
Probab. Th. Rel. Fields 77, 231-240 (1988) Probability 
Theory R~ed Rc~ds 

�9 Springer-Verlag 1988 

On the Shape of the Convex Hull of Random Points 

Imre Bfir/my 1, .  and Zoltfin Ffiredi 2 , .  
1 Schoo l  o f O R & I E ,  Corne l l  Un ive r s i ty ,  I t haca ,  N Y  14853, U S A  

z Department of Mathematics, Massachusetts Institute of Technology, Cambridge, 
MA 02139, USA 

Summary. Denote by E, the convex hull of n points chosen uniformly and 
independently from the d-dimensional ball. Let Prob(d, n) denote the proba- 
bility that E,  has exactly n vertices. It is proved here that Prob(d, 2 d/2 d -e) ~ 1 
and Prob (d, 2 d/2 d (3/4) + e )~  0 for every fixed e > 0 when d--* oe. The question 
whether E, is a k-neighbourly polytope is also investigated. 

1. Random Points in the Ball 

Let us denote by Prob(d, n) the probability that choosing n points uniformly 
and independently from the d-dimensional unit ball B~, none of the points is 
contained in the convex hull of the others, i.e., their convex hull has exactly 
n vertices. Clearly, Prob(d, n)= 1 for n<d+l.  For  n = d + 2  Blaschke ([2], pp. 
55-60) and Hostinsky ([10], pp. 22-26) determined Prob(2, 4) and Prob(3, 5), 
respectively. Decades later Kingman [11] calculated the probability e(d) that 
the convex hull of d + 2 points in B d is a simplex: 

c~ (d) = 1 - Prob (d, d + 2) = d ~  (bd + ~)d+ X(b(d + 1)2)- ~ (1) 

where bi=F(i+l)F ~ + 1  . Using the well-known asymptotic formula F(x 

+ l ) = x X V ~ x e - X e  1/(12x+~ where 0 < 0 < 1  for x > l  (see, e.g., Rdnyi [14], 
p. 138) (1) implies 

~(d) = (2 Ted) ~d/2 d 3/2 e- 3/4(1 § O(d- 1)). 

Hence Prob(d,d+2)~l as d ~ .  Miles ([13], pp. 369-374) proved that 
lim Prob(d, d + 3 ) = 1  holds. He conjectured and Buchta [3] proved that 
d-* oo 
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Prob(d, d+m)--* 1 for all fixed m. Actually Buchta's method gives that 
lim Prob (d, ( ~ -  e) d) = 1 holds for every fixed e > 0. 
d ~ c o  

We call the set { Y1 . . . .  , Yk} c R d 1-convex if its convex hull has k vertices. 
It is easy to compute the expected value of the number of non-l-convex 
( d + 2 ) - s e t s  of {X1, ..., X,}, where all XieBa: 

E(number of non-l-convex (d+ 2)-sets)= n c~(d)> 
d + 2  

Here the right hand side is larger than exponential in d for n > d  2 (say). So 
it might be surprising that Prob(d, n ) = l - o ( 1 )  holds for exponentially large 
n. More explicitly we have 

Theorem 1.1. Let c be a positive real. Then 

Prob (d, c 2 d/2) > 1 - c 2. 

Theorem 1.2. Let c__>20. Then, for d>= 100 

Prob (d, c d 3/4 2 d/a) < 2 e-  c/2. 

It seems likely that the threshold function of the 1-convexity of random 
points is about  d 1/z 2 el2. Other properties of random point-sets can be found 
e.g, in R6nyi and Sulanke [15] (they consider the case d=2) .  For  any extensive 
bibliography see Buchta and M/iller [4]. 

2. k-Convexity of Random Pointsets 

Let k be a positive integer. A finite set E c R  d is said to be k-convex if for 
every subset A c E with I AI < k the set cony A is a face of the polytope cony E. 
For  instance, if E is the vertex set of cony E, then E is 1-convex and this coincides 
with the definition in the previous section. The vertex set of the d-dimensional 
simplex is d-convex and the vertex set of the cyclic polytope is [d/2]-convex. 
Denote by Probk(d, n) the probability that choosing n points uniformly and 
independently from the d-dimensional unit ball B~ we get a k-convex set. Clearly, 
Prob 1 (d, n) = Prob (d, n). The next two theorems are about the threshold function 
of k-convexity. 

Theorem 2.1. For k fixed, 

Probk d, 1+ = 1 - o ( 1 )  (2) 

Probk(d, ( l  + 2 @ ~ ) d ) = o ( 1 )  when k >  3 (3) 

when d --* oo. 

Prob z (d, 1.4 a) = o(1) 
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I ] Theorem 2.2. When k = 2A log d ' then 

Probk (d, d A/6) = 1 - o (1) 

Probk (d, d A + 1 +~) __ o(1) 

as d--* oo. 
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(4) 

(5) 

3. The Largest Polytopes in the Ball 

)-1. 
The volume of the d-dimensional  unit ball Be is 7a=zd/2F 2 + 1  Let  US 

denote  by V(d, n) how well an inscribed po ly tope  with n vertices can fill the 
ball, i.e., 

V(d, n) = sup ~-V~ ( c ~  7a{P1 . . . . .  P"}): P1 . . . . .  P~ e Ba} �9 

Clearly V(d, n) = 0 for n__< d. 

( ~ ) d / 2  / e  \a/2V/~_ 
r ( d , d ~ - l ) = ~  (d'~d)-l, .~-,I2~) . 

The asymptot ic  behaviour  of V(d, n) when d is fixed and n tends to infinity 
is fairly well-known, see e.g., G rube r  [91. Recent ly  Elekes [6] (see also in Lovfisz 
[12], p. 55) proved  that  

V (d, n) < n 2 -  a. (6) 

This bound  is not  the best (for n > U  it gives even more  than 1), but  it is 
valid for every value of  n and d and its p roo f  is very nice. The proofs of Theorems  
1.1 and 1.2 give as a byproduc t  that  the Elekes bound  is not  as bad as it 
seems at first sight, at least when n is abou t  2 e/2. 

Theorem 3.1. For d >= 100 and n = 20d 3/4 2 a/2 

n 
V(d, n) > 500d3/2 2a. 

Elekes's result and Theorem 3.1 give quite good  estimates for V(d, n) when 
n = 20d 3/4 2a/2: 

0.04 d -  3/4 2-,1/2 <= V(d, n) < 20d 3/4 2 -a/2. 

In a for thcoming paper  [1] we are going to re turn  to the de terminat ion  of 
V(d, n) when n is relatively small, po lynomia l  in d, say, and d tends to infinity. 
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4. Proof of Theorem 1.1 

Set E = {X1, ..., X,}. Clearly, 

Prob (E is 1-convex) > 1 - ~ Prob (X~ e conv ( E \  {Xi}). 
i=1 

By definition 

Prob (XiEconv (E\{X,})) = 1 Vol conv (E\{X~}) < V(d, n -  1), 
Ya 

and this gives 
Prob (d, n)>= 1 - n V ( d ,  n -1) .  

1/2 
Now we use (6) to show that Prob (d, n)> 1 - ~  = 1 - c  z. [] 

(7) 

5. Proof of Theorem 1.2 

We will choose the random points in two (independent) steps. Let first E 
={X1,  ..., Xt,,/21} and F= {Xt,,/2~+ I, ..., X,,}. Denote by 0 the center of B a and 

let A a be the ball with center 0 and radius r= 2-1/2 d-3/4a~ 2-1/2 (1 3 log d] 
\ 

Then we have 
Prob (A a n E = 0) < e-C/2. (8) 

1 
Indeed, Prob(Xi~Ad) = - -  Vol(Aa)=r a. Hence 

7a 

Prob (Aa c~ E = 0) = (1 - re) "/2 < exp ( -  r a [n/2]) < exp ( -  c/2). 

From now on we assume that Aac~E+O, let Y~AanE,  say. Define 0 '  so that 
Y is the midpoint of the line segment 00 ' .  Let B} be the ball with center O' 
and radius 1. Set, further, H = Be ~ B'd. Now we show that for d > 100 

Vol (H) >= 0.46 dl/4 2_cl/2" (9) 
7d 

Indeed, IIOYII ~ r  and so 

_ _  1 d - 1  

1 Vol(H)>=2.7d_~ ~ ( l _ x 2 ) ~ - d x  
?a 7a x=r  

>27a-1 i X( 1 -x2)L~-dx  
]~a r 

= Ya-1 . ~ (1 --?'2) d21 +- 
~a d +  1 

Yd-1 2 ( 1 _ � 8 9  a+l 
Yd d +  1 
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Taking into account the asymptotic formula 7e-1 one can easily see 

that 7d 

d+l 
lira 7e- ~ . 2 (1 --�89 ~ -  = 1 =0.564..  
d-*~ ~e d+ l d~/42 -d/2 ~ "" 

This shows that (9) is true for d large enough, for instance when d ~ 100. 
Now define k as the number of elements of F c~ H. The expected value of 

k, E (k) equals (2]  (7d)- 1 Vol (H) ~ 0.23 cd. Now we show that 

Prob (k < 0.1 c d) < e -  o.o3 cd (10) 

using the large deviation theorem of Chernoff [5] applied to the binomial distri- 
bution (see Spencer [16]). This says that for a ~ p m ,  0 < p <  1 

(m] f f ( l_p)m_,  < e x p ( _ ( m p _ a ) 2 / 2 m p ) .  (11) 
i<a\z /  

[~ ]3 /4  
1 Vol(H)>O.46dl/g2_e/2 (if d >  100) and m =  2 e/2. Set a =__ In our case p 7d 

=0.1 cd, then (11) yields (10). 
Finally, we use a result of Wendel [17J (see also in [8]). 

Theorem [17]. Let K be a centrally symmetric bounded domain in R e with 
center 0, Vol (K) > 0. Choose the points Yi . . . . .  Yk randomly, uniformly and inde- 
pendently from K. Then 

Prob (0econv {1(1, ---, Yk}) = 1 - - -  2k-1 E " (12) 
i<_d-1 

Now (12) implies that 

1 
Prob (Yr F ] k > O . l c d ) < 2  ~ 

i<~d-1 
when c > 20. 

(0.1c.d-~ 1)<e_O.O,~e (13) 

Denote the event that E u F  is 1-convex by U and the events in the left 
hand sides of (8), (10) and (13) by V, W and Z, respectively. Clearly U c  V+ W 
+ Z + U V W Z ,  hence Prob (U) ___ Prob (V) + Prob (W) + Prob (Z) + Prob ( U V W Z ) .  

But Prob ( U V W Z ) =  0 because if E w F is 1-convex then Y~ cony (F) is impossible. 
Using (8), (10) and (13) we get 

Prob (d, n) = Prob (E u F is 1-convex) 
= Prob (U) < e-C/2 + e-O.O3cd + e-O.O lca < 2e-C/2 

for d >  100, c>20 .  
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6. Proof  of  Theorem 3.1 

Let us apply Theorem 1.2 and (7) when n = 20- 2 e/2 d 3/4. We get 

2 e -  1~ >Prob(d ,  n)> 1 - n V ( d ,  n -  1) 

which shows that 

V(d, n) > V(d, n -  1) > 
1--2e  -1~ n 

- - n  > 500 2 ad 3/2" [] 

7. Proof  of  the Lower Bounds in Theorems 2.1 and 2.2 

We will use a result from BfirAny and F/iredi [13]. To formulate it we need 
some preparation. 

Given a convex set C c R e with L--aft(C),  define L l as the maximal subspace 
of R e orthogonal  to L. Further, for p > 0 let 

C p = C + (L • ~ pBe). 

In other words, C" is a cylinder above C, i.e., C" is the set of points x E R  a 
such that if x' is the nearest point to x in C, then IIx-x'll <p and x - x '  is 
orthogonal to L. Define p(d, 1)=1, p(d, d )=d  -1 and for 1 < k < d  

( d - k  + l] ~/2 
p(d, ] 

Lemma 7.1. Given a simplex F in Bd and k~{1, 2, ..., d) and a point x~F,  there 
is a (k-1)- face F k of F with x~F~ (d' k) 

Now we prove (3). Fix k >  3 and take the n points in two steps again: in 
the first step 3d points E3d and in the second n - 3 d  points E,_3e. (The case 
k = 2 can be dealt with in a slightly different way.) 

Observe that by Wendel's theorem O~convE3d with probability 1 -o(1) .  
Then by Caratheodory's  theorem OeconvEd+l  for some Ea+IcE3d with 
l E d + l [ = d + I .  Then by Lemma 7 .10~(convEk)  ~ for some Ek<Ed+I, ]Ekl=k 
and p- -p(d ,  k). Denoting the nearest point to the origin in convEk by Y we 
have 

k d/ZZ~- k + 1 1 
dist(O,Y)<-p(d,  ) = V  d~---~i) < ~ "  

From now on we work in the same way as in the proof  of Theorem 1.2. 
Define O' so that Y is the midpoint of OO' and set H = Be c~ B5 where B} is 
the unit ball around O'. Then 

E ( I E " - 3 e ~ H I ) = I ~ v ~  l y e  2 V d  -k ~ ] - J l  ~e/2(n_3d). 
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_ 2d2( k -  1ta/2 say, then with p robab i l i ty  1 - o ( 1 )  s o i f w e  take n > 3 d +  \ k - 2 ]  ' 

IE ,_3d~HI> 3d 

and we app ly  Wendel ' s  t heo rem again. So f rom here we get tha t  (3) holds 
for every fixed k > 3 when  d --* oe. 

In  exact ly  the same way one can p rove  (5) as well. This m e t h o d  works  
when k is l inear in d, k = c~ d, (say) and  gives 

P rob  k =~d(d, 3 (1 + e (1 - ~t)/2a ~ )  d) = o (1). 

Remark. We think tha t  

PrObk = ~d(d, f (~ )  d) = 1 - o (1) 

when ~E(O, 1/2), where  f (~ )  depends  on a only, p r o b a b l y  

f (c 0 > exp (c (�89 a)/~). 

8. Proof of the Upper Bounds in Theorems 2.1 and 2.2 

F o r  the p r o o f  of  (2) and  (4) we need some m o r e  no ta t ion  and facts. Deno t e  
by aft(X1 . . . . .  Xk) the affine hull of  the points  X1, . . . ,  Xk. F o r  a, b > 0  and 0_-<t 
< 1 set 

and  

B(a, b, t ) =  i (1 - -x2)ax2bdx ,  
x = O  

B(a, b)=B(a,  b, 1). 

The  following p ropos i t ion  is p roved  in Miles [13]. 

Proposition 8.1. Choosing the points X1, ..., X k uniformly and independently from 
Bd (k <= d) we have 

B ( l ( d +  1 ) ( k -  1), �89 t) 
Prob  (dist (0, af f (X 1, . . . ,  Xk)) < t) -- [] 

B (�89 (d + 1) ( k -  1), �89 (d - k)) 

Proposition 8.2. 
a a b b a ~ b b 

(a+b)a+b+ l <=B(a, b)<(a+b),+b 

and for t <= ~ ( ( a  + b) we have 

B(a, b, t)<=(1--t2)at2b. 

TO prove  this p ropos i t ion  one can use Standard techniques,  taking into account  

tha t  the m a x i m u m  o f ( 1 - x 2 ) a x  2b is a t ta ined at ]/b/(a+b). [] 
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Now let E, be the random n-set from Bd. We are going to estimate Prob (E, 
is not k-convex) from above. If E, is not k-convex, then there is A k c E, with 
lAg] = k and conv Ak ~ conv(E. \Ak)  =I = O. Then, by Caratheodory's theorem and 
by the cylinder lemma there exists As ~ E , \ A k .  [Asl = s with 
convAkC~(convAs)'oeO where p=p(d ,  s). We will choose se{1 . . . . .  d - 1 }  later�9 
Thus 

Probk (d, n) = Prob (E, is not k-convex) 

_< (n~ [ n -  k~ Prob (dist (conv Ak, cony As) < p) (14) 
- ~ k ] ~  s ] = 

where A k and As are sets of k, s points respectively chosen uniformly and indepen- 
dently from Be. 

Recall that for an affine subspace M ~ R ~, M • is the subspace of R d orthogo- 
nal to M with d i m M + d i m M •  Let Ll=(linA~) ~, L2=(affAk) • and L o 
=L1 c~L2. Let ni denote the orthogonal projections from R d to Li and B(Li) 
the unit ball of the subspace Li, i.e., B(Li)=L~c~B a (i=0, 1, 2). Finally write 
n* for the orthogonal projection from L2 to L o. Now 

Prob (dist (conv Ak, cony A,) < p)__< Prob (dist (affAk, lin As) _--< p) 

= Prob (no(affAk) epB(Lo)). (15) 

Now n 0 = n*o n a and so if n a (affAk)cpB(La), then no (affAk)ep B(Lo) trivially�9 
On the other hand, n:(affAk) is just a point Z~L2 .  We continue (15): 

___< Prob (n 2 (aff Ak)~pB(L2) ) 
1 

+ ~ erob(n*(Z)epB(Lo) lZeB(L2) ,  IlZll =t)  
t = p  

�9 d t Prob(n2(affAk)etB(L2) ). (16) 

But nz(affAk)~tB(Lz) is equivalent to dist(O, affAk)< t SO from Proposition 8.1 
we infer 

B(�89 + 1)(k-- 1), �89 t) 
Prob (n2 (aff Ak)~ tB(L2)) -- =, B~ (t). 

B(�89 1)(k-  1), �89 

Moreover 
Prob (n* (Z)~ p B(Lo) [ Z e B(L2), f[Z [[ = t) 

P B(Lo) IZ~B(L2), ]]Zlk = 1) = Prob @* (Z) ~ t 

= Prob (n*(Z)e p B(Lo)) 

where one chooses Z from the unit sphere of La ~ R d- k + 1 uniformly. This proba- 
bility can be computed easily 

B(�89 �89  p)  ,p, 
=:BN[P]. 

B(~s, ~(d-k--s)) i t /  
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A real number to with p < t o < 1  will be specified later. We continue (16) 
using the fact that B1 (t) and Bz(p/t ) are monotone  increasing and decreasing, 
respectively; and both of them are less than or equal to 1: 

Prob (dist (conv Ak, conv As) < p) 
1 

<Ba(P)+ ~ Bz(plt) B'l(t)dt 
t = p  

t o 1 

= B I ( p ) +  ~ B2(p/t)B'l(t)dt+ ~ B2 (p/t)Bi(t)dt 
t =  p t = t o  

t o 1 

<BI(p)+ ~ B'~(t)dt+ max Bz(p/t) ~ B'~(t)dt 
t = p  t o ~ t  << - I t = t o  

= B1 (p) + [B1 (to)-- B1 (p)] + B2 (p/to) [1 -- B~ (to) ] 

< B1 (to) § B2 (p/to). (17) 

Proposition 8.2 shows that B 1 (to) is very close to zero when 

V/(  d -  k 1 
t o < t 1 =  d + l ) ( k _ l ) + d _ k ~ - ~ ,  

and B 2 (p/to) is very close to zero when 

t . / ( d - s + l ) ( d - k - 1 )  1 
to > 2= V d ~ ] ~  i ~ "  

Our plan to prove (2) and (4) is to find s and t o such that 

t 2 < t o < tl, (18) 

(20) 

If this can be done then from (17) and (14) we get that Probk (d, n)= o(1). 
When k is constant, s = l . 2 k  and to=(1.1k) -1/2 is a good choice, (18), (19) 

and (20) will hold with n = ( l + ( 4 k ) - l )  d. This can be seen using Proposition 
8.2. Similarly, when k=d(2A logd)-1 then setting 

and 

and 

s=d(1.2A logd) -1 

t o = [1.99 A (log d)/d] - 1/2 

n = d A/6 

one can check that (18), (19) and (20) hold. This implies (4). 
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W e  m e n t i o n  f ina l ly  t h a t  i t  is p o s s i b l e  t o  p r o v e  s o m e w h a t ,  b u t  n o t  s i g n i f i c a n t -  

ly, b e t t e r  e s t i m a t e s  t h a n  t h o s e  in  (2) a n d  (4), i f  o n e  p r o j e c t s  o n t o  (af t  Ak) ~, ( a f fA , )  • 

a n d  t h e i r  i n t e r s e c t i o n .  T h e n  t h e  c o m p u t a t i o n s  b e c o m e  m o r e  i n v o l v e d .  

Acknowledgement. Our thanks are due to Micha Perles for pointing out an error in an earlier version 
of this paper and to Micha Perles and Gil Kalai for interesting questions and useful discussions. 
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