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Multi-item capacitated lot-sizing problems are reformulated using a class of valid inequali-
ties, which are facets for the single-item uncapacitated problem. Computational results using
this reformulation are reported, and problems vnth up to 20 items and 13 periods have been
solved to optimality using a commercial mixed integer code. We also show how the valid
inequalities can easily be generated as part of a cutting plane algorithm, and suggest a further
class of inequalities that is useful for single-item capacitated problems.
(INVENTORY/PRODUCTION—LOT SIZING)

The aim of this paper is to present a new approach to the solution of capacitated lot-sizing problems:

/ r
min 2 S (P<Ai + <^u\, + f.O'u)' •*..- -1 + •«,(-= d,, + s,, Vi, /,

/-I (-1

where x,,,Ju represent production level and end stock of item i in period t,y,, 6 {0,1) indicates whether a
set-up cost must be incurred for item / in period r (i.e. jc,, > 0 implies/,, = 1), d,,, p,,,c,,, f,, are the demand,
storage, production and set-up costs respectively, and L, is the machine capacity in period /.

The approach we take is to reformulate ( ^ ) by the addition of strong valid inequalities, with the aim of
obtaining a good approximation of the convex hull of solutions of (^ ) . The reformulated problem is then
tackled using a branch and bound code. This approach has the practical advantage that generally available
(mixed integer) linear programming software can be used, and it remains a valid approach when ( ^ ) , or
variants of ( ^ ) , form part of a more complex production and inventory model.

It is well known that ( ^ ) is a well-solved problem in the constant capacity, single-item case, i.e. when
/ = 1 and L, = L for all r. In particular in the uncapacitated case when L,-+oo for all /, the Wagner-
Whitin algorithm is a well4cnown and efficient solution procedure. The fact that there is an efficient
algorithm suggests on theoretical grounds, see Grotschel, Lovasz and Schrijver (1981), that one can probably
find a useful description of the convex hull of solutions in this special case.

We now briefly describe the contents of this paper. In |1 we describe a class of valid inequalities for the
single-item uncapacitated model. In §2 almost all of the inequalities are then shown to be facets, which
means that any individual inequality cannot be strengthened. What is more, we state a result, proved in a
companion paper (Barany et al. 1983), that the class of inequalities completely describes the convex hull.
This means essentially that no other valid inequalities are needed for this special problem, and it can be
solved by LP.

In S3 we show how inequalities of the class can be very easily generated in a cutting plane procedure. This
leaves one with the choice of either reformulating the probtem initially by adding some or all of the
inequalities, or just generating those that are needed as cutting planes.

In §4 we describe how the valid inequalities for the single-item uncapacitated problem were used to
reformulate the multi-item capacitated problem ( ^ ) . In particular we solve to optimality a variety of
problems with up to 20 items and 13 time periods.
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1. Valid Inequalities for Lot-Sizing Probleiiis

Here we consider the set of feasible solutions to the uncapacitated problem:

s,,

x,,s,>0, y,G{O,l}, / = ! , . . . , 7 }

where d^ denotes ^',=id,. Note that Xj- appears as a substructure of most (capacitated,
hierarchical, etc.) lot-sizing problems.

Below we shall describe a family of valid inequalities for Xj-. It is first worth
noticing that it is possible to eliminate the "stock" variables s, from the description of
Xy, giving the set X^ C R^^ defined by the following inequalities:

'2x,>du, i=l,...,T-l, (1)

^x, = d^j., (2)
( - 1

x,<d,ry,^ i=l,...,T, (3)

x,>0, i=l,...,T, (4)

0 < / , < 1, / = 1, . . . , r, (5)

y, integer, i=\,...,T. (6)

THEOREM 1. For any \ < I < T, L = {I, . . . , / } , and S CL, the inequality

<e5*, + ^i&L\s'^ii}'i > ^11 " « ""^''^ inequality for Xj-, or Xf.

PROOF. Given a point (x, y)B X^, suppose that j , = 0 V/ e L\S. Then

/
2^/+ 2 dtO'.^ "2 xi> dt, as x, = 0 \fieL\S.
ies ieL\s I-l

Suppose on the contrary that k = argmin, {/ e LXS, j , = 1}. Then as before j , = 0
and hence x, = 0 V/ e (L\5) n { 1 , . . . , A: - 1}. Hence

les ieL\s /=!

An alternative way to write the above inequality that is useful computationally is
given by:

COROLLARY. The valid inequality of Theorem 1 can be written as:

<2ieL\sdiiy. + ^i-

PROOF. Substitute J, = 2 ' _ I^ , - ' ^ I / - Q.E.D.

2. Facete for the Single-Itan Umspadtated Lot-Siriog

Here we show that almost all the (l,S) inequalities are facets of conv(A'?), which
means they are necessary if we wish to describe conv(A'f) by a system of linear
inequalities. First we need to consider the dimension of the solution set Xf.
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PROPOSITION 2. If d, > 0, t = I,. . . , T, dim(A'j-) = dim(A'j5) = 2T~2.

PROOF. AS rf, > 0, all points in X^ satisfy both / , = 1 and S L i ^ ; — <̂ i
therefore dim(-yjJ) < 2 7 - 2. We now exhibit 27—1 affinely independent points in
X^. Forj = I,. . ., T, set X, - d,,y, = 1, t <j; Xj = dj-r,yj = 1; x, = j ^ = 0,j > t. For
y = 2, . . . , r , set jc, = </|7-, >>, = 1, yj = I, Xj = 0, X, = y, = 0 otherwise. Q.E.D.

THEOREM 3. If d,>0, t = I,. . . ,T, the (l,S) inequality deftnes a facet of Xj^
whenever l< T, I E S and L\S ^ 0. All these facets are distinct.

PROOF. Let *; = argmin{/G L \S} > 1. Consider first the points on the (/,S)
inequality with x , = 7 , = 0 V / e {A:, . . . , / ) . Consider the problem for periods
\,.. ., k — I with dj' = dj, i = I,. . ., k - 2, d^^^ = d^_\,. By Proposition 2 we obtain
2{k — 1) — 1 affinely independent solutions, {x^, y^) G /?^**"''. Similarly considering
the problem for periods / + 1, . . . , T, we obtain 2{T— I)— 1 affinely independent
solutions ( x | , / | ) G/?^*^~''. Combining these vectors and inserting x,=y, = O, i
G {/t, . . . , / } gives 2 r - 2(/ - A:) - 5 affinely independent solutions {x\,y\,Q,0,x|,

ylf^Ix"-' and (x^7j f ,0 ,0 ,x i , j i )2LV' ) - ' with s, = 0.
We now exhibit two new affinely independent solutions for each y G { ,̂ . . . , / } .

For giveny, we take x, = j , = 0 V/ G {fc, . . . ,j — 1}.
Case 1. j&L\S. Take the solution with Xj = dj,, yj= \, x, = 7 , = 0, i=j +

1, . . . , / and s, = 0, and the solution with x, = 4./+I' / j ~ ' ' ^i-y,- 0. ' =j +
1,. . . , / and s, = <//+1. It is clear how each of these vectors can be extended to a
vector ( x , / ) G A"j;.

Case 2. j G {k,.. ., 1} n S. Take the first solution in the same way as in Case 1.
To get a second solution, take x, = dy, y2= ^^ Xj~^' yj~ ^> ^i~yi~^' t €: L —
{\,j], X, = d,.y,= 1, t > I + 1. A final solution is obtained by modifying the second
solution of Case 1 withy = A: by setting7,+ , = 1.

We have exhibited ( 2 7 - 2(/ - ^) - 5) + 2(/ - A: + 1) + 1 = 2 7 - 2 affinely inde-
pendent solutions, and hence the inequality is a facet.

It is readily seen that none of the inequalities differs just by a multiple of 7, = 1 and
ST-i^i — ̂ iT' and hence the facets are distinct. Q.E.D.

PROPOSITION 4. The inequalities x, < d,jy,,; = 2, . . . , 7, define distinct facets ofXj-
ifd,>O,t=l,...,T.

PROOF. dim{(x, y)e X^:x,=y, = O} = dim(A'*) - 2 if r > 1. This gives 2 7 - 3
affinely independent solutions with x, = / , = 0. Any point with x, = d,j^, y,= 1.7,=
X. = 0, / > t, is independent of these, and hence these 2 7 - 2 points define a facet.

Q.E.D.

PROPOSITION 5. The inequalities y, < I, t = 2,. . ., T, define facets.

Even though it is not strictly necessary for the computational work described below,
the fact that the (/, S) inequalities are facets is something of a guarantee of their value
as cutting planes. It is particularly reassuring if one knows that these are all the facets,
so one can be sure not to be missing some cuts that might be even more effective. The
following result, proved in a companion paper, provides this guarantee.

Let Pr he the polyhedron defined as: { (x , / )G/?^^ satisfying (2), (4), (5) and

2,65^/ + S.eMs^zy, > dit V/ ,S}.

THEOREM (Barany et al. 1983). Pr

This also means that the linear program: max{cx +p:(x,y)e P-j-) always gives
optimal extreme point solutions with y integer, and therefore solves the uncapacitated
lot-sizing problem.
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3. The SqMratioii ProUem for Xf

Given the class of (/, S) inequalities that we have obtained, there appear to be two
obvious ways in which they might be used.

The first is to reformulate the problem a priori by adding some or all of the (/, S)
inequalities in the description of Xj. or A'Jt. This is essentially the approach we take in
§4. If we choose to add all the inequalities, then we have reformulated the problem as:
max{cx+p: (x, y) e Py, / integer}.

The second approach is to introduce the (l,S) inequalities as cutting planes. To
implement this approach we need to solve the "Separation Problem" for Pj-, namely
given a point {x*,y*) S R^^ satisfying (l)-(5), find an (/,S) inequality cutting it off,
or decide that (x*, /*) e Pj^.

The Separation Algorithm

Given (x*, /*) satisfying (1) - (5), for / = 1,. . . , 7, find

5, C L = {1, . . . , /} where / G S, if x^ < d^y^

and / e L\S, if xf > dyy^ .

Check if 'EisL\s,duy* < du- W so, the (/, S,) inequality is violated. Q.E.D.
If no violation has been found, each of the (/, S) inequalities is satisfied, because for

each /,

S ieL\S

Hence {x*, y*) e Pj- by Theorem 6.
This algorithm can obviously be used as part of a very simple cutting plane

algorithm, and note that if one keeps adding cuts, one terminates with an optimal
solution to the linear program: max{CJC +fy:(x,)')e Pj.}.

4. Practical SolutkMis to Lot-Sizing ProMons

Consider now the multi-item capacitated lot-sizing problem, which was formulated
in the introduction as:

min ̂  2 {Pii^ii + .̂r̂ ,v + fij,,) s.t.

where X^ denotes the set of feasible solutions to the uncapacitated problem for item /.
Our earlier results tell us that ( ^ ) can be reformulated as:

min 2 S (Pii^u + f^ii^i, + fiO>u) s.t.
I t

where /"f «= conv(A'f).
Let {jf^') with optimal value Z^^, be the linear programming relaxation of
(-Z"^') can be solved in various ways. The Separation Algorithm of the previous

section provides a cutting plane alg(mthm. Lagrangean relaxation, dualising the
capacity constraints, also leads to the optimal value Z'^^. However, the main points to
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emphasise are:
(i) we obtain a strong lower bound Z ^ ^ by solving ( . / ' ^ ' ) which is impossible with

most of the heuristics used to date;
(ii) the reformulation ( ^ ' ) permits us to solve to optimally some problems that had

previously appeared insolvable.
The approach we have tested computationally is of adding inequalities to the initial

formulation, and then solving the reformulated problem using commercial MIP
software. This avoids the development of any special purpose code.

To illustrate the above, the choice of inequalities to add was made on the following
grounds:

(a) The number of facets is exponential in T, and hence in practice a subset must be
selected.

(b) The relative importance of the facets (in terms of cutting strength) appears to
decrease as k = l—a increases, where a = argminfi" e L \ S } . Therefore the most
important are those with /t = 0.

A: = 0, x, < diy, + .$,, or written differently 2 / - U / + '^O'l > < î/'
j y 4 > i.i

(c) For the problems tested, only inequalities with S = [I, . .., I - k — 1), L\S
= {I — k,. . ., 1} were generated, so that the 2nd inequality for A: = 1 (above) is not
used.

(d) It follows that adding inequalities for k < k*, I[T + (T-I) + • • • + {T~ k*)]
= O{k*IT) inequalities are added.

Both multiple and single item test problems are considered. The multiple item
problems were a set of four 8-item, 8-period problems from Thizy and Van Wassen-
hove (1982), a 20-item, 13-period problem from Dixon and Silver (1981), and some
20-item, 12-period problems from Graves (1982). Both in Thizy and Van Wassenhove
(1982) and Graves (1982) the authors used Lagrangean relaxation. The single item
problems are variations on a problem from Peterson and Silver (1979) with differing
capacities.

All problems were solved on a Data General MV8000 using the SCICONIC mixed
integer programming software. This MV8000 is roughly 6 times slower than an IBM
3033U for this kind of calculation.

The strategy adopted for the 8 X 8 and the 20 X 12 problems was to add inequalities
of the type described above for k < A:*, solve the linear program, drop the inactive
rows, and then carry out branch and bound. For the 20 X 13 problem we demonstrate
the effect of adding the (/, S) inequalities for different values of k*. The computational
results are given in Tables 1, 2, and 3. The number of simplex pivots, the CPU time
and the number of nodes in the branch and bound tree are displayed at four states: at
the LP optimum, at the first integer solution, at the optimal integer solution and at
termination. Both the LP and the Branch and Bound were run using the default
options of SCICONIC.

For the sin^e item uncapacitated problems we know from Theorem 6 that it suffices
to add all the (/, S) inequalities. For th^e problems we examined how large k ^ I — a
needed to be to obtain an integer LP solution. For the single item capacitated
problems, we also added a priori the inequalities described below:

PROPOSITION 8 (Van Roy and Wolsey 1983). / / A = 2 ' - . A - <̂ // > 0. 2'.-»^, +
2 ' - , (A - ><)* (1 -yi) <d,, + s,isa Valid Inequality for Xr O {{x,, y,) :x,<L, \ft},
where (Z )* denote max{Z,O}.

As Table 4 shows, we always obtained integer solutions to the linear program for
these few examples. For some comparative computational results, see Baker et al.
(1978).
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TABLE 4

1X12 Problems (Peterson and Siher 1979)

u

A

B
C
D
E

Capacity

00

150

180
220

[150, 220]
[80, 220J

it*

No
0
1

No
0
1
2
4
3
1
3
3

Rows

37
49
60
37
49
66
80

102
90
65
91

102

Cols.

35
35
35
35
35
35
35
35
35
35
35
35

LP value

140.2
479.8
501.2
576.0
665.1
670.4
670.4
679.2
579.6
527.2
605.2
643.2

pivots sees

24
36
38
28
35
41 1
40
42
55
40 (
52
58

0.5
0.7
9.8
0.5
0.7
3.9
I.I
1.5
1.7
3.9
.6
.9

1st
IP value

501.2
501.2
501.2
703.6
679.2
679.2
679.2
679.2
579.6
527.2
605.2
643.2

total
pivots

39
38
38
36
38
43
41
42
55
40
52
58

total
sees

1.9
1.2
0.8
1.5
1.3
1.4
1.5
1.5
1.7
0.9
1.6
1.9

nodes

17
3
1

10
4
2
2
1
1
1
1
1

5. Conclusions

It appears that the (/, S) inequalities provide a valuable computational tool in the
formulation and resolution of lot-sizing problems, and this should also hold for more
complicated models with embedded lot-sizing problems. However it is clearly impor-
tant to obtain even stronger valid inequahties for the multi-item capacitated problem
that take into account the capacity constraints. Other extensions to include models
with backlogging and multiple stages are under investigation. We are also planning to
test an alternative formulation based on a simple plant location model due to Krarup
and Bilde (1977), which is used in one of our proofs of Theorem 6. This formulation
leads to a model with O{IT^) constraints and variables for the problem ( ^ ) . '

' Research supported by the Projet d'Action Concertee.

BAKER, K. R , P. S. DDCON, M . J. MAGAZINE AND E A. SILVER, "An Algorithm for the Dynamic Lot Size
Problem with Time Varying Production Capacity Constraints," Management Sci., 24, 16 (December
1978), 1710-1720.

BARANY, I., T. VAN ROY AND L. A. WOLSEY, "Uncapacitated Lot-Sizing: The Convex Hull of Sohitions,"
CORE Discussion Paper 8314, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium,
March 1983.

DixoN, P. S. AND E. A. SILVER, "A Heuristic Solution Procedure for the Multi-Item, Single-Level, Limited
Capacity, Lot-Siang Problem," J. Oper. Management, 2, 1 (October 1981), 23-39.

GRAVES, S. C , "Using Lagmngean Techniques to Solve Hierarchical Production Planning Problems,"
Management Sci., 28, 3 (March 1982), 260-275.

GROTSCHEL, M., L. LOVASZ AND A. ScHRUvmi, "The Ellipsoid Method and Its Consequences in Combinato-
rial Optimization," Combinatorica, 1, 2 (1981), 169-197.

KRARLIP, J. AND O. BILDB, "Hant Location, Set Covering and Economic Lot Size: An O(mn) Algorithm for
Structural Problems," in Numerische Methoden bei Optimienmpaufgaben, Band 3: Optimierung bei
grtq^untheoretisdien md ganzztMigen ProbUmen, S<A. 36, Birichauser Vcrlag, Basel and Stuttgart,
1977.

LAMBRBCHT, M . R. MSB H. VANDBtVEKBN, "Heuristics Procedures for the Single Operation, Multi-Item
Loading Problems," AUE Trans., 11, 4 (Decembo' 1979X 319-326.

PETERSON, R. AND E. A. SILVER, Dedaon System for Inventory Management tmd Prmhution Plaming, Wiley,
New Yofk, 1979.

Tiozy, J. M. AND L. N. VAN WASSBAK>VB, "Decompoatimi Algcxithms for Uie Multi-Product Lot-Szing
Problem with Capacity Constraints," Report 82-15, DqM. of Industrial Eagineoing, KathoUdce
Univa:siteit Lcuven, Belgium, 1982.

VAN ROY, T. J. AND L. A. W<MJEV, "Valid Inequalities for Mixed Zero-One Programs," CORE Discussion
Paper 8316, Universite Calholique de Louvain, Louvain-la-Neuve, Belgium, March 1983.






