THE CARATHEODORY NUMBER FOR THE k-CORE

I. BÁRÁNY* and M. PERLES

Received October 10, 1988
Revised December 16, 1988

The k-core of the set $S \subset \mathbf{R}^{n}$ is the intersection of the convex hull of all sets $A \subseteq S$ with $|S \backslash A| \leq k$. The Caratheodory number of the k-core is the smallest integer $f(d, k)$ with the property that $x \in \operatorname{core}_{k} S, S \subset \boldsymbol{R}^{n}$ implies the existence of a subset $T \subseteq S$ such that $x \in$ core $_{k} T$ and $|T| \leq f(d, k)$. In this paper various properties of $f(d, k)$ are established.

1. Definitions and results

The k-core of a set $S \subseteq \mathbf{R}^{d}$ is the intersection of the convex hulls of all sets $A \subseteq S$ with $|S \backslash A| \leq k$, i.e.,

$$
\operatorname{core}_{k} S=\cap\{\operatorname{conv} A: A \subseteq S,|S \backslash A| \leq k\}
$$

Here and in what follows we assume S is a finite multiset in \mathbf{R}^{d}. This means that the points in S have "multiplicity". Strictly speaking, a multiset is a map $S: F \rightarrow \mathbf{R}^{d}$ and in our case F is finite. Then core ${ }_{k} S=\cap\{\operatorname{conv} S(E): E \subseteq F,|F \backslash E| \leq k\}$. From now on we do not say explicitly that the sets in question are multisets. This will make the notation simpler and will not cause confusion.

Alternatively, we can define

$$
\text { core }_{k} S=\cap\left\{H^{+}: H^{+} \text {is a closed halfspace with }\left|H^{+} \cap S\right| \geq|S|-k\right\}
$$

So the case $k=0$ is the usual convex hull. Several properties of the k-core are known, c.f. [5] (or [2] Theorem 2.8). In [1], Boros and Füredi extend the definition of the k-core to every real number $k \geq 0$.

We define the Caratheodory number of the k-core as the smallest integer $f(d, k)$ with the property that $x \in \operatorname{core}_{k} S, S \subset \mathbf{R}^{d}$ implies the existence of a subset $T \subseteq S$ such that $x \in \operatorname{core}_{k} T$ and $|T| \leq f(d, k)$. By Caratheodory's theorem, $f(d, 0)=d+1$. At the 1982 Oberwolfach conference on convex bodies, Micha Perles posed the problem of determining $f(d, k)$. In this paper various properties of

[^0]AMS subject classification (1980): 52 A 20.
$f(d, k)$ are established. We determine, for instance, $f(2, k)$ and $f(d, 1)$ exactly. We also establish the order of magnitude of $f(d, k)$ when $d \rightarrow \infty$ and k is fixed.

Our first theorem shows that $f(d, k)$ is finite for every $d \geq 1$ and $k \geq 0$.
Theorem 1. If $f(d, k-1)$ is finite then so is $f(d, k)$ and

$$
f(d, k) \leq \max ((k+1)(d+1), d(1+f(d, k-1))
$$

It follows from here that $f(d, k) \leq d^{k+1}+2 d^{k}+d^{k-1}+\ldots+1$ and this can be improved to $f(d, k) \leq d^{k+1}$ for all $k \geq 1$ and $d \geq 1$ except $(d, k)=(2,1)$ and (2,2).

A simple lower bound on the Caratheodory number is this:

$$
\begin{equation*}
f(d, k) \geq(k+1)(d+1) \tag{1}
\end{equation*}
$$

To see this take for S the set of vertices of a d-dimensional simplex $(k+1)$-times. Then the center of the simplex lies in $\operatorname{core}_{k} S$ but it does not lie in core ${ }_{k} T$ if T is a proper subset of S.

It is readily seen that for $d=1$ equality holds in (1). This is the case, too, when $d=2$.

Theorem 2. $f(2, k)=3(k+1)$.
One might expect that equality holds in (1) for all d and k. That this is not the case is shown by

Theorem 3. For any n with $d>n>k>0$ we have

$$
\begin{equation*}
f(d, k) \geq k+d+\binom{n}{k}(d-n) \tag{2}
\end{equation*}
$$

When k is fixed and $d \rightarrow \infty$ we get from here and Theorem 1

$$
\frac{1}{e^{k}(k+1)!} d^{k+1} \leq f(d, k) \leq d^{k+1}
$$

thus establishing the order of magnitude of $f(d, k)$ for fixed k.
Theorem 4. $f(d, 1)=\max \left(2(d+1), 1+d+\left\lfloor d^{2} / 4\right\rfloor\right)$.
Our last theorem shows that $f(d, k)$ grows quite fast when $d \geq 5$ is fixed and k tends to infinity.

Theorem 5. If $k>d$ and $d \geq 5$, then $f(d, k) \geq k+d+\frac{1}{2}\binom{k}{\lfloor(d-1) / 2\rfloor}$.

2. Proof of Theorem 1

We start with an observation that will be basic (explicitly or implicitly) for most of the proofs to follow.
Lemma 6. Assume $S \subset \mathbf{R}^{d}$ and $|S|>(d+1)(k+1)$ and $y \in \operatorname{core}_{k} S$ but $y \notin \operatorname{core}_{k} T$ for any proper subset $T \subset S$. Then there is a point x in relbd core ${ }_{k} S$ such that $x \notin \operatorname{core}_{k} T$ for any proper subset $T \subset S$.

Proof of Lemma 6. As $|S| \geq(k+1)(d+1)+1$, it follows from Tverberg's theorem [6] that there are pairwise disjoint subsets S_{1}, \ldots, S_{k+1} of S whose conver hulls have a point, say $u \in \mathbf{R}^{d}$, in common. Then $u \in \operatorname{core}_{k+1} S$ and, consequently, $u \in$ core $_{k} T$ for every $T \subset S$ with $|T|=|S|-1$. Let x be the last point in core ${ }_{k} S$ on the halfline stemming from u and passing through y (clearly $u \neq y$). If $x \in \operatorname{core}_{k} T$ for some subset $T \subset S$ with $|T|=|S|-1$, then $u \in \operatorname{core}_{k} T$ implies $y \in \operatorname{core}_{k} T$, a contradiction.

Now we prove Theorem 1. Let $S \subset \mathbf{R}^{d}$ and assume $|S|>(k+1)(d+1)$ and $x \in \operatorname{core}_{k} S$ but $x \notin \operatorname{core}_{k} T$ for any proper subset $T \subset S$. Applying Lemma 6 we may assume $x \notin \operatorname{relbd} \operatorname{core}_{k} S$. Then $x \in \operatorname{bd} \operatorname{conv}(S \backslash A)$ for some $A \subset S$, $|A| \leq k$ (as otherwise $x \in \operatorname{int} \operatorname{conv}(S \backslash A)$ for all A with $|A| \leq k$. Then by Caratheodory's theorem, applied in $\operatorname{bd} \operatorname{conv}(S \backslash A)$, there are points $z_{1}, \ldots, z_{d} \in S$ with $x \in \operatorname{conv}\left\{z_{1}, \ldots, z_{d}\right\}$. Clearly $x \in \operatorname{core}_{k-1}\left(S \backslash z_{i}\right)$ for each $i=1, \ldots, d$. So (by the induction hypothesis) there exists a subset $T_{i} \subseteq S \backslash z_{i}$ with $\left|T_{i}\right| \leq f(d, k-1)$ and $x \in \operatorname{core}_{k-1} T_{i}$. Define $T=\left\{z_{1}, \ldots, z_{d}\right\} \cup T_{1} \cup \ldots \cup T_{d}$. We claim that $x \in \operatorname{core}_{k} T$. Let $K \subset T$ with $|K|=k$. We have to prove that $x \in \operatorname{conv}(T \backslash K)$. This is obvious if K does not contain any one of the points z_{1}, \ldots, z_{d}. So assume $z_{i} \in K$. Then $\left|K \cap T_{i}\right| \leq k-1$, consequently $x \in \operatorname{core}_{k-1} T_{i} \subseteq \operatorname{conv}(T \backslash K)$ as claimed.

This shows that $|T| \leq d+d f(d, k-1)$ and proves the theorem.
Remark 7. Using the fact that in Caratheodory's theorem one of the points out of the $d+1$ can be chosen arbitrarily (and some other arguments) we can give a slightly better estimate of $f(d, k)$. We can prove, for instance, that for all $d, k \geq 1$ except $(d, k)=(2,1)$ and $(2,2) f(d, k) \leq d^{k+1}$. This can be further improved by using Theorem 4 as the starting step of the introduction. We omit the details.
Remark 8. This proof works in any abstract convexity space (see [2]) as well.

3. Proof of Theorem 2

In view of (1) we have to show that $f(2, k) \leq 3(k+1)$. We prove this by induction on k. The case $k=0$ is trivial. So we assume the statement holds for $k-1$ and we prove it for $k(k \geq 1)$. Let $S \subset \mathbf{R}^{2}$ and $|S| \geq 3(k+1)$ and $x \in \operatorname{core}_{k} S$. We distinguish two cases.
Case 1. $x \in S$. Then clearly $x \in \operatorname{core}_{k-1}(S \backslash x)$, and so, by induction, there is a subset $T \subseteq S \backslash x,|T| \leq 3 k$ such that $x \in \operatorname{core}_{k-1} T$. Then $|T \cup\{x\}| \leq 3 k+1<3 k+3$ and $x \in \operatorname{core}_{k}(T \cup\{x\})$.
Case 2. $x \notin S$. Then we assume, without loss of generality, that the points of S are on a unit circle with center x, their clockwise order on this circle is $z_{1}, z_{2}, \ldots, z_{n}$
where $n=|S|$. Observe that $x \in \operatorname{core}_{k} S$ if and only if every $k+1$ consecutive points in the circle span an arc $\leq \pi$.

Suppose S is minimal with respect to $x \in \operatorname{core}_{k} S$, i.e., $x \notin$ core $_{k} T$ for any proper subset $T \subset S$. Then there are $k+3$ consecutive point, z_{1}, \ldots, z_{k+3} say, spanning an arc larger than π, as otherwise $x \in \operatorname{core}_{k}\left(S \backslash\left\{z_{i}\right\}\right)$ for every i. Consider now the point $z_{2 k+4}$. (If $|S|<2 k+4$ then we are finished at once.) As $x \notin \operatorname{core}_{k}\left(S \subset\left\{z_{2 k+4}\right\}\right)$ there are $k+2$ points $z_{i}, \ldots, z_{2 k+3}, z_{2 k+5}, \ldots, z_{i+k+2}$ spanning an arc larger than π. Here $i+k+2$ is meant $\bmod |S|$. We have $i \geq k+3$ as $i+k+2$ cannot be less that $2 k+5$. Then $i+k+2 \geq|S|+2$, for otherwise the two arcs of size larger than π wouldn't overlap. But $i \leq 2 k+3$ and so $|S| \leq i+k \leq 3 k+3$.

4. The example proving Theorem 3

Let e_{1}, \ldots, e_{d} be an orthonormal basis \mathbf{R}^{d}. Define $e=\sum_{i=1}^{d} e_{i}$ and $e_{0}=(1 / d) e$ and

$$
f_{i}=e_{0}+p\left(e_{0}-e_{i}\right) \quad(i=1, \ldots, d)
$$

where $p \geq 0$ will be specified later. Define $[t]=\{1, \ldots, t\}$ when $t>0$ is an integer. Let $k+1 \leq n<d$. Set $F=\{K: K \subseteq[n],|K|=k\}$ and $D=[d] \backslash[n]$. For $(K, j) \in F \times D$ define

$$
e(K, j)=\sum_{i \in[n] \backslash K} e_{i}+\left(e_{j}-(d-n)^{-1} \sum_{i \in D} e_{i}\right)
$$

Set, finally

$$
S=\left\{0, \ldots, 0, f_{1}, \ldots, f_{d}\right\} \cup\{e(K, j):(K, j) \in F \times D\}
$$

where 0 is taken k times.
This is the set that will prove the estimate in Theorem 3. To see this we first need a lemma.

Lemma 9. The linear system with variables $\alpha_{0}, \alpha_{i}, \alpha(K, j)$

$$
\begin{gathered}
e_{0}=\sum_{i=k+1}^{d} \alpha_{i} f_{i}+\Sigma^{*} \alpha(K, j) e(K, j) \\
\alpha_{0}+\sum_{k+1}^{d} \alpha_{i} \Sigma^{*} \alpha(K, j)=1 \\
\alpha_{0}, \alpha_{i}, \alpha(K, j) \geq 0
\end{gathered}
$$

has a unique solution. Here Σ^{*} denotes summation over all pairs in $F \times D$.
Proof of Lemma 9. The Lemma means that e_{0} is in the relative interior of a sim plex which is a face of the polytope $P=\operatorname{conv}\left(\left\{0, f_{k+1}, \ldots, f_{n}\right\} \cup\{e(K, j):(K, j)\right.$ $F \times D\}$). Consider the vector $w=(n-d)\left(e_{1}+\ldots+e_{k}\right)+k\left(e_{n+1}+\ldots+e_{\ell}\right.$
and the hyperplane $H=\left\{x \in \mathbf{R}^{d}: w \cdot x=0\right\}$. One can easily check that $w \cdot e_{0}=w \cdot 0=w \cdot f_{k+1}=\ldots=w \cdot f_{n}=0$ while $w \cdot f_{n+1}=\ldots=w \cdot f_{d}=-p k$ and $w \cdot e(K, j)=(n-d)|[k] \backslash K| \leq 0$, with equality only if $K=[k]$. This means that H supports P in the face with vertices $0, f_{k+1}, \ldots, f_{n}, e([k], n+1), \ldots, e([k], d)$ with $\alpha>0, \beta>0$ and $\alpha+\beta<1$ provided $p>0$ is large enough. This representation is unique for the points $0, f_{k+1}, \ldots, f_{n}, e([k], n+1), \ldots, e([k], d)$ are affinely independent. The proof of the last statement is left to the reader.

The Lemma shows that

$$
\begin{align*}
& e_{0} \in \operatorname{conv}\left(S \backslash\left\{f_{i}: i \in K\right\}\right) \text { for every } K \in F, \text { and } \tag{3}\\
& e_{0} \notin \operatorname{conv}\left(S \backslash\left(\left\{f_{i}: i \in K\right\} \cup\{e(K, j)\}\right)\right) \text { for any }(K, j) \in F \times D \tag{4}
\end{align*}
$$

Claim 10. If $z \in S$, then $e_{0} \notin \operatorname{core}_{k}(S \backslash z)$.
Proof. When $z=e(K, j)$, this is exactly (4). If $z=f_{i}$ for some $i \in[d]$, then let $A=\{0, \ldots, 0\} k$ times. If $z=0$, then let $A=\left\{f_{1}\right\} \cup\{0, \ldots, 0\} 0$ taken $k-1$ times. In both cases, $e_{0} \notin \operatorname{conv}(S \backslash A)$. This proves the claim.
Claim 11. $e_{0} \in \operatorname{core}_{k} S$.
Proof. We have to show that $e_{0} \in \operatorname{conv}(S \backslash A)$ if $A \subseteq S$ and $|A|=k$. If $0 \in A$ or if $A \cap\left\{f_{1}, \ldots, f_{n}\right\}=\emptyset$, then this follows immediately. If $A \subset\left\{f_{1}, \ldots, f_{n}\right\}$, then this is just (3).

So assume $\left|A \cap\left\{f_{1}, \ldots, f_{t}\right\}\right|=t<k(t=0$ is possible $)$, say $A \cap\left\{f_{1}, \ldots, f_{n}\right\}=$ $\left\{f_{1}, \ldots, f_{t}\right\}$. Then we look for a set $K \in F$ with $[t] \subset K$ such that $e(K, j) \in S \backslash A$ for every $j \in D$ (when $t=0$ let $[t]=\emptyset$). Call such a set "good". As there are at most $(k-t)$ vectors $e(K, j)$ in A, the number of "bad" K-s is at most $(k-t)$. There are altogether $\binom{n-t}{k-t}$ ways to choose K so the number of "good" K-s is at least

$$
\binom{n-t}{k-t}-(k-t) \geq(n-t)-(k-t)=n-k \geq 1
$$

Now fix a "good" K. We will show now that

$$
\begin{equation*}
e_{0} \in \operatorname{conv}\left(\left\{0, f_{t+1}, \ldots, f_{n}\right\} \cup\{e(K, j): j \in D\}\right) \tag{5}
\end{equation*}
$$

As all of these points belong to $S \backslash A$ this will prove the Claim.
Lemma 9 implies $e_{0} \in \operatorname{conv}\left(\{0\} \cup\left\{f_{i}: i \in[n] \backslash K\right\} \cup\{e(K, j): j \in D\}\right)$. We have $[t] \subset K$ so $[n] \backslash K \subset[n] \backslash[t]$ proving (5).

5. Proof of Theorem 4

Set $g(d)=\max \left(2(d+1), 1+d+\left\lfloor d^{2} / 4\right\rfloor\right)$. We have to prove that $f(d, 1)=g(d)$. Inequalities (1) and (2) show that $f(d, 1) \geq g(d)$.

So we have to prove that $f(d, 1) \leq g(d)$. Assume this is false and take a counterexample $S \subset \mathbb{R}^{d}$ with minimal d. Then $d \geq 3$ and $|S|>g(d), \operatorname{dim} S=d$ and $x \in \operatorname{core}_{1} S$ for some x but $x \notin \operatorname{core}_{1} T$ for any proper subset $T \subset S$. As
$|S|>2(d+1)$ Lemma 6 applies and so we may assume that $x \in \operatorname{relbd}$ core $_{1} S$. Then the alternative definition of the 1-core gives a closed halfspace H^{+}with bounding hyperplane H such that $x \in H$ and $\left|H^{+} \cap S\right| \geq|S|-1$. If $\left|H^{+} \cap S\right|=|S|$ were the case here, then $x \in \operatorname{core}_{1}(S \cap H)$ clearly and this is a contradiction: with $T=S \cap H$ $|T|<|S|$ and $x \in \operatorname{core}_{1} T$. So there is a unique point $z_{0} \in S \backslash H^{+}$.

Now $x \in \operatorname{bd} \operatorname{conv}\left(S \backslash z_{0}\right)$, so there are affinely independent vectors $z_{1}, \ldots, z_{r} \in$ $S(r \leq d)$ with $x \in$ relint $\operatorname{conv}\left\{z_{1}, \ldots, z_{r}\right\}$. To simplify notation we set $x=0$.

Define $C=S \backslash\left\{z_{1}, \ldots, z_{r}\right\}$ and $E=\{0,1, \ldots, r\}$. For a subset $B \subset E$ write $z(B)=\left\{z_{i}: \quad i \in B\right\}$. The condition $0 \in \operatorname{core}_{1} S$ is the same, by definition, as $0 \in \operatorname{conv}(S \backslash z)$ for all $z \in S$, but $0 \in \operatorname{conv}(S \backslash z)$ is trivially satisfied unless $z=z_{i}$ for some $i \in[r]$. So $0 \in \operatorname{core}_{1} S$ is equivalent to

$$
0 \in \operatorname{conv}(z(E \backslash i) \cup C) \text { for all } i \in[r] .
$$

Define \mathscr{B} as the collection of sets $B \subset E$ with $0 \in B$ that are minimal with respect to the property

$$
0 \in \operatorname{conv}(z(B) \cup C)
$$

This means that $0 \in \operatorname{conv}(z(B) \cup C)$ but $0 \notin \operatorname{conv}\left(z\left(B^{\prime}\right) \cup C\right)$ for any proper subset B^{\prime} (with $0 \in B^{\prime}$) of B. If $\{0\} \in \mathscr{B}$, i.e., $0 \in \operatorname{conv}\left(\left\{z_{0}\right\} \cup C\right)$, then (by Caratheodory's theorem) we find a subset $C_{0} \subset C,\left|C_{0}\right| \leq d$ with $0 \in \operatorname{conv}\left(\left\{z_{0}\right\} \cup c_{0}\right)$. Then for $T=z(E) \cup C_{0} \subset S$ we have $0 \in \operatorname{core}_{1} T$ and $|T| \leq d+1+r \leq 2 d+1<|S|$, a contradiction. So $\{0\} \notin \mathscr{B}$. Clearly, for each $i \in[r]$ there is a $B \in \mathscr{B}$ with $i \notin B$, i.e., $\cap \mathscr{B}=\{0\}$. Let now $\mathscr{B}^{\prime} \subseteq \mathscr{B}$ be a subfamily minimal with respect to the property $\cap \mathscr{B}=\{0\}$. Set, finally, $\mathscr{B}^{\prime}=\left\{B_{1}, \ldots, B_{n}\right\}$.
Claim 12. $\sum_{j=1}^{n}\left(d-\left|B_{j}\right|\right) \leq\left\lfloor d^{2} / 4\right\rfloor$.
Proof. By the minimality of \mathscr{B}^{\prime} for every $j \in[n]$ there is an element $i(j)$ missed by B_{j} only, i.e., $i(j) \in B_{k}$ iff $k \neq j$. This element is nonzero and is different for different j-s. Then $\left|B_{j} \backslash 0\right| \geq n-1$ and so $\left|B_{j}\right| \geq n$ and

$$
\sum_{j=1}^{n}\left(d-\left|B_{j}\right|\right) \leq n(d-n) \leq\left\lfloor(n+(d-n))^{2} / 4\right\rfloor=\left\lfloor d^{2} / 4\right\rfloor .
$$

Now for each $j_{\sim} \in[n]$ choose a subset $C_{j} \subseteq C$ minimal with respect to the property

$$
\begin{equation*}
0 \in \operatorname{conv}\left(z\left(B_{j}\right) \cup C_{j}\right) \tag{6}
\end{equation*}
$$

Set $T=z(E) \cup C_{1}, \cup \ldots \cup C_{n}$. Let us prove now $0 \in \operatorname{core}_{2} T$: We have to show that $0 \in \operatorname{conv}(T \backslash z)$ for all $z \in T$. If $z \neq z_{i}$ for some $i \in[r]$, then $0 \in \operatorname{conv}\left\{z_{1}, \ldots, z_{r}\right\}$ and if $z=z_{i}$ for some $i \in[r]$, then defining j by $i \notin B_{j}$ we have $0 \in \operatorname{conv}\left(z\left(B_{j}\right) \cup C_{j}\right)$.

We would like to show that $|T| \leq g(d)$ as this would prove the theorem. At this point we have only

$$
\begin{aligned}
\{T \mid & \leq|z(E)|+\sum_{j=1}^{n}\left|C_{j}\right| \\
& \leq(r+1)+\sum_{j=1}^{n}\left(d+1-\left|B_{j}\right|\right) \leq d+1+n+\left\lfloor d^{2} / 4\right\rfloor
\end{aligned}
$$

which is not good enough. With the Insertion Lemma (see below) one can get an element common to every C_{j} giving $|T| \leq d+2+\left\lfloor d^{2} / 4\right\rfloor$ which is $g(d)+1$ instead of $g(d)$. To get rid of the plus one we will have to consider a few cases. We need the following fact well-known from linear programming or from the proof of Caratheodory's theorem [2]:
Insertion Lemma. Assume $X \subset \mathbf{R}^{d}$ consists of affinely independent points and $0 \in \operatorname{conv} X$. Assume, further, that $y \in \operatorname{aff} X$. Then there is a $z \in X$ such that $0 \in \operatorname{conv}((X \backslash z) \cup\{y\})$.
Proof. (Which is well-known and we give it rather for further reference.) We have $\sum_{x \in X} \lambda(x) x=0$ with a convex combination, i.e., $\lambda(x) \geq 0$ and $\Sigma \lambda(x)=1$. There is an affine dependence $y+\sum_{x \in X} \gamma(x) x=0$. Multiplying it by t and adding it to the convex combination we get

$$
t y+\sum_{x \in X}(\lambda(x)+t \gamma(x)) x=0
$$

Set $t_{0}=\max \{t \geq 0: \lambda(x)+t \gamma(x) \geq 0\} ;$ such a t_{0} clearly exists. Let $z \in X$ be defined by $\lambda(z)+t_{0} \gamma(z)=0$. Then $t_{0} y+\sum_{x \in X \backslash z}\left(\lambda(x)+t_{0} \gamma(x)\right)=0$ is a convex combination again. So $0 \in \operatorname{conv}((X \backslash z) \cup\{y\})$ indeed.

We say that y pushes z out from X when inserted. The pushed-out element is not uniquely determined but we think of it as fixed.

We return now to the proof of Theorem 4. Condition (6) can be written as

$$
\sum_{i \in B_{j}} \lambda_{i} z_{i}+\sum_{c \in C_{j}} \lambda(c) c=0
$$

with a suitable convex combination. It is easy to see that $\lambda_{0}=0$ if and only if $C_{j} \subset H$. It follows from the minimality of B_{j} and C_{j} that

$$
\begin{gather*}
\left|B_{j}\right|+\left|C_{j}\right|=\operatorname{dim} \operatorname{aff}\left(z\left(B_{j}\right) \cup C_{j}\right)+1, \text { if } C_{j} \not \subset H, \text { and } \tag{7}\\
\left|B_{j} \backslash 0\right|+\left|C_{j}\right|=\operatorname{dim} \operatorname{aff}\left(z\left(B_{j} \backslash 0\right) \cup C_{j}\right)+1, \text { if } C_{j} \subset H \tag{8}
\end{gather*}
$$

There are a few cases to consider now. We introduce the sets
$J_{1}=\left\{j \in[n]: \operatorname{dim} \operatorname{aff}\left(z\left(B_{j}\right) \cup C_{j}\right)=d\right.$ and $\left.C_{j} \not \subset H\right\}$,
$J_{2}=\left\{j \in[n]: \operatorname{dim} \operatorname{aff}\left(z\left(B_{j}\right) \cup C_{j}\right)=d-1\right.$ and $\left.C_{j} \not \subset H\right\}$,
$J_{3}=\left\{j \in[n]: \operatorname{dim} \operatorname{aff}\left(z\left(B_{j}\right) \cup C_{j}\right) \leq d-2\right.$ and $\left.C_{j} \not \subset H\right\}$,
$J_{4}=\left\{j \in[n]: \operatorname{aff}\left(z\left(B_{j} \backslash 0\right) \cup C_{j}\right)=H\right\}$.
$J_{5}=\left\{j \in[n]: \operatorname{dim} \operatorname{aff}\left(z\left(B_{j} \backslash 0\right) \cup C_{j}\right) \leq d-2\right.$ and $\left.C_{j} \subset H\right\}$.
We claim that the sets $J_{1}, J_{2}, J_{3}, J_{4}, J_{5}$ form a partition of $[n]$. Indeed, these sets are pairwise disjoint and if $j \notin J_{1} \cup J_{2} \cup J_{3} \cup J_{5}$, then $C_{j} \subset H$ and $\operatorname{dim} \operatorname{aff}\left(z\left(B_{j} \backslash 0\right) \cup C_{j}\right)=$ $d-1$ implying aff $\left(z\left(B_{j} \backslash 0\right) \cup C_{j}\right)=H$.

Observe now that if $C_{j} \subset H$ for all $j \in[n]$, then $T=S \backslash z_{0}$ is a proper subset of S with $0 \in \operatorname{core}_{1} T$, a contradiction. So there is $c_{1} \in C_{j}$ for some $i \in J_{1} \cup J_{2} \cup J_{3}$ with $c_{1} \notin H$ and $c_{1} \in H^{+}$. The line segment connecting z_{0} and c_{1} intersects H at the point c_{0}. Insert now c_{0} into every $X_{j}=z\left(B_{j} \backslash 0\right) \cup C_{j}$ with $j \in J_{4}$; let the pushed out element be x_{j}. Set $X_{j}^{\prime}=\left(X_{j} \backslash x_{j}\right) \cup\left\{z_{0}, c_{1}\right\}$, then $0 \in \operatorname{conv} X_{j}^{\prime}$. Assume $x_{j} \in z\left(B_{j}\right)$. Then $\left.0 \in \operatorname{conv} X_{j}^{\prime}=\operatorname{conv}\left(\left(z\left(B_{j}\right) \backslash x_{j}\right)\right) \cup C_{j} \cup\left\{c_{1}\right\}\right)$ which contradicts the fact that B_{j} is minimal. Thus $x_{j} \in C_{j}$. Choose now a minimal $C_{j}^{\prime} \subseteq\left(C_{j} \backslash x_{j}\right) \cup\left\{c_{1}\right\}$ with $0 \in \operatorname{conv}\left(z\left(B_{j}\right) \cup C_{j}^{\prime}\right)$. A straightforward checking shows that $c_{j}^{\prime} \not \subset H$. Replacing now every old $z\left(B_{j}\right) \cup C_{j}$ by the new $z\left(B_{j}\right) \cup C_{j}^{\prime}$ for $j \in J_{4}$ we get a new system of B_{j}-s and C_{j}-s, and J_{4} will be empty.

So we may assume $J_{4}=\emptyset$ from now on. Suppose $J_{1} \neq[n]$ and choose some $a \in C_{j}$ with $j \in J_{2} \cup J_{3} \cup J_{5}$. Insert a into every $z\left(B_{j}\right) \cup C_{j}$ with $j \in J_{1}$. We see again that the pushed-out element c_{j} must come from C_{j}. Write $C_{j}(a)$ for the set $\left(C_{j} \backslash c_{j}\right) \cup\{a\}$. We have a new system $B_{j}, C_{j}(a)$ for $j \in J_{1}$ and B_{j}, C_{j} for the rest. Set

$$
T=z(E) \cup \bigcup_{j \in J_{1}} C_{j}(a) \cup \bigcup_{j \in\left[n \backslash \backslash J_{1}\right.} C_{j},
$$

Again we have $0 \in \operatorname{core}_{1} T$. Moreover,

$$
\begin{gathered}
\left|\bigcup_{j \in J_{1}} C_{j}(a) \cup \bigcup_{j \in[n] \backslash J_{1}} C_{j}\right| \leq\left|\bigcup_{j \in J_{1}}\left(C_{j}(a) \backslash a\right)\right|+\sum_{j \in\left[n \backslash \backslash J_{1}\right.}\left|C_{j}\right| \leq \\
\leq \sum_{j \in J_{1}}\left(d-\left|B_{j}\right|\right)+\sum_{j \in[n] \backslash J_{-}}\left(d-1-\left|B_{j} \backslash 0\right|\right)= \\
=\sum_{j \in[n]}\left(d-\left|B_{j}\right|\right) \leq\left\lfloor d^{2} / 4\right\rfloor
\end{gathered}
$$

according to Claim 12. Here we used (7) and (8) as well. Then $|T| \leq 1+r+\left\{d^{2} / 4\right\rfloor \leq$ $g(d)<|S|$, a contradiction.

We have, finally, $J_{1}=[n] ; n=0$ or 1 is clearly impossible. So $n \geq 2$. Consider $a \in C_{1}$ and insert a into every other $z\left(B_{j}\right) \cup C_{j}$. Again, a pushes out some element from C_{j}. Write $C_{1}(a)=C_{1}$. Setting again $T=z(E) \cup \sum_{j=1}^{n} C_{j}(a)$ we have $0 \in \operatorname{core}_{1} T$. The above estimation gives now $|T| \leq 1+r+\left\lfloor d^{2} / 4\right\rfloor+1$. We can get one less if $\left|C_{i}(a) \cap C_{j}(a)\right| \geq 2$ for some $i \neq j$. So assume the sets $C_{j}(a) \backslash a$ are pairwise disjoint. Observe, further, that the proof of Claim 12 gives $\left\lfloor d^{2} / 4\right\rfloor-1$ unless $\left|B_{j}\right|=n$ for all $j \in[n\rfloor$ and n equals $\lfloor d / 2\rfloor$ or $\lfloor(d+1) / 2\rfloor$. Thus $\left|C_{j}\right|=d+1-n \geq 2$. Then there is $b \in C_{2}(a) b \neq a$. Try to insert b into $z\left(B_{1}\right) \cup C_{1}$. Then $\left|C_{2}(a) \cap C_{1}(b)\right| \geq 2$ unless b pushes out a from C_{1}. Similarly, take $a^{\prime} \in C_{1}, a^{\prime} \neq a$ and insert a^{t} into $z\left(B_{2}\right) \cup C_{2}(a)$ and into every $z\left(B_{j}\right) \cup C_{j}(j=3, \ldots, n)$. If a^{\prime} pushes out a from $C_{2}(a)$, then $C_{1}(b)$, $C_{2}(a)\left(a^{\prime}\right), C_{3}\left(a^{\prime}\right), \ldots, C_{n}\left(a^{\prime}\right)$ is a good system together with the unchanged B_{j}-s, because $C_{1}(b)$ and $C_{2}(a)\left(a^{\prime}\right)$ have two elements, a^{\prime} and b in common. Similarly, if a^{\prime} pushes out b from $C_{2}(a)$, then $C_{1}, C_{2}(a)\left(a^{\prime}\right), C_{3}\left(a^{\prime}\right), \ldots, C_{n}\left(a^{\prime}\right)$ is a good system for the first two sets share two elements a and a^{\prime}.

6. The example proving Theorem 5

First set $n=\lfloor(d-1) / 2\rfloor$. Take a hyperplane $H \subset \mathbf{R}^{d}$ not passing through the origin and let $P \subset H$ be the set of vertices of an n-neighbourly polytope with $|P|=k$. This means that the convex hull of any n-subset of vertices is a face of the polytope. It is well-known that such polytopes exist, see for instance [3] or [4]. Set $Q=-\operatorname{conv} P$, this is a $(d-1)$-dimensional n-neighbourly polytope lying in the hyperplane $-H$. For an n-subset A of P define $s(A)$ as the center of gravity of the pointset $-A$. Let v be a unit vector parallel with H and in general position relative to the faces of Q. Then at least one of the halfines $\{s(A)+t v: t \geq 0\}$ and $\{s(A)+t v: t \leq 0\}$ has a single point, $s(A)$, in common with Q. Then either $\{s(A)+t v: t \geq 0\} \cap Q=s(A)$ or $\{s(A)+t v: t \leq 0\} \cap Q=s(A)$ for at least half of the n-subsets A in P. We assume, without loss of generality, that $\{s(A)+t v: t \geq 0\} \cap Q=s(A)$ for at least half of the n-subsets. Denote the set of these n-subsets by A; then $|A| \geq \frac{1}{2}\binom{k}{n}$. For any vector u close enough to v we will have

$$
\begin{equation*}
\{s(A)+t u: t \geq 0\} \cap Q=s(A) \text { for all } a \in \mathbb{A} \tag{9}
\end{equation*}
$$

Choose now points z_{1}, \ldots, z_{n} parallel to H and close to v and points ' z_{n+1}, \ldots, z_{d} parallel to H and close to $-v$ with $0 \in \operatorname{conv}\left\{z_{1}, \ldots, z_{d}\right\}$.

Let L be a hyperplane orthogonal to v and such that $Q+\{t v: t \geq 0\}$ is in one of the open halfspaces determined by L. Define $y(p, i)=L \cap\left\{-p-t z_{i}: t \geq 0\right\}$ for all $p \in P$ and $i \in[n]$. Clearly, $y(p, i)$ is a single point. Set now $Y=\{y(p, i): p \in$ $P, i \in[n]\}, Z=\left\{z_{1}, \ldots, z_{d}\right\}, X=\{s(A): A \in \mathcal{A}\}$ and $S=P \cup Z \cup X \cup Y$.

Claim 13. $0 \in \operatorname{core}_{k} S$.
Proof. Take away a set K of k points from S; we have to prove that $0 \in \operatorname{conv}(S \backslash K)$. Set $P^{\prime}=P \cap K, Z^{\prime}=Z \cap K, X^{\prime}=X \cap K$ and $Y^{\prime}=Y \cap K$. Let $\left|P^{\prime}\right|=k-\alpha,\left|Z^{\prime}\right|=\beta$, then $\left|X^{\prime} \cup Y^{\prime}\right|=\alpha-\beta$. We can assume that $\beta \geq 1$ as otherwise $0 \in \operatorname{conv}(S \backslash K)$ trivially. Clearly $\alpha \geq \beta$. There are three cases to consider.
Case 1. When $\alpha>n$. Then $\left|P \backslash P^{\prime}\right|=\alpha>n$ so there are at least $\binom{\alpha}{n} n$-subsets in $P \backslash P^{\prime}$ and $\binom{\alpha}{n} \geq \alpha>\alpha-\beta$, so there is an n-subset $A \subset P \backslash P^{\prime}$ with $s(A) \notin X^{\prime}$. Then

$$
0 \in \operatorname{conv}(s(A) \cup A) \subset \operatorname{conv}(S \backslash K)
$$

Case 2. When $\alpha \leq n$ and $\beta<n$. If there is a pair $p, i \in P \times[n]$ with $p \notin P^{\prime}$, $z_{i} \notin Z^{\prime}$ and $y(p, i) \notin Y^{\prime}$, then $0 \in \operatorname{conv}\left\{p, z_{i}, y(p, i)\right\} \subset \operatorname{conv}(S \backslash K)$. The number of pairs with $p \notin t P^{\prime}$ and $z_{i} \notin Z^{\prime}(i \in[n])$ is at least $\left|P \backslash P^{\prime}\right|(n-\beta)=\alpha(n-\beta)$ and $\left|Y^{\prime}\right| \leq \alpha-\beta$. So there is a pair $(p, i) \in P \times[n]$ with $p \notin P^{\prime}, z_{i} \notin Z^{\prime}$ and $y(p, i) \notin Y^{\prime}$ unless $\alpha(n-\beta) \leq \alpha-\beta$, Now $\alpha-\beta \leq n-\beta$, so $\alpha=1$ must hold. Then $\alpha(n-\beta) \leq \alpha-\beta$ implies $n=1$ but we have $d \geq 5$.
Case 3. When $\alpha=\beta=n$. Then $P \backslash P^{\prime}$ is an n-subset of P and $S\left(P \backslash P^{\prime}\right)$ is not deleted, so

$$
0 \in \operatorname{conv}\left(s\left(P \backslash P^{\prime}\right) \cup\left(P \backslash P^{\prime}\right)\right) \subset \operatorname{conv}(S \backslash K)
$$

Claim 14. For any $A \in \mathbb{A}, 0 \notin \operatorname{core}_{k}(S \backslash s(A))$.
Sketch of the proof. Set $Z^{\prime}=\left\{z_{1}, \ldots, z_{n}\right\}, P^{\prime}=P \backslash A$ and $K=Z^{\prime} \cup P^{\prime}$. Take a hyperplane H_{1} passing through the origin, containing A and containing Q in one of the closed halfspaces determined by H_{1}. Such a hyperplane exists for Q is an n neighbourly polytope in $H . H_{1}$ has a single point, $s(A)$, in common with $\operatorname{conv}(X \cup Y)$. It is not difficult to see from this and from (9) that 0 does not lie in the convex hull of $(S \backslash s(A)) \backslash K$. We omit the details.

By the claim, if $T \subset S$ and $0 \in$ core $_{k} T$, then $s(A) \in T$ must hold for all $A \in \mathcal{A}$. This implies $|T| \geq|A|$. One can see also that T must contain P and Z as well. This proves the theorem.
Acknowledgement. Thanks are due to Helge Tverberg, the referee for simplifying the proofs of Theorem 2 and Lemma 9.

References

[1] E. Boros, and Z. Füredi: The number of triangles covering the center of an n-set Geom. Ded., 17 (1984), 69-77.
[2] L. Danzer, B. Grünbaum, and V. Klee: Helly's theorem and its relatives, Proc. Symp. in Pure Math. VII. Convexity, AMS, Providence, RI (1963).
[3] B. Grünbaum: Convex polytopes, John Wiley and Sons, London - New York - Sidney, (1967).
[4] P. McMullen, and G.C. Shephard: Convex polytopes and the upper bound conjecture, Cambridge University Press, 1971.
[5] R. Rado: A theorem on general measure, J. London Math. Soc., 21 (1946), 291-200.
[6] H. Tverberg: A generalization of Radon's theorem, J. London Math. Soc., 41 (1966), 123-128.

Imre Bárány
Mathematical Institute of the
Hungarian Academy of Sciences
H-1364 Budapest, Pf 127

Micha Perles
Department of Mathematics Hebrew University of Jerusalem 91904 Israel

[^0]: *Research of this author was partially supported by Hungarian National Science Foundation grant no. 1812.

