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DISCRETE CONVEX FUNCTIONS AND PROOF OF 
THE SIX CIRCLE CONJECTURE OF FEJES TOTH 

IMRE BÂRÂNY, ZOLTAN FUREDI AND JANOS PACH 

1. Introduction, results. A system ^of openly disjoint discs in the plane 
is said to form a 6-neighboured circle packing if every C G ^ i s tangent to 
at least 6 other elements of <K (It is evident that such a system consists of 
infinitely many discs.) The simplest example is the regular circle packing 
all of whose circles are of the same size and have exactly 6 neighbours. L. 
Fejes Tôth conjectured that the regular circle packing has the interesting 
extremal property that, if we slightly "perturb" it, then there will 
necessarily occur either arbitrarily small or arbitrarily large circles. More 
precisely, he asked whether or not the following "zero or one law" (cf. [3], 
[6] ) is valid: If ^ i s a 6-neighboured circle packing, then 

inf r(C) _ f 1 if # i s regular 
sup r(C) \ 0 otherwise 

where r(C) denotes the radius of circle C, inf and sup are taken over all 
C G « 

We shall prove this conjecture in the following stronger form: 

THEOREM 1. If &is a 6-neighboured circle packing which is not regular, 
then infCe^ r(C) = 0. 

Given a circle packing % we define a graph G^ = (V<#, E<g) on the vertex 
set V<#\ = ^ a s follows: C, C G # are joined by an edge (i.e., CC G E&) 
if and only if C and C are tangent. 

Now let G = (K, E) be an arbitrary graph. For any x G V, let TG(x) 
denote the set of all neighbours of x. That is, 

rc(*) = {y e v\ xy G E}. 

A function/: V —» R is called convex (or subharmonic) on G if 

• r , ,i 2 f(y) =f(x) for every x G K 

Any convex function defined on a connected finite graph is obviously 
constant. It is somewhat more surprising (but still easily seen) that every 
convex function on e.g. the rectangular lattice in the plane has either 
arbitrarily large positive values, or it is again constant (see [2] ). This 
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observation inspired our proof of Theorem 1, though we will not rely upon 
it in what follows. 

Our next theorem states that if ^ i s a 6-neighboured circle packing then 
the function r _ 1 (C) , (C <E fé) is convex on the graph G% defined above. 

THEOREM 2. Let C be a disc of radius r(C) which is tangent to at least 6 
non-overlapping discs Cj, . . . , C^ (k = 6). Then 

12 
A• , j 

k , r , lid) r{C) 

with equality if, and only if k = 6, r(C) = r(C\) = . . . = f(Q-). 

A graph G = (F, E) is called locally finite if every x <E V has only 
finitely many neighbours in G, i.e., IT^JC) | < oo. We need the following 
general result on convex functions: 

THEOREM 3. Let G = (V, E) be a locally finite graph, fV^Ra convex 
function on G. Assume further that XQVO

 e E,f(xo) = 0 , / ( Vo) = U and let 
Vj denote the set of those points in G which can be reached from y$ by a 
monotone increasing path of length at most /, i.e., 

V,: = {y e V 

Then, for every natural number n, we have 

3 Vj, . . . ,yj-\ G V such that j = /', 
yoyuy\y2, • • -,yj-\y G E and 

f(y0) S/(>>,) =i . . . ^f(y)}. 

(1) max/(x) ^ 1 + 2 — , 
x^Vn i = l l^ / l 

£ , ! = {wv €E £ | M G F , - - ! , V e F / X K y - i , / ^ ) â / ( v ) }, 1 =i / =i rt. 

We close this section by showing how Theorem 1 follows from the last 
two results. 

Let ^ be a 6-neighboured circle packing, G% = (V<#, E<#) the 
corresponding graph defined above. If ^ i s the regular circle packing then 
there is nothing to prove. Hence, we may suppose without loss of 
generality that there are two tangent discs C", C" e fé7 = V^ such that 
r{C) > r(C"). Our Theorem 2 implies that 

/ ( C ) : = (_L_ - _ ! _ ) / ( _ ^ _ - - ^ j , C e ^ 
y v 7 Vr(C) /-(C)/ V/-(C") r (C ' ) / 

is a convex function on G^ which meets the conditions of Theorem 3 with 
x0 = C", Vo = C". Thus, for every natural n, we get (1). 
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Suppose now, in order to obtain a contradiction, that 

inf c e^ r(C) = € > 0 . 

Since all elements of Vx are covered by a circle of radius r{C")i around the 
centre of C", we have 

\Vt\ ^ [r{C")/t\ i2, for every/. 

On the other hand, G^is a planar graph, thus any subgraph of G<$ contains 
at most 3 times more edges than vertices. This yields 

(2) 2|£yl ^ 3|F,| ë 3 ( ^ P ) 2 / 2 (Vi). 

The following easy technical lemma is a simple special case of 
Karamata's inequality (cf. [1], [5] ). 

LEMMA. Let e\, . . . , en and A be positive numbers satisfying 

ZJ e,- = Ai for every i = 1, . . . , n. 

Then 

2 - > (log«)/(2^). 

Hence (2) implies 

(2,) ,1, wr^)Xogn-
Putting (1) and (2') together we obtain 

lim m a x / ( x ) = oo 

which is tantamount to in f C e #r (C) = 0, a contradiction. 

2. Proof of theorem 2. We may assume without loss of generality that C 
is exactly surrounded by the discs Cj, . . . , Q : i.e., each Q is tangent to C, 
C/_i and C;+i (where the subscripts are taken modulo k). Let O and (9, 
denote the centers of C and C, (/' = 1, . . . , /c), respectively, and let 
Z OtOOi+\ = <pz. We are going to show that 

(3) _ L + — i _ ^ _ L ( t a n ^ + c o t ^ - 2 ) , i=l,...,k. 
/•(Q) /-(C, + 1) r(C) V 4 4 / ' 

Let us have a closer look e.g. at the discs C, C\ and C2. Let P denote the 
centre of the circle D inscribed in A 00\0^ and put Z 00\P = a, 
Z OQ2p = 0. Then we have 
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CONVEX FUNCTIONS 573 

r(D) r(D) a + fi 
—— + ——- = tana + tan/? â 2 tan—-— 
r{Cx) r(C2) 2 

(1 - t a n ^ ) 2 

= 2 tan = tan — • 
4 2 . <P\ 

t a n - 1 

4 
= ^ ( t a n ^ + c o t ^ _ 2 ) , 

r(C) V 4 4 / 

as required. 
Summing up (3) for /' = 1, . . . , k and using Jensen's inequality, we 

obtain 

2 2 — è — I ( t a n ^ + c o t ^ - 2 ) 
t \ r(C) r(C) & V 4 4 / 

( 77 77 \ _ 2k 

Un2k + cot2k-2)=7(c-y 

k 
7(C) \ 2k ~~~ 2£ " / ~ r(Cy 

for /c ^ 6. This completes the proof. 

3. Proof of theorem 3. Throughout this section n will be kept fixed, 

M: = m a x l G l / H / ( i ) . 

Define a subgraph G = ( F , £') ç G by 

F : = Vn U {x0} 

F : {uv G E\ u, v e K„} U {x^o}-

We turn (7 into a digraph G' = ( F , £') by supplying its edges with the 
following orientation: (a) If uv e E and/(w) < / (v) , then let ï/v e £. 
(b) Every edge belonging to Et Q E will be directed from F7-_i to F,, /' = 
1, . . . , « . (c) Any further edge uv e E (with/"(w) = / (v) ) can be directed 
arbitrarily. 

Note that if wv <= £ ' for some w e F Z _ 2
 a n d v G V\Vi-\> then/(w) is 

necessarily larger than/(v) , consequently uv £ En and ~vu e £'. 
Let J^denote the class of all functions <p: F —» R satisfying the following 

three conditions: 

(i) <p(x0) = 0. 
( i i ) / (x) ^ v(x) ^ M for every x e F . 
(iii) There exists a digraph G" = (V, E") Q G such that x0yo 

G 2?" ç E\ <p(u) ^ <p(v) for every uv e £", and 
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(4) 1 
IT, , ,i 2 <p(y) = <P(X) f o r e v e r y x Œ vn-\-

Here G" denotes the graph obtained from G" by ignoring the orientation 
of the edges, and TG»(x) is, as usual, the set of neighbours of x in G". 

We clearly have / G J ^ T O see this, it suffices to show that <p = /satisfies 
(iii) with G": = G'. But this follows immediately from the fact that, if x G 
Kn_,, then/(.y) < f(x) for every ^ G r c ( x ) \ r c < x ) . 

Le t / 0 be a maximal element of ^ and let GQ = (V\ EQ) denote the 
corresponding digraph in (iii). (The existence of a maximal element is 
obvious, e.g. by compactness arguments.) Next we prove tha t / 0 satisfies 
(4) with equality at every (non-isolated) vertex x G Vn-\. That is, 

(5) ïïï-Tlï 2 My) = fi*) (x e F„_,,rc;;(x)^ 0). 
\TGS(x)\ ,erc»(.v) 

Assume indirectly that, for some x e F„_i, the left-hand side of (5) is 
strictly larger than the right-hand side. Set 

F: = {xz e m0(x) = / o ( z ) } , 

f(t). = ffdt) i f ^ 
U)- \Ux) + e if t = 

If € > 0 is sufficiently small, t h e n / and G": = (V, EQ\F) meet all the 
conditions (i), (ii) and (iii), contradicting the maximum property of/) . 

Now \etf0(xy)': = fo(y) — fo(x) for every xy G £#, and observe that (5) 
is equivalent to 

(5') 2 . /o(*y) = 2 ^ fo(vx) ( V i G Kw_0. 
.V V G £(') VX G EQ 

Hence, in another terminology we can say that GQ is a network (with 
one source x0 and some sinks in Vn\Vn-\), and assigning the value JQ(UV) 

^ 0 to each edge uv G EQ we obtain a flow. (Note that there can not be 
any source in Vn\Vn-\, because fo(x) = M for every x G Vn\Vn-\.) 

Since the flow value disappearing at the sinks is equal to the value 
entering our network, we have 

(6) 2 2 ^ To(xy) =fo(xoyo) =fo(yo)-

Further, it is obvious that every edge of positive flow value leaving Vt-\ 
belongs to En thus 

(7) 2 ^ 7o(x) ^ foOcm) = fo(yo), i = 1 , . . . , «. 
xy G EQ 
xv e £.• 
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Hence it follows by (6) that 

2 Œ(y)-Mx))2= 2 fdiy) 2 (My)-M*)) 
xy^E'i yeV x<=rG»(y) 

= 2 My) 2 ( / 0 W - / 0 W ) 

= 2 M 2 . fo(xy) = M/o(j0). 

On the other hand, applying (7) and Jensen's inequality, we obtain 

2 (My) - M*) )2 = (Myo) - M*o) ? + 2 2 . fl(xy) 
xy^EQ I=\ XV^EQ 

xy G Ej 

:/o<*>)+2 /o(j;o) 

,~i l£o'n£,l 

Now using the fact that/0(Jo) = f(yo) = 1, ( 1) immediately follows. 
This completes the proof of Theorem 3. 

4. Remarks and acknowledgement. We would like to express our 
gratitude to L. Fejes Tôth and N. Dolbilin for their valuable comments 
and suggestions. 

Special thanks are due to I. Vincze who has considerably simplified our 
first proof of Theorem 2. Our original argument, however, established also 
the following result: 

THEOREM 4. Let C, Ch . . . , Ck (k §= 3) be non-overlapping discs in the 
plane, and suppose that C is exactly surrounded by Cj, . . . , C^ (see Section 
2). Further, let \n\ ^ 100. Then 

k i = \ \ 1 — sm(777/c) / 

with equality if and only if r(C\) = . . . = r ( Q ) . 
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The proof can be omitted here, since L. Fejes Tôth [4] has recently 

managed to prove the same assertion for all n ^ 1. 

Added in proof. We thank Adrian Bondy for calling our attention to a 
result of C. St. J. A. Nash-Williams: Random walk and electric current in 
networks (Proc. Cambridge Philos. Soc. 55 (1959), 181-199) which is 
closely related to our Theorem 3. 
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