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The k-core of the set S C R n is the intersection of the convex hull of all sets A C S with 
IS\AI <_ k. The Caratheodory number of the k-core is the smallest integer f(d, k) with the property 
that x E corekS, S C R n implies the existence of a subset T C S such that x E corekT and 
IT] <_ f(d, k). In this paper various properties of [(d, k) are established. 

1. D e f i n i t i o n s  a n d  r e s u l t s  

The  k-core of  a set S C R d is the intersection of the convex hulls of  all sets 
A c_ S with IS \ AI _< k, i.e., 

corekS = n{convA : A c_c_ S, IS \ AI _< k}. 

Here and in what  follows we assume S is a finite multiset in R d. This means tha t  the 
points  in S have "multiplicity". Strict ly speaking, a multiset is a map S : F --, R d 
and in our  case F is finite. Then  corekS = M{convS(E) : E C_ F, IF \ El  _< k}. 
From now on we do not  say explicitly tha t  the sets in question are multisets. This 
will make the no ta t ion  simpler and will not  cause confusion. 

Alternatively, we can define 

corekS = N{H + : H + is a closed halfspace with IH + n SI > ISI - k}. 

So the case k = 0 is the usual  convex hull. Several properties of the k-core are known, 
c.f. [5] (or [2] Theorem 2.8). In  [1], Boros and Fiiredi extend the definition of the 
k-core to  every real number  k > 0. 

We define the  Cara theodory  number  of  the k-core as the smallest integer f (d ,  k) 
with the  p roper ty  tha t  x 6 corekS, S C A d implies the existence of a subset 
T c_ S such tha t  x E corekT and ITI < f ( d , k ) .  By Cara theodory ' s  theorem, 
S(d, 0) = d + 1. At  the  1982 Oberwolfach conference on convex bodies, Micha 
Perles posed the  problem of determining f (d ,  k). In this paper  various properties of  
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f (d ,  k) are established. We determine, for instance, f (2 ,  k) and f (d,  1) exactly. We 
also establish the order of magnitude of f (d ,  k) when d --~ cr and k is fixed. 

Our first theorem shows that  f (d ,  k) is finite for every d > 1 and k > 0. 

Theorem 1. I f  f ( d, k - 1) is finite then so is f ( d, k) and 

f (d ,  k) < max ((k + 1)(d + 1), d(1 + f (d ,  k - 1)) 

It follows from here that  f (d ,  k) <_ d k+l + 2d k + d k-1 + . . .  + 1 and this can be 
improved to f (d ,  k) < d k+I for all k > 1 and d > 1 except (d, k) = (2, 1) and (2, 2). 

A simple lower bound on the Caratheodory number is this: 

(1) f (d ,  k) >_ (k + 1)(d + 1). 

To see this take for S the set of vertices o f a  d-dimensional simplex (k + 1)-times. 
Then the center of the simplex lies in corekS but  it does not lie in corekT if T is a 
proper subset of S. 

It is readily seen that  for d = 1 equality holds in (1). This is the case, too, when 
d = 2 .  

Theorem 2. f (2 ,  k) = 3(k + 1). 

One might expect that  equality holds in (1) for all d and k. That  this is not the 
case is shown by 

Theorem 3. For any n with d > n > k > 0 we have 

(2) 

When k is fixed and d ~ cx) we get from here and Theorem 1 

1 d k+l < f (d ,  k) < d k+l, 
e k ( k  + 1)! - - 

thus establishing the order of magnitude of f (d ,  k) for fixed k. 

Theorem 4. f (d ,  1) = max(2(d + 1), 1 + d +  [d2/4J). 

Our last theorem shows that  f (d ,  k) grows quite fast when d >_ 5 is fixed and k 
tends to infinity. 

Theorem 5. I f  k > d and d > 5, then f ( d, k ) > k + d + = . 
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2. P r o o f  o f  T h e o r e m  1 

We start with an observation that will be basic (explicitly or implicitly) for most 
of the proofs to follow. 

Lemma 6. Assume S c R d and ISI > (d + 1)(k + 1) and y E corekS but y ~ corekT 
for any proper subset T C S. Then there is a point x in relbd corekS such that 
x ~ corekT for any proper subset T C S. 

Proof of Lernm~ 6. As IS] > (k + 1)(d + 1) + 1, it follows from Tverberg's theorem 
[6] that  there are pairwise disjoint subsets $1 , . . . ,  Sk+l of S whose conver hulls have 

a point, say u 6 R d, in common. Then u E corek+lS and, consequently, u E corekT 
for every T C S with IT] = I S 1 - 1 .  Let x be the last point in corekS on the 
halfline stemming from u and passing through y (clearly u r y). If x E corekT 
for some subset T C S with IT[ = IS[ - 1, then u E corekT implies y E corekT, a 
contradiction. | 

Now we prove Theorem 1. Let S C R d and assume ISI > ( k + l ) ( d + l )  and 
x E corekS but x ~ corekT for any proper subset T C S. Applying Lemma 6 
we may assume x ~ relbd corekS. Then x E bdconv(S \ A) for some A C S, 
IA[ _< k (as otherwise x e int c o n v ( S \ A )  for all A with IA[ <_ k. Then by 
Caratheodory's theorem, applied in bdconv(S \ A), there are points z l , . . .  ,Zd E S 
with x E conv{zl , . . . ,  Zd}. Clearly x C corek_l(S \ zi) for each i = 1 , . . . ,  d. So (by 
the induction hypothesis) there exists a subset Ti C S \ zi with ]Til <_ f (d ,  k - 1) and 
x E corek_lT/. Define T = { z l , . . .  ,Zd} U T1 U . . .  U T d. We claim that x E corekT. 
Let K C T with IKI = k. We have to prove that  x E conv(T \ K).  This is obvious 
if K does not contain any one of the points z~ , . . . ,  z d. So assume zl E K.  Then 
IK A Til <_ k - 1, consequently x E corek_lTi C. conv(T \ K) as claimed. 

This shows that ITI <__ d + df(d, k - 1) and proves the theorem. | 

Remark 7. Using the fact that  in Caratheodory's theorem one of the points out of 
the d +  1 can be chosen arbitrarily (and some other arguments) we can give a slightly 
better estimate of f (d ,  k). We can prove, for instance, that  for all d, k >_ 1 except 
(d, k) = (2, 1) and (2, 2) f (d ,  k) <_ d k+l. This can be further improved by using 
Theorem 4 as the starting step of the introduction. We omit the details. 
Remark 8. This proof works in any abstract convexity space (see [2]) as well. 

3. P r o o f  of  T h e o r e m  2 

In view of (1) we have to show that f(2,  k) < 3(k+l ) .  We prove this by induction 
on k, The case k = 0 is trivial. So we assume the statement holds for k - 1 and 
w e p r o v e i t  for k (k > 1). Let S C I~ 2 and IS I _ 3 ( k + l )  a n d x  E corekS. We 
distinguish two cases. 
Case 1, x 6 S, Then clearly x E- corek_~(S \ x), and so, by induction, there is a 
subset T c_ S \ x ,  IT[ <: 3k such that  x E eorek_lT. Then [TU{x}[ <__ 3 k + l  < 3 k + 3  
and x e corek(T U {x}). 

C ~ e  2, x r S. Then we assume, without loss of generality, that  the points of S 
are on a unit circle with center x, their clockwise order on this circle is zx, z z , . . . ,  Zn 
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where n = [S I. Observe that  x E corekS if and only if every k + 1 consecutive points 
in the circle span an arc< ~r. 

Suppose S is minimal with respect to x E corekS, i.e., x ~ corekT for any proper 
subset T C S. Then there are k + 3 consecutive point, z l , . . . ,  zk+3 say, spanning an 
arc larger than It, as otherwise x E corek(S \ {zi}) for every i. Consider now the 
point Z2k+4. (If IS[ < 2 k + 4  then we are finished at once.) As x ~ corek(S C {z2k+4}) 
there are k + 2 points zi, �9 �9 �9 z2k+3, Z2k+5,  �9 . . ,  Z i + k §  2 spanning an arc larger than ~r. 
Here i + k + 2 is meant rood ISI. We have i > k + 3 as i + k + 2 cannot be less that  
2k + 5. Then i + k + 2 _> ]S I + 2, for otherwise the two arcs of size larger than  ~r 
wouldn' t  overlap. But  i _< 2k + 3 and so IS[ _< i + k _< 3k + 3. 1 

4. The example proving Theorem 3 

d 
Let e l , . . . ,  ed be an orthonormal basis R d. Define e = ~ ei and co = (1 /d)e  and 

i = l  

f i  = eo + p ( e o -  ei) (i = 1 , . . . , d ) ,  

where p > 0 will be specified later. Define [t] = { 1 , . . . ,  t} when t > 0 is an integer. 
Let k + l  < n < d. Set F - { g  : g C In], ] g  I = k} and D = [d] \ [n] .  For 
( K , j )  e F • D define 

i ~ [ n l \ K  i E D  

Set, finally 

S = { 0 , . . . , 0 ,  f l , . . . , . f d } U { e ( K , j ) :  ( K , j )  e F x D }  

where 0 is taken k times. 
This is the set that  will prove the est imate in Theorem 3. To see this we first 

need a lemma. 

Lemma 9. The linear sys tem with variables ao, ~i, a ( K , j )  

d 

eo = ~ a i f i  + E* a ( K , j ) e ( g , j )  
i = k  + l 

d 

+ ~ - ~ ' a i E * a ( g , j )  = 1 o~ o 

k+l 

ao, a i , a ( K , j )  ~ 0 

has a unique solution. Here E* denotes summat ion  over all pairs in F x D.  

Proof  of Lemma 9. The Lemma means that  e0 is in the relative interior of a sire 
plex which is a face of the polytope P = conv({0, f k + l , . . . ,  f n }  U { e ( K , j )  : ( K , j )  
F x D}). Consider the vector w = (n - d)(el  + . . .  + ek) + k(en+l "Jr . . .  + e~ 
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and the hyperplane H = {x �9 R d : w . x  = 0}. One can easily check that  
w . e o  = w . O  = w .  fk+1 . . . . .  w .  fn = 0 while w .  fn+l . . . . .  w .  fd = - p k  and 
w .  e ( K , j )  = (n - d)l[k ] \ g I < 0, with equality only if K = [k]. This means that  
H supports P in the face with vertices 0, f k + l , . . . ,  fn ,  e([k], n + 1 ) , . . . ,  e([k], d) with 
(~ > 0, /3 > 0 and ~ +/3  < 1 provided p > 0 is large enough. This representation 
is unique for the points 0, f k + l , . . . ,  fn ,  e([k], n + 1 ) , . . . ,  e([k], d) are affinely indepen- 
dent. The proof of the last statement is left to the reader. I 

The Lemma shows that 

(3) e0 6 conv(S \ {fi : i E K}) for every K E F, and 

(4) e o ~ c o n v ( S \ ( { f i :  i 6 g } u { e ( K , j ) } ) ) f o r a n y ( K , j ) E f x D .  

Claim 10. I f  z 6 S, then eo ~ corek(S \ z). 

Proof. When z -- e(K, j ) ,  this is exactly (4). If z -- f i  for some i �9 [d], then let 
A- -  {0 , . . . ,0}  k times. If z = 0, then let A- -  {fl} U {0 , . . . ,0}  0 taken k -  1 times. 
In both cases, eo ~ conv(S \ A). This proves the claim. I 

Cdaim 11. e0 �9 corekS. 

Proof. We have to show that  e0 �9 conv(S \ A) if A c S and IAI = k. If 0 �9 A or if 
A M { f l , . . . ,  fn}  = 0, then this follows immediately. If A C { f l , . . . ,  fn}, then this is 
just (3). 

So assume IAM {fl . . . . .  f t}l  ---- t < k (t = 0 is possible), say A f3 { f l , . . . , f n }  = 
{ f l , . . . , f t } .  Then we look for a set K �9 F with It] c K  such that  e ( K , j )  �9 S \ A  
for every j �9 D (when t = 0 let [t] = ~). Call such a set "good". As there are at 
most ( k -  t) vectors e ( K , j )  in A, the number of "bad" K-s is at most ( k -  t). There 

are altogether k - t ways to choose K so the number of "good" K-s is at least 

Now fix a "good" K.  We will Show now that 

(5) eoEconv({0, f t + , , . . . , f n } U { e ( K , j ) :  j � 9  

As all of these points belong to S \ A this will prove the Claim. 
Lemma9impl i e seo  6conv({0}u{f~  : i � 9  [ n ] \ K } U { e ( K , j )  : j � 9  D}). We 

have It] C K so [n] \ K C [n] \ [t] proving (5). I 

5. Proo f  of  T h e o r e m  4 

Set g(d) = max(2(d + 1), 1 + d +  [d:/4J). We have to prove that f (d ,  1) --- g(d). 
Inequalities (1) and (2) show that  f (d ,  1) _> g(d). 

So we have to prove that f (d ,  1) < g(d). Assume this is false and take a 
counterexample S C R d with minimal d. Then d _> 3 and IS I > g(d), dimS = d 
and x E corelS for some x but x ~ corelT for any proper subset T C S. As 
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I S] > 2(d-t- 1) Lemma 6 applies and so we may assume that  x E relbd corelS. Then 
the alternative definition of the 1-core gives a closed halfspace H + with bounding 
hyperplane H such that  x E g and I H+ N S I > ISI - 1. If I H+ M S I = ISI were the 
case here, then x E corel(S M H)  clearly and this is a contradiction: with T -- S M H 
ITI < IS] and x E corelT. So there is a unique point Zo e S \ H +. 

Now x E bd conv(S \ z0), so there are affinely independent vectors z l , . . . ,  Zr E 
S (r <: d) with x Erelint cony{z1, . . . ,  zr}. To simplify notation we set x -- 0. 

Define C -= S \ { z l , . . . , Z r }  and E = { 0 , 1 , . . . , r } .  For a subset B C E write 
z(B)  = {zi : i E B}. The condition 0 E coreiS is the same, by definition, as 
0 E conv(S \ z) for all z E S, but  0 E conv(S \ z) is trivially satisfied unless z = zi 
for some i E [r]. So 0 E corelS is equivalent to 

0 e conv(z(E \ i) U C) for all i E [r]. 

Define :~ as the collection of sets B C E with 0 E B that  are minimal with respect 
to the property 

0 e conv(z(B) U C). 
This means that 0 E conv(z(B) U C) but  0 ~ conv(z(B')  U C) for any proper subset 
B '  (with 0 E B') of B. If {0} e ~, i.e., 0 e conv({z0} U C), then (by Caratheodory's  
theorem) we find a subset C0 C C, ICoI < d with 0 e conv({z0} U Co). Then for 
T = z (E)  UCo C S w e  have 0 E corelT and IT] < d + l + r  < 2 d + l  < ISI, a 
contradiction. So {0} ~ :~. Clearly, for each i E [r] there is a B E :~ with i ~ B, i.e., 
n 2  = {0}. Let now 2 ~ C 2 be a subfamily minimal with respect to the property 
n ~  -- {0}. Set, finally, ,~' -- {B1 , . . . ,  Bn}. 

n 

cl.~m 12. E ( d -  IBjl) <_ l~ /4J .  
j=l 

Proof. By the minimality of :~' for every j �9 [n] there is an element i ( j)  missed by 
Bj  only, i.e., i(j)  �9 B k if[ k ~ j .  This element is nonzero and is different for different 
j-s. Then ]Bj \01 > n -  1 and so IBjl > n and 

~-~(d - IBjl) <_ n(d - n) < [(n + (d - n))2/4J -= [d2/4J. 
j=l 

Now for each j . e  [n] choose a subset Cj C C minimal with respect to the 
property 

(6) o �9 conv(z(Bj) U Cj). 
Set T = z(E)  U C I , U . . .  U Cn. Let us prove now 0 �9 corelT: We have to show that  
0 �9 c o n v ( T \ z )  for all z e T. If z ~ zi for some i �9 [r], then 0 �9 conv{z l , . . . ,  Zr} and 
if z = z i for some i �9 Jr], then defining j by i ~ By we have 0 �9 conv(z(Bj)  U Cj). 

We would like to show that  ITI _.< g(d) as this would prove the theorem. At this 
point we have only 

IT[ < [z(E)[ + ~ IC~I 
j=l 

n 

<__ (r + 1) + ~--~(d + 1 - IBjl) < d + 1 + + td /4], 
j=l 
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which is not good enough. With the Insertion Lemma (see below) one can get 
an element common to every Cj giving ITI < d + 2 + Ld2/4j which is g(d) + 1 
instead of g(d). To get rid of the plus one we will have to consider a few cases. We 
need the following fact well-known from linear programming or from the proof of 
Caratheodory 's  theorem [2]: 

Insert ion Lemm~. Assume X C R d consists of aJ~nely independent points and 
0 E convX. Assume, further, that y E affX. Then there is a z E X such that 
0 E conv((X \ z) U {y}). 

Proof. iWhich is well-known and we give it rather for further reference.) We have 
A(x)x = 0 with a convex combination, i.e., A(x) > 0 and EA(x) -- 1. There is 

x c X  
an atfine dependence y + ~ ~/(x)x = O. Multiplying it by t and adding it to the 

x E X  
convex combination we get 

ty  + + = 0. 

z e X  

Set to = max{t  >_ 0 : A ( x ) + t ' y ( x )  >_ 0}; such a t 0  clearly exists. Let z E X be 
defined by A(z) + to^/(z) = 0. Then toy + ~ ()~(x) + to'~(x)) = 0 is a convex 

xs 
combination again. So 0 e conv((X \ z) U {y}) indeed. I 

We say that  y pushes z out from X when inserted. The pushed-out element is 
not uniquely determined but  we think of it as fixed. 

We return now to the proof of Theorem 4. Condition (6) can be written as 

 /c/c : 0 

ieBj ceC~ 

with a suitable convex combination. It  is easy to see that  A0 = 0 if and only if 
Cj C H. I t  follows from the minimality of Bj and Cj that  

(7) [Bj] + [Cj] = dim aff(z(Bj) U Cj) + 1, if Cj r H, and 

(8) IBj \ 0] + JCj[ = dim aff(z(Bj \ O) U Cj) + 1, if Cj C H. 

There are a few cases to consider now. We introduce the sets 

J1 ={j e In]: dim aff(z(Bj) U Cj) = d and Cj r Y} ,  

J~ ={j e [hi: dim aff(z(Bj) U Cj) = d - 1 and Cj r g } ,  

J3 ={j e In]: dim aff(z(Bj) U Cj) <: d - 2 and Cj q~ g} ,  

24 = { j  e [n] : aff(z(Bj \ O) U Cj) = g} .  

Js ={J e In]: dim aff(z(Bj \ 0) U Cj)  _< d - 2 and Cj C g} .  

We claim that  the sets J1, J2, ,/3, J4, J5 form a parti t ion of [n]. Indeed, these sets are 
pairwise disjoint and i f j  r J1UJ~UJ3UJ~, then Cj C H and dim aff(z(Bj\O)UCj) = 
d - 1 implying aff(z(Bj \ O) U Cj) = H. 
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Observe now tha t  if Cj C H for aU j �9 [n], then T = S \ z0 is a proper subset 
of S with 0 �9 corelT, a contradiction. So there is cl �9 Cj for some i �9 J1 U J2 U Ja 
with cl ~ H and cl �9 H +. The line segment connecting z0 and cl intersects H at the 
point co. Insert now Co into every Xj -= z(Bj \0) UCj with j �9 J4; let the pushed out 
element be xj. Set X~ -: (Xj \ xj) U (z0,c,}, then 0 �9 convXj.  Assume xj �9 z(Bj). 
Then 0 �9 convX~ = conv((z(Bj) \ xj)) LJ Cj U (Cl}) which contradicts the fact that  
Bj is minimal. Thus xj �9 Cj. Choose now a minimal C~ C_ (Cj \ xj) U (c,} with 

0 �9 conv(z(Bj) t.J C~). A straightforward checking shows that  c~ ~ g .  Replacing 

now every old z(Bj) L) Cj by the new z(Bj) L) C~ for j �9 J4 we get a new system of 
Bj-s and Cj-s, and 34 will be empty. 

So we may assume ,/4 -- 0 from now on. Suppose J1 ~ [n] and choose some 
a �9 Cj with j �9 J2 U J3 t.J Jh. Insert a into every z(Bj) U Cj with j �9 J~. We see 
again that  the pushed-out element cj must come from Cj. Write Cj (a) for the set 
sCJ \ cj) U (a}. We have a new system Bj, Cj(a) for j �9 J1 and Bj, Cj for the rest. 

et 

T =  z(E) U U Cj(a) U U Cj, 
jcJ~ j~[n]\J~ 

Again we have 0 �9 corelT. Moreover, 

jeJ1 j~ln]\J~ j~J1 je[n]kJ~ 

<_ ~--~(4-1Bjl)+ ~ (4-1-1%\ol)-- 
jeJl  je[n]\Jr 

= ~ (d-  IBjl) _< Ld2/4J 
je[n] 

according to Claim 12. Here we used (7) and (8) as well. Then IT] g 1-t-r+ [d2/4J < 
g(d) < ISI, a contradiction. 

We have, finally, J1 -- [n]; n = 0 or 1 is clearly impossible. So n > 2. Consider 
a �9 C1 and insert a into every other z(Bj) U Cj. Again, a pushes out some element 

n 
from Cj. Write Cl(a) -- C1. Setting again T = z(E) LJ ~, Cj(a) we have 0 �9 corelT. 

j=l 
The above estimation gives now ITI <: 1 + r + Ld2/4J + 1. We can get one less if 
]Ci (a)g)Cj (a)l _> 2 for some i r j .  So assume the sets Cj (a)\ a are pairwise disjoint. 
Observe, further, that  the proof of Claim 12 gives [d2/4J - 1 unless ]Bjl = n for all 
j �9 In] and n equals [4/2] or [(4 + 1)/2J. Thus ICjl = d -{- 1 - n > 2. Then there is 
b �9 C2(a) b ~ a. Try to insert b into z(B~) U C~. Then ]C:(a) ~ Cl(b)] >_ 2 unless b 
pushes out a from C1. Similarly, take d �9 C1, d ~ a and insert a' into z(B2)UCe(a) 
and into every z(Bj) U Cj (j -- 3,... ,n). If a' pushes out a from C2(a), then Cl(b), 
C2(a)(a'), C3(a ' ) , . . .  ,Cn(a') is a good system together with the unchanged Bj-s, 
because Cl(b) and C2(a)(a') have two elements, a '  and b in common. Similarly, if a '  
pushes out b from C2(a), then C1, C2(a)(a'), C3(a'),..., Cn(a') is a good system for 
the first two sets share two elements a and a'. | 
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6. The example p r o v i n g  T h e o r e m  5 

First set n = [(d - 1)/2J. Take a hyperplane H C R d not passing through the 
origin and let P C H be the set of vertices of an n-neighbourly polytope with IPI = k. 
This means that the convex hull of any n-subset of vertices is a face of the polytope. It 
is well-known that  such polytopes exist, see for instance [3] or [4]. Set Q = - c o n v P ,  
this is a ( d -  1)-dimensional n-neighbourly polytope lying in the hyperplane - H .  
For an n-subset A of P define s(A) as the center of gravity of the pointset - A .  Let 
v be a unit vector parallel with H and in general position relativc to the faces of Q. 
Then at least one of thehalflines ( s ( A ) + t v :  t > O } a n d  { s ( A ) + t v :  t <0}  h a s h  
single point, s(A), in common with Q. Then either {s(A) + tv : t > 0} N Q = s(A) 
or { s ( A ) + t v  : t < 0 } N Q  = s(A) for at least half of then-subsets  A i n  P.  We 
assume, without loss of generality, that  {s(A) + tv : t >_ 0} N Q = s(A) for at least 

half of the n-subsets. Denote the set of these n-subsets by.~; then ~l  -> ~ n 

any vector u close enough to v we will have 

(9) { s ( A ) + t u :  t > o } n Q - - s ( A )  for a l l a e M .  

Choose now points z l , . . . ,  Zn parallel to H and close to v and po in t s ' zn+ l , . . . ,  Zd 
parallel to H and close to - v  with 0 E conv{z l , . . . ,  Zd}. 

Let L be a hyperplane orthogonal to v and such that  Q + {tv : t > 0} is in one 
of the open halfspaces determined by L. Define y(p, i) = L n { - p  - tzi : t > 0} for 
all p e P and i e [hi. Clearly, y(p,i)  is a single point. Set now Y = {y(p, i) : p e 
P, i E [ n ] } , Z = { z l , . . . , Z d } , X = { s ( g ) :  A e . d } a n d S = P U Z U X U Y .  

C]aim 13. 0 E corekS. 

Proof. Take away a set K of k points from S; we have to prove that 0 E c o n v ( S \ K ) .  
Set P '  = P N K ,  Z' = Z N K ,  X '  -- X N K  and Y' = Y N K .  Let IP'] = k - a ,  ]Z' I = ~, 
then IX' U Y'I = a - ~. We can assume that  ~ >__ I as otherwise 0 E conv(S \ K)  
trivially. Clearly a > 8. There are three cases to consider. 

Case l .  W h e n c ~ > n .  Then ,P \ P', = ~ > n so there are at least ( : )  n-subsets in 

P \ P ' a n d  ( : ) > ~ > ~ - ~ , s o t h e r e i s a n n - s u b s e t A C P \ P ' w i t h s ( A ) ~ X ' .  

Then 
0 E conv(s(A) U A) C conv(S \ K).  

Case 2. When a _< n a n d  8 < n. If there i s a p a i r p ,  i E P •  [n] w i t h p  ~t P ' ,  
zi ~ Z' and y(p,i) r Y' ,  then 0 E conv{p, zi, y(p,i)} C conv(S \ K).  The number 
of pairs with p ~ tP'  and zi ~t Z' (i E [n]) is at least IF \ P'l(n - ~) = a ( n -  IJ) 
and ]Y'I -< c ~ - Z .  So there is a pair (p,i) E P • In] w i t h p  ~ P', zi r Z' and 
y(p, i) ~ Y '  unless a (n  - 8) _< c~ - 8, Now c~ - ~ < n - 8, so a = 1 must hold. Then 
a ( n - ~ ) < a - ~ i m p l i e s n = l b u t  we h a v e d > 5 .  
Case3.  When c~ = f l =  n. Then P \ P ' i s a n n - s u b s e t  o f P a n d  S ( P \ P ' )  is not 
deleted, so 

0 E conv(s(P \ P ' )  U (P  \ P ' ) )  C conv(S \ g ) .  I 



194 I, B.~RANY, M. PERLES : THE CARATHEODORY NUMBER FOR THE k-CORE 

Claim 14. For any A e •, 0 ~ corek(S \ s(A)).  

Sketch of the proof. Set Z '  = { z l , . . . , z n } ,  P' = P \ A  and K = Z ' U P ' .  Take 
a hyperplane HI  passing through the origin, containing A and containing Q in one 
of the closed halfspaces determined b y / / 1 .  Such a hyperplane exists for Q is an n- 
neighbourly polytope in H.  //1 has a single point, s(A), in common with conv(XUY).  
It  is not difficult to see from this and from (9) that  0 does not lie in the convex hull 
of (S \ s(A)) \ K .  We omit the details. | 

By the claim, if T C S and 0 E corekT, then s(A) C T must hold for all A E ~4. 
This implies {T{ > I.d{. One can see also that  T must contain P and Z as well. This 
proves the theorem. II 
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