢ Z' (i € [n]) is at least |P \ P'|(n — 8) = a(n — B)
and |Y’| < @ — 3. So there is a pair (p,i) € P x [n] with p ¢ P', z; ¢ 2’ and
y(p,i) € Y' unless a(n — 8) < a -8, Now o — 8 < n~ (3, so o = 1 must hold. Then
a(n — B8) < a — B implies n = 1 but we have d > 5.

Case 3. When a = # = n. Then P\ P’ is an n-subset of P and S(P \ P’) is not
deleted, so

0 € conv(s(P\ P'YU(P\ P')) C conv(S\ K). 1
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Claim 14. For any A € 4, 0 ¢ coreg (S \ s(4)).

Sketch of the proof. Set Z' = {z,...,2p}, P = P\ Aand K = Z'U P’. Take
a hyperplane H; passing through the origin, containing A and containing @ in one
of the closed halfspaces determined by H;. Such a hyperplane exists for ) is an n-
neighbourly polytope in H. H; has a single point, 8{A), in common with conv(XUY).
It is not difficult to see from this and from (9) that 0 does not lie in the convex hull
of (S\ s(4))\ K. We omit the details. 1

By the claim, if T C S and 0 € core, T, then s(A) € T must hold for all A € 4.
This implies {T} > |4|. One can see also that T must contain P and Z as well. This
proves the theorem. [ |

Acknowledgement. Thanks are due to Helge Tverberg, the referee for simplifying
the proofs of Theorem 2 and Lemma 9.
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