

A Combinatorial Result About Points and Balls in Euclidean Space

I. Bárány, 1 J. H. Schmerl, 2 S. J. Sidney, 2 and J. Urrutia 3

Abstract. For each $n \ge 1$ there is $c_n > 0$ such that for any finite set $X \subseteq \mathbb{R}^n$ there is $A \subseteq X$, $|A| \le \frac{1}{2}(n+3)$, having the following property: if $B \supseteq A$ is an *n*-ball, then $|B \cap X| \ge c_n |X|$. This generalizes a theorem of Neumann-Lara and Urrutia which states that $c_2 \ge \frac{1}{60}$.

A theorem of Neumann-Lara and Urrutia [3] is generalized from the plane to arbitrary n-dimensional Euclidean space \mathbb{R}^n , solving Problem 2 of [3]. By an n-ball we mean a set of the form

$$\{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n : (x_1 - a_1)^2 + (x_2 - a_2)^2 + \dots + (x_n - a_n)^2 \le r\},\$$

where $(a_1, a_2, \ldots, a_n) \in \mathbb{R}^n$ and r > 0.

Theorem 1. For each $n \ge 1$ there is $c_n > 0$ such that for any finite set $X \subseteq \mathbb{R}^n$ there is $A \subseteq X$, $|A| \le \lfloor \frac{1}{2}(n+3) \rfloor$, having the following property: if $B \supseteq A$ is an n-ball, then $|B \cap X| \ge c_n |X|$.

The bound $[\frac{1}{2}(n+3)]$ in the theorem will be shown in Theorem 6 to be optimal in quite a strong way. For now, let X be any finite set of points on the moment curve $\alpha(t) = (t, t^2, t^3, \dots, t^n)$, $|X| = m \ge n+1$. Then X is the set of vertices of a convex polyhedron (known as the cyclic n-polytope with m vertices) and every $\lfloor n/2 \rfloor$ -element subset $A \subseteq X$ is the set of vertices of one of its faces. (See Sections 4.7 and 7.4 of [2].) Clearly then, for each such A there is an n-ball B such that $B \cap X = A$.

The following notation will be used. For a set S, $\mathcal{P}_n(S)$ is the set of *n*-element subsets of S. If $A \subseteq \mathbb{R}^n$, then conv A is the convex hull of A.

¹ Department of Mathematics, University College, London WC1E 6BT, England

² Department of Mathematics, University of Connecticut, Storrs, CT 06268, USA

³ Department of Computer Science, University of Ottawa, Ottawa, Ontario K1N 9B4, Canada

Lemma 2. Let $Y \in \mathcal{P}_{n+3}(\mathbb{R}^n)$. Then there is $A \subseteq Y$, $|A| = [\frac{1}{2}(n+3)]$, such that for any n-ball $B \supseteq A$, $(Y \setminus A) \cap B \neq \emptyset$.

Proof. There exist disjoint A_1 , $A_2 \subseteq Y$ such that $|A_1| = |A_2| = [\frac{1}{2}(n+3)]$ and conv $A_1 \cap \text{conv } A_2 \neq \emptyset$. The argument for obtaining A_1 and A_2 is essentially in [1] and [4]. Let $Y = \{y_1, y_2, \dots, y_{n+3}\}$, and then let $\overline{Y} = \{\overline{y}_1, \overline{y}_2, \dots, \overline{y}_{n+3}\} \subseteq \mathbb{R}^2$ be its Gale transform. (Here we are assuming, without loss of generality, that \mathbb{R}^n is the affine span of Y.) For some $y_i \in Y$ the line I in \mathbb{R}^2 through \overline{y}_i and the origin divides \mathbb{R}^2 into two open half-planes P_1 , P_2 such that $|P_1 \cap \overline{Y}|$, $|P_2 \cap \overline{Y}| \leq [\frac{1}{2}(n+3)]$. Let C_1 , C_2 , $Z \subseteq Y$ be such that $\overline{C}_1 = P_1 \cap \overline{Y}$, $\overline{C}_2 = P_2 \cap \overline{Y}$, and $\overline{Z} = I \cap \overline{Y}$. By Lemma 1 of [4], conv $(C_1 \cup Z_1) \cap \text{conv}(C_2 \cup Z_2) \neq \emptyset$ whenever $Z_1 \cup Z_2 = Z$. But this implies conv $C_1 \cap \text{conv}(C_2 \neq \emptyset)$. So just let A_1 , $A_2 \subseteq Y$ be disjoint sets such that $C_1 \subseteq A_1$, $C_2 \subseteq A_2$, and $|A_1| = |A_2| = [\frac{1}{2}(n+3)]$.

We now claim that either $A = A_1$ works or $A = A_2$ works.

In order to derive a contradiction, let $a \in \text{conv } A_1 \cap \text{conv } A_2$, and let B_1 , B_2 be n-balls for which $A_1 \subseteq B_1$, $A_2 \subseteq B_2$, and $B_1 \cap A_2 = \emptyset = B_2 \cap A_1$. Clearly, $B_1 \cap B_2 \neq \emptyset$ since $a \in B_1 \cap B_2$, and also $B_1 \setminus B_2 \neq \emptyset \neq B_2 \setminus B_1$. Therefore, there is a unique hyperplane h such that $h \cap \partial B_1 = h \cap \partial B_2 = \partial B_1 \cap \partial B_2$ (where ∂B_i denotes the boundary of B_i). Let H_1 , H_2 be the closed half-spaces such that $H_1 \cap H_2 = h$, $B_1 \setminus B_2 \subseteq H_1$, and $B_2 \setminus B_1 \subseteq H_2$. Then $a \in H_1 \cap H_2 = h$, so there must be some $b \in A_1 \cap h$. But then $b \in B_2$, which is a contradiction.

A simple counting argument allows us to deduce Theorem 1 from Lemma 2. This is abstracted in the next lemma.

Lemma 3. Let S be a set, \mathcal{B} a collection of subsets of S, and r > m positive integers. Suppose that for each $Y \in \mathcal{P}_r(S)$ there is $A \in \mathcal{P}_m(Y)$ such that whenever $A \subseteq B \in \mathcal{B}$, then $(Y \setminus A) \cap B \neq \emptyset$. Let c = (m!(r-m-1)!)/r!. Then for any finite $X \subseteq S$ with $|X| \ge r$ there is $A \in \mathcal{P}_m(X)$ such that whenever $A \subseteq B \in \mathcal{B}$, it follows that $|B \cap X| > c|X|$.

Proof. Let $X \in \mathcal{P}_t(S)$ where $t \ge r$. There are sets $A \in \mathcal{P}_m(X)$ and $\mathcal{R} \subseteq \mathcal{P}_r(X)$ such that $|\mathcal{R}| \ge \binom{t}{r} / \binom{t}{m}$ and for each $Y \in \mathcal{R}$, A is as in the hypothesis of the lemma. We claim that this is the desired A.

Suppose that $A \subseteq B \in \mathcal{B}$ and $|B \cap X| = k$. The number of sets $Y \in \mathcal{P}_r(X)$ for which $A \subseteq Y$ and $(Y \setminus A) \cap B \neq \emptyset$ is clearly at most $(k-m) \binom{t-m-1}{r-m-1}$, so this is an upper bound for $|\mathcal{R}|$. Therefore, $(k-m) \ge c(t-m)$, so k > ct.

Lemmas 2 and 3 show that $c_2 \ge \frac{1}{30}$, improving the constant in [3]. Refinements of this proof show that $c_2 > \frac{1}{20}$.

The proof of Lemma 3 shows that its conclusion is true on the average, in the sense that as A ranges over $\mathcal{P}_m(X)$, the average value of $f(A) = \min\{|B \cap X|: A \subseteq B \in \mathcal{B}\}$ is greater than c|X|.

Theorem 1 has several generalizations. We mention just one of them.

Theorem 4. For each $m \ge \left[\frac{1}{2}(n+3)\right]$ there is $c_{n,m} > 0$ such that for any finite $X \subseteq \mathbb{R}^n$, $|X| \ge m$, there is $A \in \mathcal{P}_m(X)$ having the following property: if B is an n-ball and $|A \cap B| \ge \left[\frac{1}{2}(n+3)\right]$, then $|B \cap X| \ge c_{n,m}|X|$.

This theorem is a consequence of Lemma 5 below (which is the analogue of Lemma 2) and a version of Lemma 3 whose statement and proof can easily be supplied.

Let $R_s(t)$ be the Ramsey number defined as follows: $R_s(t)$ is the least r such that whenever $|Y| \ge r$ and $\mathcal{P}_s(Y) = P_1 \cup P_2$, then there is $W \in \mathcal{P}_t(Y)$ such that either $\mathcal{P}_s(W) \subseteq P_1$ or $\mathcal{P}_s(W) \subseteq P_2$.

Lemma 5. Let $m \ge s = [\frac{1}{2}(n+3)]$, let $t > m/c_n$ be an integer $(c_n \text{ is from Theorem 1})$, and let $r = R_s(t)$. Suppose $Y \in \mathcal{P}_r(\mathbb{R}^n)$. Then there is $A \in \mathcal{P}_m(Y)$ such that if B is an n-ball and $|B \cap A| \ge s$, then $(Y \setminus A) \cap B \ne \emptyset$.

Proof. Let

$$P = \{Z \in \mathcal{P}_s(Y) : \text{ for each } n\text{-ball } B \supseteq Z, |B \cap Y| \ge c_n t\}.$$

By Ramsey's theorem there is $W \in \mathcal{P}_t(Y)$ such that $\mathcal{P}_s(W) \subseteq P$ or $\mathcal{P}_s(W) \cap P = \emptyset$. By Theorem 1, $\mathcal{P}_s(W) \cap P \neq \emptyset$; hence, $\mathcal{P}_s(W) \subseteq P$. Any $A \in \mathcal{P}_m(W)$ will do, for $|B \cap A| \ge s$ implies $|B \cap Y| \ge c_n t > m = |A|$.

The next theorem shows that the bound on the dimension in Theorem 1 (as well as Lemma 2 and Theorem 4) is sharp.

Theorem 6. There is an infinite subset $X \subseteq \mathbb{R}^n$ such that whenever $A \subseteq X$ and $|A| < [\frac{1}{2}(n+3)]$, then there is some n-ball B for which $A = B \cap X$.

Proof. Clearly we can assume that $n \ge 3$ and n is odd, so let n = 2k - 1 where $k \ge 2$. Consider the moment curve $\alpha(t) = (t, t^2, t^3, \dots, t^n)$. We will obtain X as $\{\alpha(t): 0 < t < \varepsilon\}$ for some appropriately small $\varepsilon > 0$.

Suppose $\varepsilon > t_1 \ge t_2 \ge \cdots \ge t_k > 0$. We can find parameters a_{2n} , a_{2n-1} , a_{2n-2} , ..., a_1 , a_0 such that

$$(t-a_1)^2+(t^2-a_2)^2+\ldots+(t^n-a_n)^2=a_0+[(t-t_1)(t-t_2)\ldots(t-t_k)]^2p(t),$$

where $p(t) = a_{n+1} + a_{n+2}t + a_{n+3}t^2 + \cdots + a_{2n}t^{2k-2}$. These parameters are uniquely determined, and can be found in the order listed, a_i being determined by the coefficients of t^j in the above equation. It is easy to see that:

$$a_j = 1 + O(\varepsilon)$$
 if $j \ge 2k$ and j is even;
 $a_j = 0 + O(\varepsilon)$ if j is odd;
 $a_i = \frac{1}{2} + O(\varepsilon)$ if $1 \le j \le 2k - 1$ and j is even;

and, finally,

$$a_0 = \frac{k-1}{4} + O(\varepsilon).$$

Now just pick $\varepsilon > 0$ small enough so that $a_0 > 0$ and p(t) > 0 whenever $0 < t < \varepsilon$. Then if $\varepsilon > t_1 \ge t_2 \ge \cdots \ge t_k > 0$, let B be the n-ball with center (a_1, a_2, \cdots, a_n) and radius $\sqrt{a_0}$. Clearly, $X \cap B = \{\alpha(t_1), \alpha(t_2), \ldots, \alpha(t_k)\}$.

References

- 1. J. Eckhoff, Primitive Radon partitions, Mathematika 21 (1974), 32-37.
- 2. B. Grünbaum, Convex Polytopes, Wiley-Interscience, London, New York, Sydney, 1967.
- 3. V. Neumann-Lara and J. Urrutia, A combinatorial result on points and circles in the plane, Technical Report TR-85-15, University of Ottawa, 1985.
- 4. G. C. Shephard, Neighbourliness and Radon's theorem, Mathematika 16 (1969), 273-275.

Received December 18, 1986, and in revised form April 23, 1987.

Note added in proof. Ryan Hayward has shown that $C_2 \ge \frac{5}{84}$.