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1. The well-known theorem of  RADON [3] says that if A c R  a and IAl=>d+2, 
then there exist B, C c A ,  B ( ~ C = ~  such that conv BNconv  C is not empty.  
i t  is clear that for each finite set A = { a l ,  ..., a,} in R e with n ~ d + 2  one can 
find a linear map f :  Ra+I-*R a and a set A ' =  {a; . . . .  , a~}cR a+l such that f ( a ; )=a l  
i = l ,  2, . . . ,  n and int conv A' is not empty and vert conv A ' = A ' .  In view of  this 
fact, Radon ' s  theorem can be stated in the following way. 

RADON'S THEOREM. Let P e R  a+~ be a convex polytope with non-empty interior. 
Put A =ver t  P. l f  f :  Rd+I-*Ra is a linear map, then there exist two disjoint sets 
B, C c A  such that f ( c o n v B ) N f ( c o n v C )  is non-empty. 

The surprising fact here is that the word "linear" can be replaced by "con-  
tinuous", namely, a continuous analogue of  Radon 's  theorem is true; 

THEOREM 1. Let P c R  a+l be a convex polytope with non-empty interior. Given 
an f :  O P ~ R  a continuous map, there exist two disjoint faces, B and C, of  P such that 
f ( B )  N f ( C )  ~ ~ .  

COROLLARY. Let T be a (d+l)-dimensional simplex. Denote its d-faces by 
d-b2 

L1, L2 . . . .  , La§ I f  f :  OT-~R d is a continuous map, then n f ( L i )  is non-empty._ 
i=1 

I f  f is a linear map, then this statement is an easy consequence (in fact, equiv- 
alent) of  Helly's theorem (see [3]). The interesting fact here is that in this particular 
case a continuous version of Helly's theorem holds true. 

Let us now introduce some notions. Given a convex compact  set C c R  ~§ 
with non-empty interior and a vector aER a+~, a ~ 0 ,  we write 

C(a) = (xE C: <a, x) = max (a, t)}. 
tEC " 

Two points, x and y, of  C are said to be opposite if for some aER d+~, xEC(a) and 
yE C ( - a ) .  I f  C happens to be a polytope, then C(a) is a proper face of  C. In this 
case we say that the two faces C(a) and C ( - a )  are opposite. 

THEOREM 2. Given a polytope P e R  T M  with non-empty interior and a con- 
tinuous map f :  ~ P ~ R  d, there exist two opposite faces, B and C, of  P such that 
f (B)(~f (C)  is non-empty. 

I t  is evident that opposite faces of  P are disjoint. Thus Theorem 2 implies 
Theorem 1. 

Speaking about points instead of faces Theorem 2 can be formulated as follows. 
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THEOREM 2". Given a polytope P e R  a+l with non-empty interior and a con- 
atinuous map f :  OP-+R e, there exist two opposite points, x and y, of P with f ( x ) = f  (y). 

We shall prove this Theorem 2' which yields a generalization of Borsuk's the- 
,orem [1]. In order to state Borsuk's theorem put Sa= {xERn+l: llxlt = 1}. 

BORSUK'S THEOREM. I f  f :  Se-+R d is a continuous map, then there is a point 
xES a with f ( x ) = f ( - x ) .  

THEOREM 3. Let C c R  d+~ be a convex compact set with nonempty interior. I f  
f :  OC-~R ~ is a continuous map, then there exist two opposite points, x and y, of C 
with f ( x ) = f  (y). 

Again, Theorem 3 implies Theorem 2'. However, we shall get Theorem 3 from 
Theorem 2" by a simple continuity argument. 

Further, our Theorem 3 contains Borsuk's theorem (put simply C = c o n v  Sd). 
'On the other hand, Theorem 2' is proved using Borsuk's theorem. 

2. We need a simple proposition. 

PROPOSITION. I f  P is a polytope in R ~ and x, y, x,,E P n= 1, 2, ... and lim x ,= x, 
r there is an 5>0  and N such that x , + a . ( y - x ) C P  for n>N. 

PROOF. This proposition is true for any cone C (instead of P) whose vertex 
is x (with arbitrary 5>0  and n), so it is true for C~B(x ,  6) where B(x, 6) is the 
ball with center x and radius 6. But PNB(x ,  6)=C(~B(x, 6) for a sufficiently 
small 6 > 0  where 

C = {z<Rd: z = x + ~ ( w - x ) ,  2 >  O, wEP} 

is a cone with vertex x. 

PROOV OV THEOREM 2'. Put Q = P - P .  Q is a polytope with non-empty interior. 
It is centrally symmetric with respect to the origin. For xE Q write 

h(x) = max {z: x = z - w ,  z, wEP} 

where max is meant in the lexicographic ordering of R e+l. Clearly h: Q ~ P  is well- 
defined. An easy computation shows that the vector w corresponding to z=h(x)  
equals h ( - x ) .  

We claim that h is continuous. Indeed, let x, x,EQ, x = l i m  x, and x, ,=z,-w,,  
where z,,=h(x,,). We can choose a subsequence n~ so that z,, and, consequently 
w,, converge. Put z = l i m z , ,  and w=limw,,;  clearly x = z - w .  We claim that 
z=h(x) .  I f  not; then z<h(x)  in the lexicographic ordering. By the Proposition, 
for a sufficiently small positive 5 and large i 

z ' =  z , , ,+5(h(x)-z)EP and w' = w,~+5(h( -x ) -w)EP.  

Now z ' - w ' = x , ~  and z '>z, ,  contradicting z,,= h (x,,). This means that z=h(x).  
Thus, every convergent subsequence of z, tends to h(x). Now by compactness 
lim z,=h(x),  i.e., h is continuous. 
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Next we claim that xEQ(a) implies h(x)EP(a) and h ( - x ) E P ( - a ) .  Indeed, if 
x~Q(a) then max(a ,  t)=(a, x}. Of  course, x = h ( x ) - h ( - x )  and h(x), h ( -x )EP.  

t s  " 
Whence 

(a, h (x ) )+(-a ,  h ( -x ) )  = (a, x) = m a x ( a ,  t)  = 
t e l2  

= max (a, u - v )  = m a x ( a ,  u )+ m ax( -a ,  v) 
u, v E P  u E F  

and so h(x)CP(a) and h ( - x ) E P ( - a ) .  This further implies that for xEOQ h(x) 
and h ( - x )  belong to OP. 

Now we define a map g: r a in the following way: for xEOQ let g ( x ) -  
=f(h(x)). This map  is welldefined and continuous. Let us observe now that the 
conditions of  Borsuk's theorem are fulfilled for the map g (instead of  S d we have 
OQ here but this is indifferent). In this case Borsuk's theorem says that there is a 
point xEOQ with g(x)=g(-x)o Now there exists aER d+l, a r  such that x~Q(a). 
Then z=h(x)CP(a) and w = h ( - x ) E P ( - a ) ,  i.e., z and w are opposite points 
c f  P and f ( z ) = f ( h ( x ) ) = g ( x ) = g ( - x ) = f ( h ( - x ) ) = f ( w ) .  And this is what we 
wanted to prove. 

PROOF OF THE COROLLARY, It  is easy to check that if B and C are disjoint faces 
of  the simplex T, then for any i = 1 , 2  . . . .  , d + 2  either BcL~ or CcLi  (or both). 
This fact proves the Corollary. 

PROOF OF THEOREM 3. Without loss of  generality we may suppose that 0Eint C. 
Now let P be a polytope inscribed in C, i.e., vert PccgC and suppose further 

that 0Eint P. Then a continuous m apf~ :  c)P-~R d can be defined as fe(x)=fO.x), 
where 2 is the unique positive number with 2xCOC. By Theorem 2", there are 
opposite points of  P, z e and w e with fe(ze)=fe(wp). 

Now choose a sequence of inscribed polytopes P1, P2, -.. with 0C int P , .  Suppose 

further that vert P, c v e r t  P,,+I and OC~ U P, is dense in OC. Again, for each 
1 

n there exist opposite (for P,) points z, and w, with f,, (z,,) =f~ (w,,) where -~ -  Y,,--fen. 
Since z. and w. are opposite points in P.  there is a vector anc. S d such that 
z, EPn(a,) and w, EP,,(-a,). 

By the compactness of  C and S ~ we may suppose that z,,, w, and G converge, 
their limits are z, w~OC and aC S e respectively. I t  is easy to see that z and w are 
opposite points of  C (with normal a) and f ( z )=f (w) .  

3. REMARKS. 1. Theorem 1 can be interpreted in the following way. Let 
P c R  d+l be a convex polytope with non-empty interior. Then it is not possible 
to make a drawing of  OP in R e so that disjoint faces of  P be disjoint in the drawing. 

2. We can give a second proof  of  Theorem 2 which is more involved than the 
above one but does not make use of  Borsuk's theorem. It  relies on a suitaNy modi- 
fied version of the main lemma of  [2]. 

3. The following generalization of  Theorem 3 holds true. 

THEOREM 4. Let C c R  d+~ be a convex compact set with non-empty interior. 
Let f be a point to set map from OC to the family of all compact convex subsets of  
a compact set of R d. l f f  is upper semi-continuous (i.e., x,,~x, y, Ef(x,), and y,-~y 
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implies y E f ( x ) ) ,  then there exist two opposite points, z and w, of  C with 
f ( z )  (qf(w) ~ ~ .  

This theorem follows f rom Theorem 3 nearly the same way as Kakutani ' s  
fixed-point theorem follows f rom Brouwer 's  one. 

4. We conclude with a conjecture. There is a generalization of  Radon ' s  theorem 
which is due to H. TVERBERG [5]. In  the spirit o f  our  formulat ion o f  Radon ' s  theorem 
this generalization runs as follows: 

THEOREM. Let P c R "  be a convex polytope with non-empty interior. Here 
n = ( r - 1 ) ( d +  1), Given an f :  R " ~ R  d linear map there are disjoint proper faces 

r 

B1, B2 . . . . .  Br o f  P, such that 0 f (B i )  is non-empty. 
i=1  

We think (but can neither prove nor  disprove) that  in this theorem it is enough 
to assume that  f :  O P ~ R  d is a cont inuous map.  
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