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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 102, Number 3, March 1988 

APPROXIMATION OF THE SPHERE 
BY POLYTOPES HAVING FEW VERTICES 

I. BARANY AND Z. FUREDI 

(Communicated by Andrew Odlyzko) 

ABSTRACT. How well can a polytope with n vertices approximate the unit 
ball Bd of the d-dimensional Euclidean space? The answer is quite well known 
when d is fixed and n tends to infinity. In this paper the same question is 
answered when n is a function of d (a polynomial in d, say) and d tends to 
infinity. Some applications of the results are also indicated. 

1. Introduction. Approximation of convex bodies by polytopes is a well- 
studied subject in convexity theory. There are several exact results in the 2- and 
3-dimensional space (see Fejes-Toth [7]). For convex bodies in Rd with d> 3 most 
results are asymptotic. To give some examples let 6H (C, P) denote the Hausdorff 
distance of C, P c Rd, and for a convex body C c Rd define 

6H(C, n) = inf{6H (C, P): P C C a polytope with n vertices}. 

It is known that for a convex body C of class 02 

const 
co< 

n 
(C,n) < nst n = dn+ 1,d+ 2 (1) ~~2/(d-1) 

- 2/(d-1) n=+Id2 

The upper bound is due to Dudley [5], the lower bound is due to Schneider 
and Wieacker [13]. Schneider [12] determined the asymptotic behavior of 6H (C, n) 
when C is of class C3 with positive Gaussian curvature: 

lim 6H (C, n) = const 
n--+oo n~2/(d-1) 

where the constant depends on the curvature only. Another measure of approxi- 
mation is the Lebesgue-measure. Let 6L (C, P) be the volume of (C\P) U (P\C), 
and for a convex body C C Rd define 

6L(C, n) = inf{C6L(C, P): P C C a polytope with n vertices}. 

It follows from (1) and from a result of Gruber and Kendarov [9] that if C is of 
class C2 then 

const 
< 1 

L (C n) < const n = d + 1,d + 2,...n. 
(2) ~~2/(d-1) 

- 
2/(d-1)' n=+Id2 

For further information on approximation see the excellent survey paper by Gruber 
[8]. We mention one more result: Macbeath [11] proved that among all convex 
bodies C C Rd of equal volume 6L (C, n) is maximal if and only if C is an ellipsoid. 
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652 I. BARANY AND Z. FUREDI 

In this paper the behavior of 6L (C, n) will be investigated when C = Bd, the Eu- 
clidean unit ball of Rd, and n is a function of d (a polynomial in d, for instance) and 
d tends to infinity. It turns out that 6L (Bd, n) is very close to vol(Bd). Therefore 
it will be convenient to introduce 

V(d, n) = max{vol(conv{xj,..., x}): Xl,... X,n E Bd} 

vol(Bd) 

and 
W(d, n) = [V(d, n)]1/". 

Thus 1 - V(d, n) = w-1E6L (Bd, Xn) where 

Wd = volI(B) = r(d/2 +1) 

2. Upper and lower bounds for W(d, n). When n = f(d) is a function 
of d and d tends to infinity the behavior of W(d, n) can be determined using the 
theorems of the next section. Specializing to the cases when n is linear, polynomial 
and exponential function of d we obtain the following upper bounds: 

(3) W(d, cd) < (3eloc) / (lo(l)) whenc> 1, 

(4) W(d, da) < d d (1 + o(l)) when a > 1, 

(5) W(d,cd) < (2elogc)1/2(1 +o(1)) when 1 < c < 1.052 

(6) W(d,cd) < 1c when 1.052... < c < , 

(7) W(d, cdi1) < (1-C-2)1/2 when X < 

(Here (5) and (6) both hold for all 1 < c < X2 but for smaller values (5) gives a 
better upper estimate.) 

We will also prove the following lower bounds for W(d, n) when n = f (d) and d 
tends to infinity: 

(8) W (d,cd) > (1+o(1)) when c>100 (say), 

'2(a- 1)logd 1/2 
0) W d, d) (2al)od (l+ o(1)) when a > 1 

(10) W(d cd"') > (1 C- 2)1/2(1 + o(1)) when c > 1. 

The asymptotic estimation given in (2) can be reformulated as 

1 - cln n (1 < V(d,n) < 1 -C2n 

It will follow from our results that V(d, n) is separated from 1 unless n is larger 
than dd/2. More precisely we have that for a > 0 

( l l) V (d, dad 1) < e-d 
c 2 

This shows that V may be close to one only if a > 2 +t(d)/ log d where t(d) - oo as 
d - oo. On the other hand we will give a simple construction showing that V(d, n) 
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APPROXIMATION OF THE SPHERE BY POLYTOPES HAVING FEW VERTICES 653 

is indeed close to one when n = dQ(d-l) and a > 2 +t(d)/logd with limt(d) = oo. 
More precisely, we will show that for a > 0 

(12) V(did(dl)) > e 

The proof of these results involves a lot of calculations. We will leave out most of 
the routine steps. 

3. The theorems. Now we give the theorems that imply the lower and upper 
bounds of the previous section. The first result is due to Elekes [6]: 

THEOREM 1 (ELEKES [6]). For d > 2 and n > d + 1 

(13) V(d, n) < n2d. 

To present the second theorem define Mr = (x + 2Bd)\rBd where x E Rd with 
llXl = ,2. 

THEOREM 2. Ford > 2, n > d+1 and 1/V< r < 1 

(14) V(d, n) < rd + nw-j VOl(Mr). 

THEOREM 3. For d > 2, n > d + 1 and k E {1, 2,..., d-1} 

(15) V(d,n) n k ) k l)k/2wdk (dk(dk)/2 

We will give lower bounds for V (d, n). All but one of them come from a random 
construction. Unfortunately, there is no known formula for the expected volume of 
the convex hull of n points chosen from Bd (or Sd-1, the unit sphere) uniformly 
and independently. We use an integral formula due to Buchta, Muller and Tichy [3] 
which gives the expected surface area E(d, n) of the convex hull of n points chosen 
uniformly and independently from Sd-1: 

E(d, n) =(d) ( 1d / )d 

X (-I (1 - q2)(d-3)/2 dq) (1 _ p2)(d2-d-2)/2 dq 

where -yd = Area Sd- denotes the surface area of Sd- . 

THEOREM 4. For d > 2 and n > d + 1 

(17) V(d, n) > d-2w-1E(d, n - d). 

The other lower bound shows that Elekes' estimation on V(d, n) is quite good 
when n is about 2d/2 

THEOREM 5. When n = 20d3/4 2d/2 and d > 100, then 

1 - (18) V(d,n) n2 
500d3/2 

We will not prove this theorem here because its proof is given in a companion 
paper [2]. 
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654 I. BARANY AND Z. FUREDI 

4. Two related results and the Hausdorff measure. In the companion 
paper [2] the following problem is considered. Let En denote the convex hull of n 
points chosen uniformly and independently from Bd. En is a convex polytope with 
at most n vertices. It is proved in [2] that for n = c2d/2 (with c > 0) 

Prob(En has exactly n vertices) > 1- c2- 

and for n = cd3/4 2d/2 (with c > 20 and d > 100) 

Prob(En has exactly n vertices) < 2c/2. 

There we also consider the problem whether En is or is not k-neighborly with 
probability tending to one as d -* oo. 

The small value of W in the formulas (3)-(7) is somewhat surprising, at least 
for the authors. We mention that in another companion paper [1] we use (4) to 
show that in a certain model of computation the volume of convex bodies cannot be 
determined within a factor of (d/ log d)d by any polynomial-time algorithm. On the 
other hand Gr6tschel, Lovasz and Schrijver [10] gave a polynomial-time algorithm 
which determines the volume of a centrally symmetric convex body within a factor 
of dd. The interested reader is referred to [10 and 1]. 

It is perhaps interesting to note here that 6H (Bd, n), the Hausdorff measure of 
the approximation, can be computed easily when n is small (a polynomial in d, 
say). This is in contrast with the case when d is fixed and n tends to infinity, when, 
e.g., the upper bound in (1) implies the upper bound in (2). One way to compute 
6H (Bd, n) for n = dd is to show (by an averaging argument) that there is "big" 
spherical sector missing all the n points. (Here sector means the convex hull of a 
spherical cap and the center.) Another way to compute 6H(Bd, n) is to use (4) 
which says that the ball with radius r = (1 + o(l))(2e(a - 1) log dld)1/2 with center 
the origin is not contained in the approximating convex polytope. This implies that 

(19) 6H (Bd, n) > 1 - (1 + o(l))(2e(a - 1) log d/d)1/2. 

An easy random construction shows that this estimation is fairly good. 

5. Two lemmas and an open question. The proofs of Theorems 1, 2 and 3 
are based on two lemmas. The first is due to Elekes [6]. For z E Rd define 

B(z) = {x E R d: ||X-_2IZll < I 
IIZIII; 

that is, B(z) is the ball with center 1 z and radius 2 IZIII 

LEMMA 1 (ELEKES [6]). For d > 1, n > 1, and xl,...,xn E R 
n 

convfxl, . .,xn } C U B(xi). 
i=1 

PROOF. We reproduce Elekes' simple and elegant argument here. Consider 
y E conv{xi,...,Xn}. If y = 0 then y E B(xi) for every i = 1,...,n. So assume 
y ? 0 and consider the closed halfspace 

H = {x E Rd: (x, Y) > IIYII2}. 

As y E conv{x1, ... ,xn } there need be an index i with xi E H. Then the angle 
of the triangle with vertices 0, xi and y at y is at least ir/2. This shows that 
y E B(xi). 0 
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APPROXIMATION OF THE SPHERE BY POLYTOPES HAVING FEW VERTICES 655 

To formulate the second lemma we need some preparations. Assume C C Rd is 
convex, compact. Denote by L the orthogonal complementary subspace of aff C. 
For f > 0 define the c-cylinder above C as 

Cc = C+ (Lrn 1Bd), 

i.e. Cc is the set of points x E Rd such that if x denotes the nearest point to x 
in C then x - x is orthogonal to aff C and has length at most '. Finally define 
(d, 1) = 1, (d, d) = d-1 and 

Id -k +1 \1/2 

((,k d(k - 1) fo) 
1.. d-1 

LEMMA 2. If X c Bd and k E{1,..., d} then 

convX C U{Fc(d,k) F = convA} 

where the union is taken over all k-tuples A C X. 

REMARK. We conjecture that the smallest value of f for which Lemma 2 holds 
is ((d - k + 1)/(dk))1/2. This comes from the case when IXI = d + 1 and convX is 
a regular simplex inscribed in Bd. For the time being we cannot prove this sharper 
version of Lemma 2. However, for our purposes the ' given in Lemma 2 will do and 
we cannot gain anything significant with the possibly best value of '. 

PROOF OF LEMMA 2. In view of Caratheodory's theorem [4] it is enough to 
prove the lemma when IXI = d+1, i.e., Fd+1 = convX is a simplex. Take x E Fd+1. 

We start with the case k = 1: a simple argument shows that x is at distance one 
or less from some vertex of Fd+1. Consider next the case k = d. This is equivalent 
to the following well-known fact (see Fejes-T6th [7], for instance). The ratio of 
the radii of the circumscribed and. inscribed balls of a simplex is at most d. This 
establishes the case k = d. 

Now we prove the lemma for fixed d by backward induction on k. Rename x as 
Xd+l. By the above fact there is a facet Fd of Fd+1 such that if Xd denotes the 
orthogonal projection of Xd+I onto aff Fd, then IIxd+I - xdII < d-l and Xd+I - Xd is 

orthogonal to aff Fd = Hd. Fd lies in Bd nHd so it lies in Bd-l as well if one chooses 

the origin in Hd (-Rd-1) suitably. On applying the same argument to Fd C Bd- 

we get a point Xdl in a facet Fd-I of Fd such that lIxd - xd-1II < (d - 1)- 1 

and Xd - Xd-1 is orthogonal to affFd-l = Hd_l. And so on. We stop with the 

Xk E Fk. The vectors xj+l - xj (j = d,.. ., k) are pairwise orthogonal and all of 

them orthogonal to Fk. Consequently Xd+1 - Xk is orthogonal to Fk. Hence 

k d 

IXd+l - XkE = Z IlXj+l -Xj 112 < E j-2 
j=d j=k 

< - 1)]1 = 1 _ 1) = -k+1 
j=k k 

We think that there is a certain possibility to strengthen Lemma 2 in the fol- 

lowing way. Let X C Rd be a set of d linearly independent vectors and consider a 

k-tuple A C X. Then there is a uniquely determined ellipsoid having the smallest 

k-dimensional volume among all ellipsoids lying in lin A, the linear hull of A, and 
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656 I. BARANY AND Z. FUREDI 

containing A U {O}. The center of this ellipsoid is c(A) = (k + 1)-1 Z{a: a E A}. 
Denote by 11 IIA the norm induced by this ellipsoid. Now take any point x E Rd and 
represent it as x = XA + X4 where XA E lin A and x4 E (lin A)?, the orthogonal 
complement of lin A. Define another norm I IA with center c(A) by 

-c(A)IA = k lix - c(A)jj2 +ku2(d,k)lIx 42[volk(conv(Au {O}))]2/k 

The unit ball of this norm with center c(A) is again an ellipsoid E(A). Now the 
open question is this. What is the minimal value of ,u(d, k) > 0 such that for every 
point x E conv(X U {0}) there is a k-tuple A C X with x E E(A)? 

The case k = 1 is the same as Elekes' lemma and we know that the smallest 
value of ,u(d, 1) is 2. The minimal value for ,u(d, k) will probably come from the case 
when X C Sd-I and conv X is a regular (d - 1)-dimensional simplex of suitable 
side length. With that value of ,u(d, k) one can improve on the estimations (3), (4), 
(5). 

6. Proof of Theorems 1, 2, 3 and the upper bounds. Theorem 1 im- 
mediately follows from Lemma 1. Theorem 2 follows from it as well because for 
r > O 

n n 

U B(xi) =rBd U U (B(xi)\(rBd)), 
i=l i=l 

and so 
vol(conv{xl,. . .,xn}) < rd vol(Bd) + n vol(Mr), 

implying (14). 
To prove Theorem 3 we use Lemma 2. It implies 

vol(conv{x 1, . . , Xn }) < E vol(conv(F )) 

where the summation is taken over all k-dimensional simplices F with vertices from 
xi, Xn . , It is clear that 

vol(conv(F )) = volk(conv(F)) * Vold-k(O Bdk). 

F is a k-dimensional simplex lying in Bd so its volume is maximal if it is regular. 
Now a simple computation proves Theorem 3. 

To prove the upper bounds we use Theorems 1, 2 and 3. (6) follows from 
Theorem 1 and (7) follows from Theorem 2 when we choose r > 0 as to minimize 
the right-hand side of (14). In the given range this choice is 

r = (1-()7r /(d- 1) 1/2 

with 1 < ,L < 2. This works when n = cd-i with c > 2-1/2 and, also, when 
n = d"(d-1) proving (11). 

The proofs of (3), (4) and (5) are similar. We choose k E {1, 2,... ,d - 1} so 
as to minimize the right-hand side of (15). When n = cd, da and cd, respectively, 
then the appropriate choice for k is d/(2 log c), d/(2(a - 1)logd) and 1/(2elogc), 
proving (3), (4) and (5). 
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APPROXIMATION OF THE SPHERE BY POLYTOPES HAVING FEW VERTICES 657 

7. Proof of Theorem 4 and the lower bounds. 
PROOF OF THEOREM 4. Choose n - d points xl,. . . , Xnd from Sd-i uniformly 

and independently. Take d more points Zl,... , Zd E Sd-I in such a way that 
X1, Z1, ... , Zd form the vertices of a regular simplex. Set 

C = conv{X1, ... .,Xn-d,Z1,*** ...,Zd}, Co = conv{X1, * ,Xn-d}, 

and denote by L1,.. ., Lm the facets of C. As C contains d-lB we have 
m 

vol(C) > d-2 > VOld- I (Li) = d2 Area(C). 
i=l 

Moreover, C C0o implies Area(C) > Area(CO). This proves the theorem. 0 
The lower bounds (8), (9) and (10) follow from Theorem 4 and the integral 

formula (16) in the following way. First compute the value p = Pcrit where the 
function under integration in (16) takes its maximal value. Then compute a small 
interval (Pcrit - A, Pcrit + A) where the function is close to its maximum. Using 
this, estimate E(d, n - d) from below and apply Theorem 4. 

We elaborate the case n = d' (a > 1) in more detail. Note, first, that for p < 0 

f (1 - q2)(d-3)/2 dq < f l -(1 q2)(d-3)/2 dq 

(1-p2)(d-l)/2 e-p2(d-l)/2 

lpl(d-1) - lpl(d-1) 

Anticipating Pcrit = -/'xoj2/d and using tId-1 /'1d ; d2 we get from here 

( ad-1 I q2 ) (d-3)/2 
n-2d 

(20) > ( d1 f(1 q 2)(d3)/2 dq) 

> 1 Yd-I e_P2 (d 1)/2 
n 

d-x/2 An 
> 

ad lpl|(d -1) 
> 
-V A/2 --gd 

> exp- (1 + c) [nd-x/2 (2-rx log d) - 1/2]}, 
where the last step is justified by the inequality 

(21) 1 - y > e-(l+e)Y 

which is valid for 0 < y < 2e/(1 + e) if e E (0, 1/2), say. Similarly 

(22) (1 _ p2)(d -d-2)/2 > (1_p2)d /2 > exp {-(1 + C) [ 2 } 

This shows that, writing f(p) for the integrand in (16) with E(d, n - d) instead 
E(d, n) and p = p(x) = - l//d, 

(23) f (p(x)) > exp [- {(1 + e) [da/2(2lrxlogdl/2 + - 
d logd]}]. 

Choose now 

a: = x(z) = 2(a-1) - loglogd _ log2ir(2(a -1)- 6) 2log(l + z) 
log d log d log d 
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658 I. BARANY AND Z. FUREDI 

where z is close to zero and 6 > 0 is small enough 2(a - 1) - 6 > 0. Then from 

(20), and (22), (23) 

f (p(x(z))) > exp [-{(1 + e)d[(1 + z)-log(1 + z) + (a-1) logd 
-2 log logd - 2 log(27r(2(a - 1) - 6))] }] 

> exp [-{(1 + e)d [1 + Z2/2 + (a- 1) log d 

-2 loglogd - 1 log(2ix(2(a - 1) - 6))] }]. 

This function is concave between z1 =-1//a and Z2 = 1/v/a. Moreover, 

IP(ZI )-P(Z2)1 > 2/(a-1)dlogd. 

Now we see that (24) holds with e = alog d/d when y = p2(x) from (22) and when 
y d-x/2(2rxxlogd)-1/2 from (20). So we have for d large enough 

| f (p) dp > IP(ZI ) - P(Z2) 1 Z minz f (p(x(z))) - a-1) o 
Z1 <Z?Z2 f((z)?((a - 1)d logd) 

x exp [-d [1 + (a-1)logd 

1 1 112 l 
-2 loglogd-_ log(2ix(2(a - 1) - 6))]] exp{-a log d}. 

Using this in (16) and then in (17) we get the lower bound (9). 
The proofs of (8) and (9) are quite similar and are, therefore, omitted. 
Finally, to prove (12) we use the following well-known fact (see [7], e.g.). There 

is a set X of n points on Sd-I such that the balls x+ 1rBd and y+ 1rBd are disjoint 
(for x, y E X, x 0 y) but the balls x + rBd (x E X) cover Sd-1 and r < n_ 

Then it can be seen that the inscribed ball of convX (with center the origin) 
has radius R and 

R > (1 -r2)/2 

V(d,n) > Rd > (1 - r2)d/2 > (1 - n -2/(d-1))d/2 

When a > 0 and n = dQ(d-1) this gives (12). 
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