(C) by Springer-Verlag 1988

A Stability Property of the Densest Circle Packing

By

Imre Bárány ${ }^{1}$, Budapest, and N. P. Dolbilin, Moscow

(Received 9 December 1987)

Abstract

A new stability property of the densest circle packing in the plane is proved. This property is related to a conjecture of L. Fejes Tóth.

1. The Result

Let $\mathscr{C}=\left\{C_{0}, C_{1}, C_{2}, \ldots\right\}$ be a densest packing of congruent circles (of unit diameter, say) in the plane. It is well-known $[2,4]$ that the centres of the circles in \mathscr{C} form a regular triangular lattice. Let \mathscr{C}_{0} be the packing obtained from \mathscr{C} by removing one circle, C_{0} say, from \mathscr{C}. L. Fejes Tótr [3] conjectures that \mathscr{C} has the following very interesting stability property: Assume $(n+1)$ circles, $C_{0}, C_{1}, \ldots, C_{n}$ are removed from \mathscr{C} and n circles, $C_{1}^{\prime}, \ldots, C_{n}^{\prime}$, each congruent with C_{0} are put back in such a way that the family $\mathscr{C}^{\prime}=\left\{C_{1}^{\prime}, \ldots, C_{n}^{\prime}, C_{n+1}, \ldots\right\}$ is again a packing. Then, according to the conjecture, \mathscr{C}^{\prime} is congruent to \mathscr{C}_{0}.

This conjecture is open and the solution seems to be difficult. In this paper we prove the following related result.

Theorem. Assume the circles $\left\{C_{1}^{\prime}, \ldots, C_{n}^{\prime}, C_{n+1}, \ldots\right\}$ form a packing and the centre of $C_{i}^{\prime \prime} i s$ within ε distance of the centre of $C_{i}(i=1, \ldots, n)$. Then $C_{i}^{\prime}=C_{i}(i=1, \ldots, n)$ provided $\varepsilon<\frac{1}{40}$.

Inspired by this result A. Bezdek and R. Connelly [1] call a packing \mathscr{P} of congruent circles in the plane uniformly stable if there is $\varepsilon>0$ such that no finite subset of the circles can be rearranged such that each circle is moved with a distance less than ε and the rearranged circles together with the rest form a packing not congruent to the original one. In this terminology our theorem says that \mathscr{C}_{0} is uniformly stable. Bezdek and Connelly establish in [1] that certain

[^0]circle packings are uniformly stable and some others are not. They show, for instance, that the packing where the centres of the circles form the integer lattice in R^{2} is not uniformly stable.

The Theorem says that \mathscr{C}_{0} is uniformly stable with $\varepsilon \leqslant \varepsilon_{0}=\frac{1}{40}$. We have not tried to get the largest possible ε_{0} here, though some considerations show that our proof works at $\varepsilon_{0}=\frac{1}{16}$ and does not work at $\varepsilon_{0}=\frac{1}{12}$.

2. Two Lemmas and One Proof

The proof of the Theorem is based on two lemmas. The first is quite simple:

Lemma 1. If in a triangle T the length of every edge is at least 1 and an angle is $\frac{\pi}{3}+\delta$ with $|\delta| \leqslant \frac{1}{10}$, then

$$
\begin{equation*}
\text { Area } T \geqslant \frac{\sqrt{3}}{4}+0.229|\delta| \tag{1}
\end{equation*}
$$

In order to state the second lemma some preparation is needed. Let $p_{1}, p_{2}, \ldots, p_{6}$ be the vertices of a regular hexagon in this order along the perimeter. Choose points q_{1}, \ldots, q_{6} with

$$
\left|q_{i}-p_{i}\right| \leqslant \frac{1}{40}, i=1, \ldots, 6 .
$$

Then q_{1}, \ldots, q_{6} are the vertices of a hexagon H "close" to the regular. Let $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$ be the angle of H at vertex q_{2}, q_{4} and q_{6}, respectively, and define α, β, γ by setting

$$
\bar{\alpha}=\frac{2 \pi}{3}+\alpha, \bar{\beta}=\frac{2 \pi}{3}+\beta, \bar{\gamma}=\frac{2 \pi}{3}+\gamma .
$$

Lemma 2. If the length of every edge of H is at least one, then

$$
\begin{equation*}
\text { Area } H \geqslant \frac{\sqrt{27}}{2}-0.565\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \text {. } \tag{2}
\end{equation*}
$$

Proof of the Theorem using Lemma 1 and 2. Consider a packing $\mathscr{C}^{\prime}=\left\{C_{1}^{\prime}, \ldots, C_{n}^{\prime}, C_{n+1}, \ldots\right\}$ with the centres q_{1}, q_{2}, \ldots of the circles as in Fig. 1.

Figure 1
By our assumption, every q_{i} is within $\varepsilon \leqslant \frac{1}{40}$ distance of the corresponding lattice point p_{i} (when $i=1, \ldots, n$) and coincides with p_{i} when $i>n$. The centre of the missing circle is $p_{0}=q_{0}$.

The centres q_{i}, q_{j}, q_{k} are said to form the triangle $q_{i} q_{j} q_{k}$ if the circles C_{i}, C_{j} and C_{k} pairwise touch each other. As the edges of a triangle T are of length at least one and the triangle is "close" to the regular,

$$
\begin{equation*}
\text { Area } T \geqslant \frac{\sqrt{3}}{4} . \tag{3}
\end{equation*}
$$

Denote by K the large hexagon with vertices $q_{7}, q_{9}, q_{11}, q_{13}, q_{15}, q_{17}$. All triangles outside K have area $\frac{\sqrt{3}}{4}$ at least and for q_{i} far enough from p_{0}, we have $q_{i}=p_{i}$. This implies

$$
\begin{equation*}
\text { Area } K \leqslant 24 \frac{\sqrt{3}}{4}=6 \sqrt{3} \tag{4}
\end{equation*}
$$

Now write $\frac{\pi}{3}+\delta_{1}, \frac{\pi}{3}+\delta_{2}, \frac{\pi}{3}+\delta_{3}, \frac{\pi}{3}+\delta_{4}$ for the angle at q_{2} of the triangle $q_{1} q_{8} q_{2}, q_{8} q_{9} q_{2}, q_{9} q_{10} q_{2}$ and $q_{10} q_{3} q_{2}$, respectively. Let H be the hexagon with vertices $q_{1}, q_{2}, \ldots, q_{6}$. Then, with the notation of Lemma 2, $\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\alpha=0$ and so

$$
\left|\delta_{1}\right|+\left|\delta_{2}\right|+\left|\delta_{3}\right|+\left|\delta_{4}\right| \geqslant|\alpha| .
$$

A simple computation shows that the conditions $\left|q_{i}-p_{i}\right| \leqslant \frac{1}{40}$ imply

$$
\left|\delta_{i}\right| \leqslant \frac{1}{10}, i=1, \ldots, 4,|\alpha| \leqslant \frac{1}{10} .
$$

So Lemma 1 applies: the area of the four triangles at q_{2} is at least

$$
4 \frac{\sqrt{3}}{4}+0.229\left(\left|\delta_{1}\right|+\left|\delta_{2}\right|+\left|\delta_{3}\right|+\left|\delta_{4}\right|\right) \geqslant \sqrt{3}+0.229|\alpha| .
$$

Estimating the area of the four triangles around q_{4} (and q_{6}) in the same way we get

$$
\begin{equation*}
\text { Area }(K \backslash H) \geqslant 6 \frac{\sqrt{3}}{4}+3 \sqrt{3}+0.229(|\alpha|+|\beta|+|\gamma|) \tag{5}
\end{equation*}
$$

Furthermore, Lemma 2 applies to the hexagon H :

$$
\begin{equation*}
\text { Area } H \geqslant \frac{3 \sqrt{3}}{2}-0.565\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \tag{6}
\end{equation*}
$$

Combining (4), (5) and (6) we have

$$
\begin{aligned}
6 \sqrt{3} & \geqslant \text { Area } K=\text { Area }(K \backslash H)+\text { Area } H \geqslant \\
& \geqslant 6 \sqrt{3}-0.565\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+0.229(|\alpha|+|\beta|+|\gamma|)
\end{aligned}
$$

which implies that
$0.229(|\alpha|+|\beta|+|\gamma|) \leqslant 0.565\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \leqslant 0.565(|\alpha|+|\beta|+|\gamma|)^{2}$.
So either $\alpha=\beta=\gamma=0$ or $|\alpha|+|\beta|+|\gamma| \geqslant \frac{0.229}{0.565}>0.4$. The latter case contradicts to $|\alpha|,|\beta|,|\gamma| \leqslant 0.1$.

So $\alpha=\beta=\gamma=0$. Repeating the same argument with vertices q_{1}, q_{3}, q_{5} (instead of q_{2}, q_{4}, q_{6}) we get that all angles of H are equal to $\frac{2 \pi}{3}$. Then Area $H>\frac{3 \sqrt{3}}{2}$ unless all edges of H are equal to one. Similarly, Area $(K \backslash H)>\frac{9 \sqrt{3}}{2}$ unless all triangles in $K \backslash H$ are regular. So we get $q_{i}=p_{i}, i=1,2, \ldots$.

3. Proof of Lemma 1

Let x and y be the lengths of the edges of the triangle, incident to the angle $\frac{\pi}{3}+\delta$. Assume first that $\delta \geqslant 0$. Then

$$
\text { Area } T=\frac{1}{2} x y \sin \left(\frac{\pi}{3}+\delta\right) \geqslant \frac{1}{2} \sin \left(\frac{\pi}{3}+\delta\right)
$$

We are going to use Taylor expansion quite often so we describe its first use in more detail. The Taylor expansion of $\sin t$ around $t=\frac{\pi}{3}$ is this:

$$
\sin \left(\frac{\pi}{3}+\delta\right)=\sin \frac{\pi}{3}+\left(\cos \frac{\pi}{3}\right) \delta+\frac{1}{2}\left(-\sin \left(\frac{\pi}{3}+\bar{\delta}\right)\right) \delta^{2}
$$

where $\bar{\delta}$ is between 0 and δ. Thus

$$
\begin{aligned}
\sin \left(\frac{\pi}{3}+\bar{\delta}\right) & =\sin \frac{\pi}{3} \cos \bar{\delta}+\cos \frac{\pi}{3} \sin \bar{\delta}= \\
& =\frac{\sqrt{3}}{2} \cos \bar{\delta}+\frac{1}{2} \sin \bar{\delta} \leqslant \frac{\sqrt{3}}{2}+\frac{1}{2}|\bar{\delta}| \leqslant \frac{\sqrt{3}}{2}+\frac{1}{2} \cdot \frac{1}{10} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\text { Area } & \begin{aligned}
& \geqslant \frac{1}{2} \sin \left(\frac{\pi}{3}+\delta\right) \geqslant \frac{\sqrt{3}}{4}+\frac{1}{4} \delta-\frac{1}{4}\left(\frac{\sqrt{3}}{2}+\frac{1}{20}\right) \delta^{2} \geqslant \\
& \geqslant \frac{\sqrt{3}}{4}+\frac{1}{4} \delta-0.2041 \delta^{2} \geqslant \frac{\sqrt{3}}{4}+0.229 \delta
\end{aligned}
\end{aligned}
$$

when $0<\delta<0.1$, indeed.
Consider now the case $\delta<0$. It is an elementary exercise to see that Area T will be the smallest when the triangle is isosceles with two angles equal to $\frac{\pi}{3}+\delta$. The third is $\frac{\pi}{3}-2 \delta$, then. Using Taylor expansion again

$$
\text { Area } T \geqslant \frac{1}{2} \sin \left(\frac{\pi}{3}-2 \delta\right) \geqslant \frac{\sqrt{3}}{4}-\frac{1}{2} \delta-\frac{\sqrt{3}}{2} \delta^{2} \geqslant \frac{\sqrt{3}}{4}+0.229|\delta|
$$

when $-0.1<\delta \leqslant 0 . \square$

4. Proof of Lemma 2

Denote by x_{i} the length of the edge $q_{i} q_{i+1}$ of $H(i=1, \ldots, 6$, obviously $q_{7}=q_{1}$ here). We want to estimate

$$
h_{0}=\min \left\{\text { Area } H:\left|q_{i}-p_{i}\right| \leqslant \frac{1}{40}, x_{i} \geqslant 1, i=1, \ldots, 6\right\}
$$

As we mentioned earlier these conditions imply $|\alpha|,|\beta|,|\gamma| \leqslant 0.1$. Then

$$
h_{0} \geqslant \min \left\{\text { Area } H:|\alpha|,|\beta|,|\gamma| \leqslant 0.1, x_{i} \geqslant 1, i=1, \ldots, 6\right\} .
$$

We claim that if the last minimum is attained then all $x_{i}=1$. Indeed, assume $x_{1}>1$ (say), keep $\alpha, \beta, \gamma, x_{2}, x_{3}, \ldots, x_{6}$ fixed and decrease x_{1} to 1 . Then

$$
\begin{equation*}
\text { Area } H=\text { Area } q_{1} q_{2} q_{3}+\operatorname{Area} q_{3} q_{4} q_{5}+\operatorname{Area} q_{5} q_{6} q_{1}+\operatorname{Area} q_{1} q_{3} q_{5} \tag{7}
\end{equation*}
$$

and in this formula, Area $q_{1} q_{2} q_{3}$ decreases and the triangles $q_{3} q_{4} q_{5}$ and $q_{5} q_{6} q_{1}$ do not change. In the triangle $q_{1} q_{3} q_{5}$ the edges $q_{1} q_{5}$ and $q_{3} q_{5}$ do not change and $q_{1} q_{3}$ decreases. Then the angle at q_{5} decreases and so does Area $q_{1} q_{3} q_{5}$. Thus

$$
h_{0} \geqslant h_{1}=\min \left\{\text { Area } H:|\alpha|,|\beta|,|\gamma| \leqslant 0.1, x_{i}=1, i=1, \ldots, 6\right\} .
$$

We estimate h_{1} using formula (7). Write $\max (|\alpha|,|\beta|,|\gamma|)=\Delta$. With Taylor expansion

$$
\text { Area } \begin{align*}
q_{1} q_{2} q_{3} & =\frac{1}{2} x_{1} x_{2} \sin \left(\frac{2 \pi}{3}+\alpha\right)=\frac{1}{2} \sin \left(\frac{2 \pi}{3}+\alpha\right) \geqslant \\
& \geqslant \frac{\sqrt{3}}{4}-\frac{1}{4} \alpha-\frac{1}{4}\left(\frac{\sqrt{3}}{2}+4\right) \alpha^{2} . \tag{8}
\end{align*}
$$

To compute the area of the triangle $q_{1} q_{3} q_{5}$ is more involved. Set $\left|q_{3}-q_{5}\right|^{2}=a, \quad\left|q_{5}-q_{1}\right|^{2}=b, \quad\left|q_{1}-q_{3}\right|^{2}=c$. Clearly $a=x_{1}^{2}+$ $+x_{2}^{2}-2 x_{1} x_{2} \cos \bar{\alpha}=2-2 \cos \bar{\alpha}, \quad b=2-2 \cos \bar{\beta}, c=2-2 \cos \bar{\gamma}$. Then, by Heron's formula

$$
\begin{gathered}
\text { Area } q_{1} q_{3} q_{5}=\frac{1}{4}\left(-a^{2}-b^{2}-c^{2}+2 a b+2 b c+2 c a\right)^{\frac{1}{2}}= \\
=\frac{1}{2}\left[2-2\left(\cos ^{2} \bar{\alpha}+\cos ^{2} \bar{\beta}+\cos ^{2} \bar{\gamma}\right)+(\cos \bar{\alpha}+\cos \bar{\beta}+\cos \bar{\gamma}-1)^{2}\right]^{\frac{1}{2}} .
\end{gathered}
$$

Using Taylor expansion again

$$
\cos \bar{\alpha}=\cos \left(\frac{2 \pi}{3}+\alpha\right) \leqslant-\frac{1}{2}-\frac{\sqrt{3}}{2} \alpha+\frac{1}{2}\left(\frac{1}{2}+4\right) \alpha^{2}
$$

and

$$
\begin{aligned}
(\cos \bar{\alpha}+\cos \bar{\beta} & +\cos \bar{\gamma}-1)^{2} \geqslant \\
\geqslant & {\left[-\frac{5}{2}-\frac{\sqrt{3}}{2}(\alpha+\beta+\gamma)+\frac{1}{2}\left(\frac{1}{2}+\Delta\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\right]^{2} \geqslant } \\
\geqslant & \frac{25}{4}+\frac{5 \sqrt{3}}{2}(\alpha+\beta+\gamma)+\frac{3}{4}(\alpha+\beta+\gamma)^{2}- \\
& -\left(\frac{5}{4}+4.06 A\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)
\end{aligned}
$$

Here the term 4.06Δ comes from a routine estimation using $\Delta \leqslant 0.1$. With another Taylor expansion

$$
\cos ^{2} \bar{\alpha}=\cos ^{2}\left(\frac{2 \pi}{3}+\alpha\right) \leqslant \frac{1}{4}+\frac{\sqrt{3}}{2} \alpha+\frac{1}{2}(1+4 \Delta) \alpha^{2}
$$

and so

$$
\begin{aligned}
\cos ^{2} \bar{\alpha}+\cos ^{2} \bar{\beta}+\cos ^{2} \bar{\gamma} & \leqslant \\
& \leqslant \frac{3}{4}+\frac{\sqrt{3}}{2}(\alpha+\beta+\gamma)+\frac{1}{2}(1+4 \Delta)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)
\end{aligned}
$$

Then

$$
\begin{align*}
\text { Area } q_{1} q_{3} q_{5} \geqslant \frac{\sqrt{27}}{2}\{1 & +\left[\frac{2 \sqrt{3}}{9}(\alpha+\beta+\gamma)+\frac{1}{9}(\alpha+\beta+\gamma)^{2}-\right. \\
& \left.\left.-\left(\frac{1}{3}+1.2 \Delta\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)\right]\right\}^{\frac{1}{2}} \tag{9}
\end{align*}
$$

Write t for the expression in square brackets here. We estimate t using $\Delta \leqslant \frac{1}{10}$ again

$$
|t| \leqslant \frac{2 \sqrt{3}}{9} 3 \Delta+\frac{1}{9}(3 \Delta)^{2}+\left(\frac{1}{3}+1.2 \Delta\right) 3 \Delta^{2}<1.4 \Delta
$$

The Taylor expansion for $(1+t)^{\frac{1}{2}}$ around $t=0$ with $|t| \leqslant 1.4 \Delta$ gives

$$
(1+t)^{\frac{1}{2}} \geqslant 1+\frac{1}{2} t-\frac{1}{8}(1+3.4 \Delta) t^{2}
$$

Also,

$$
t^{2} \leqslant\left(\frac{4}{27}+0.27 \Delta\right)(\alpha+\beta+\gamma)^{2}+1.55 \Delta\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)
$$

Then we get

$$
\begin{align*}
(1+t)^{\frac{1}{2}} & =1+\frac{1}{\sqrt{27}}(\alpha+\beta+\gamma)+\left(\frac{1}{27}-0.12 \Delta\right)(\alpha+\beta+\gamma)^{2}- \\
& -\left(\frac{1}{6}+0.9 \Delta\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) \tag{10}
\end{align*}
$$

Substituting (8), (9) and (10) into (7) we get

$$
\begin{aligned}
h_{1} \geqslant & \frac{3 \sqrt{3}}{2}-\left(\frac{\sqrt{3}}{4}+1.3 \Delta\right)\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right)+ \\
& +\left(\frac{1}{12 \sqrt{3}}-0.2 \Delta\right)(\alpha+\beta+\gamma)^{2} \geqslant \\
\geqslant & \frac{\sqrt{27}}{2}-0.565\left(\alpha^{2}+\beta^{2}+\gamma^{2}\right) .
\end{aligned}
$$

References

[1] Bezdek, A., Connelly, R.: Uniformly rigid circle packings. Manuscript.
[2] Fejes Tóth, L.: Lagerungen in der Ebene, auf der Kugel und im Raum. Berlin: Springer. 1953.
[3] Fejes Tóth, L.: Solid circle packings and circle coverings. Studia Sci. Math. Hung. 3, 401-409 (1968).
[4] Thue, A.: Uber die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene. Christ. Vid. Selsk. Skr. 1, 3-9 (1910).
I. BÁrány

Mathematical Institute of the
Hungarian Academy of Sciences
H-1364 Budapest
Reáltanoda u. 13-15, P.O.B. 127
Hungary
N. P. Dolbilin

Steklov Institute of Mathematics
42 Vavilov
117333 Moscow, U.S.S.R

[^0]: ${ }^{1}$ Research of this author was partially supported by Hungarian National Foundation for Scientific Research grant no. 1812.

