Helly type theorems for the sum of vectors in a normed plane

Imre Bárány ${ }^{\mathrm{a}, \mathrm{b}}$, Jesús Jerónimo-Castro ${ }^{\mathrm{c}, *}$
${ }^{\text {a }}$ Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary
b Department of Mathematics, University College London, Gower Street, London
WC1E 6BT, England, United Kingdom
c Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, C.P. 76010, Querétaro, Mexico

A R T I C L E I N F O

Article history:

Received 2 October 2013
Accepted 17 November 2014
Available online xxxx
Submitted by R. Brualdi

$M S C$:

52A10
52A35
52A40
Keywords:
Unit vectors
Helly type theorem
Centrally symmetric sets
Normed planes

A B S T R A C T

The main results here are two Helly type theorems for the sum of (at most) unit vectors in a normed plane. Also, we give a new characterization of centrally symmetric convex sets in the plane.
© 2014 Elsevier Inc. All rights reserved.

1. Main results

This paper is about the sum of vectors in a normed plane. We fix a norm $\|$.$\| in \mathbb{R}^{2}$ whose unit ball is B; so B is a 0 -symmetric convex body. There are some interesting

[^0]results about sums of unit vectors in normed planes. For instance, it is proved by Swanepoel in [5] (and reproved later in [1]) that for every subset $V=\left\{v_{1}, \ldots, v_{n}\right\} \subset B$ of unit vectors, with n an odd number, we may choose numbers $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ from $\{1,-1\}$ such that $\left\|\sum_{v_{i} \in V} \epsilon_{i} v_{i}\right\| \leq 1$. This time we are interested in unit vectors whose sum has length at least 1.

We write $u \cdot v$ for the usual scalar product of $u, v \in \mathbb{R}^{2}$ and $[n]$ for the set $\{1,2, \ldots, n\}$. Here comes our first result.

Theorem 1. Assume $n \geq 3$ is an odd integer and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{2}$ is a set of unit vectors. If $u \cdot v_{i} \geq 0$ for every $i \in[n]$ with a suitable non-zero vector $u \in \mathbb{R}^{2}$, then

$$
\left\|v_{1}+v_{2}+\ldots+v_{n}\right\| \geq 1
$$

Here and in what follows we can assume that V is a multiset, that is, $v_{i}=v_{j}$ can happen even if $i \neq j$. Perhaps one should think of V as a sequence of n vectors from \mathbb{R}^{2}.

In accordance to the celebrated Helly's theorem (see [3]), results of the type "if every m members of a family of objects have property P then the entire family has the property P " are called Helly-type theorems. Our main results are two unusual Helly type theorems whose proof uses Theorem 1. For information about Helly type results the reader may consult [4].

Theorem 2. Assume $n \geq 3$ is an odd integer and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset \mathbb{R}^{2}$ is a set of unit vectors. If the sum of any three of them has norm at least 1 , then

$$
\left\|v_{1}+v_{2}+\ldots+v_{n}\right\| \geq 1
$$

Theorem 3. Assume $n \geq 3$ is an odd integer and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset B$. If the sum of any three elements of V has norm larger than 1 , then

$$
\left\|v_{1}+v_{2}+\ldots+v_{n}\right\|>1
$$

To our surprise Theorem 3 fails in the following form: If $V \subset B,|V|$ is odd, and the sum of any three of its elements has norm at least 1 , then $\left\|v_{1}+v_{2}+\ldots+v_{n}\right\| \geq 1$. The example is with the max norm and the vectors are $v_{1}=(1,1), v_{2}=(-1,1)$, and $v_{3}=v_{4}=v_{5}=(0,-1 / 2)$. This is also an example showing that Theorem 2 does not hold if we require $V \subset B$ instead of $\left\|v_{i}\right\|=1$ for all i.

Note that in these theorems n has to be odd. Indeed, let w_{1} and w_{2} be two antipodal unit vectors. Set $n=2 k, v_{1}=\ldots=v_{k}=w_{1}$ and $v_{k+1}=\ldots=v_{n}=w_{2}$. The conditions of Theorems 1 and 2 are satisfied (except that n is even now) but $\left\|v_{1}+v_{2}+\ldots+v_{n}\right\|=0$. A minor modification of this example shows that n has to be odd in Theorem 3 as well. Namely, let the segment $\left[z_{1}, z_{2}\right]$ be a Euclidean diameter of B, and choose w_{1}, w_{2} very close to z_{1}, z_{2} so that $w_{1}+w_{2}$ has norm $<1 / k$ and is orthogonal to z_{1}. This is clearly possible. Then with $n=2 k, v_{1}=\ldots=v_{k}=w_{1}$ and $v_{k+1}=\ldots=v_{n}=w_{2}$ the conditions of Theorem 3 are satisfied but $\sum_{1}^{n} v_{i} \in B$.

For simpler writing let $\binom{[n]}{k}$ denote the set of all k-element subsets of $[n]$, and given $S \in\binom{[n]}{k}$ define

$$
\sigma(S, V)=\sum_{i \in S} v_{i}
$$

and we call it a k-sum of V. Note that $\sigma(\emptyset, V)=0$ by definition. Theorem 3 has the following immediate

Corollary 1. Assume $n \geq 5$ is an integer, $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \subset B, k \in[n]$ is odd and $k>3$. If every 3 -sum of V is outside B, then so is every k-sum of V.

Theorems 1 and 2 have similar corollaries and the interested reader will have no difficulty stating or proving them.

We close this section with a neat proof of Theorem 1 for the case of the Euclidean norm. The method (unpublished) is due to Boris Ginzburg who used it for the Euclidean case of Theorem 1 from [1].

We may assume w.l.o.g. that $u=(0,1)$. The proof is in fact an algorithm that produces a sequence $V=V_{0}, V_{1}, \ldots, V_{n}$ of sets of n unit vectors, satisfying $u \cdot v \geq 0$ for all $v \in V_{i}$, $i \in[n]$ so that the norm of $s_{i}=\sum_{v \in V_{i}} v$ decreases as i increases and $\left\|s_{n}\right\| \geq 1$. Call an element $v \in V_{i}$ fixed if it equals $(1,0)$ or $(-1,0)$, and let F_{i} be the set of fixed elements in V_{i}, and let $M_{i}=V_{i} \backslash F_{i}$ be the set of moving elements in V_{i}.

At the start $V=V_{0}=M_{0}$ and $F_{0}=\emptyset$. Assume V_{i} has been constructed, and set $f_{i}=\sum_{v \in F_{i}} v$ and $m_{i}=\sum_{v \in M_{i}} v$. One can rotate the vector m_{i} so that $\left\|f_{i}+m_{i}\right\|$ decreases during the rotation (because of the cosine theorem). We rotate m_{i} in this direction, together with all vectors in M_{i} as long as one of its elements, say v^{*}, reaches $(1,0)$ or $(-1,0)$. Let M_{i}^{*} be this rotated copy of M_{i}. Define $M_{i+1}=M_{i}^{*} \backslash\left\{v^{*}\right\}$ and $F_{i+1}=F_{i} \cup\left\{v^{*}\right\}$. We indeed have $\left\|s_{i}\right\| \geq\left\|s_{i+1}\right\|$. By construction $V_{n}=F_{n}, M_{n}=\emptyset$ and $\left\|f_{n}\right\|$ is an odd integer, so $\left\|s_{n}\right\|=\left\|f_{n}\right\| \geq 1$.

2. Proof of Theorem 1

Proof of Theorem 1. We assume again that $u=(0,1)$. Let $n=2 k-1$ and let $v_{1}, \ldots, v_{2 k-1}$ be our unit vectors in clockwise order on the boundary of B in the upper halfplane. Let w_{1} and w_{2} be two unit vectors on the horizontal line through 0 with w_{1} to the left of the origin 0 . The tangent line L to B at v_{k} bounds the half-plane H, the one not containing the origin. Set $s=v_{1}+\ldots+v_{2 k-1}$.

Let ℓ be the line through 0 and v_{k}. For $v \in \mathbb{R}^{2}$ let v^{\prime} be the signed length of its projection in direction L onto ℓ, that is, v^{\prime} is positive if v^{\prime} has the same direction as v_{k} and negative otherwise. Since the projection of the sum of vectors is equal to the sum of their projections, it suffices to prove that

$$
v_{1}^{\prime}+v_{2}^{\prime}+\ldots+v_{2 k-1}^{\prime} \geq 1
$$

as this implies $s \in H$ and so $\|s\| \geq 1$. We have that $v_{k}^{\prime}=\left\|v_{k}\right\|=1$ and

$$
\begin{aligned}
v_{1}^{\prime}+\ldots+v_{k-1}^{\prime} & \geq(k-1) w_{1}^{\prime} \\
v_{k+1}^{\prime}+\ldots+v_{2 k-1}^{\prime} & \geq(k-1) w_{2}^{\prime}
\end{aligned}
$$

As $w_{1}^{\prime}+w_{2}^{\prime}=0$, the proof is now complete.
Remark 1. Using this proof the case of equality can be characterized but the conditions are clumsy. The case when the boundary of B contains no line segment is simple: equality holds iff $(n-1) / 2$ of the v_{i} are equal to some unit vector v and another $(n-1) / 2$ are equal to $-v$. This follows easily from the proof above.

We mention further that replacing the condition $u \cdot v_{i} \geq 0$ by $u \cdot v_{i}>0$ for every $i \in[n]$ in Theorem 1 does not imply $\left\|v_{1}+v_{2}+\ldots+v_{n}\right\|>1$. For instance when $\|\cdot\|$ is the max norm and $v_{1}=\ldots=v_{k}=(-1, \varepsilon)$ and $v_{k+1}=\ldots=v_{2 k-1}=(1, \varepsilon)$ and $\varepsilon>0$ is small enough, $\|s\|=1$ although $u \cdot v_{i}>0$ for all i.

Remark 2. Theorem 1 has no analogue in dimension 3 and higher. For the example showing this let B be the Euclidean unit ball in \mathbb{R}^{3}, let L be a plane at distance ε from the origin with unit normal u, and let P_{n} be a regular n-gon inscribed in the circle $L \cap B$, with vertices v_{1}, \ldots, v_{n}. It is clear that $u \cdot v_{i}>0$ for all $i \in[n]$ but $\sum_{1}^{n} v_{i}=\varepsilon n u$ whose norm is as small as you wish. The parity of n does not matter.

Remark 3. The following is a direct consequence of Theorem 1: let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a set of unit vectors in a normed plane. Then it is always possible to choose numbers $\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{n}$ from $\{1,-1\}$ such that for every subset $W \subset V$ of odd size, we have that $\left\|\sum_{v_{i} \in W} \epsilon_{i} v_{i}\right\| \geq 1$.

3. Proof of Theorem 2

We need some preparations before the proof. We start with a small piece from Euclidean plane geometry. Let a, b, c be distinct unit vectors in the Euclidean plane and define $\triangle=\operatorname{conv}\{a, b, c\}$. It is well known that $h=a+b+c$ is outside \triangle (indeed, outside the unit circle) if the triangle is obtuse, and is inside \triangle if the triangle is acute. (We ignore right angle triangles here.) This is equivalent to saying that $h \in \triangle$ iff $0 \in \triangle$ since \triangle is acute or obtuse depending on whether $0 \in \triangle$ or not.

Is this statement true for any norm in \mathbb{R}^{2} ? As we see from the following lemma the answer is yes.

Lemma 4. Assume $a, b, c \in \partial B$ and set $\triangle=\operatorname{conv}\{a, b, c\}$. Then $0 \in \triangle$ if and only if $h=a+b+c \in \triangle$.

Proof. If $0 \notin \triangle$, then by separation there is a vector u such that $u \cdot a, u \cdot b, u \cdot c>0$. Theorem 1 with $V=\{a, b, c\}$ applies and shows that $h \notin \operatorname{int} B$. As int $\triangle \subset \operatorname{int} B, h \in \triangle$
implies $h \in \partial \triangle$, say $h \in[a, c]$. Then $a+b+c=t a+(1-t) c$ for some $t \in[0,1]$ and so

$$
\frac{1-t}{2} a+\frac{1}{2} b+\frac{t}{2} c=0
$$

a convex combination of a, b, c, showing that $0 \in \triangle$. So indeed, $h \notin \triangle$. We remark here for later use that $h \in \partial \triangle$ implies that 0 is on the boundary of the medial triangle of \triangle (because the coefficient of b is $1 / 2$ above).

Assume next that $0 \in \triangle$. Since 0 is the center of the unit ball, it must be contained in the medial triangle of \triangle, that is, $0=\alpha\left(\frac{b+c}{2}\right)+\beta\left(\frac{a+c}{2}\right)+\gamma\left(\frac{a+b}{2}\right)$, with $\alpha, \beta, \gamma \in[0,1]$ and $\alpha+\beta+\gamma=1$. We have that

$$
0+\frac{\alpha}{2} \cdot a+\frac{\beta}{2} \cdot b+\frac{\gamma}{2} \cdot c=(\alpha+\beta+\gamma)\left(\frac{a+b+c}{2}\right)=\frac{a+b+c}{2}
$$

then $a+b+c=\alpha a+\beta b+\gamma c$, that is, $h=a+b+c \in \triangle$.

Proof of Theorem 2. We assume first the extra condition that V contains no antipodal pair of points. For distinct $i, j, k \in[n]$, the vector $h=v_{i}+v_{j}+v_{k}$ is not in int B. Then, as $\triangle=\operatorname{conv}\left\{v_{i}, v_{j}, v_{k}\right\} \subset B, h \notin \operatorname{int} \triangle$. So either $h \notin \triangle$ for all i, j, k or $h \in \partial \triangle$ for some $i, j, k \in[n]$.

Assume first that $h \notin \triangle$ for all $i, j, k \in[n]$ which is the simpler case. Then $0 \notin \triangle$ follows from Lemma 4. Carathéodory's theorem (see [2]) shows that $0 \notin$ conv V, too. By separation, there is a vector $u \neq 0$ with $u \cdot v>0$ for every $i \in[n]$. Theorem 1 applies and gives $\left\|v_{1}+\ldots+v_{n}\right\| \geq 1$.

So we are left with the case when $h \in \partial \triangle$ for some $i, j, k \in[n]$. For simpler writing set $a=v_{i}, b=v_{j}, c=v_{k}$ and suppose $h \in[a, c]$ as in the proof of Lemma 4. As $h \notin \operatorname{int} B$ and $\triangle \subset B$, we have $h \in \partial B$. Thus $a, h, c \in \partial B$. As $h=a$ (resp. $h=c$) would imply $b+c=0$ (and $a+b=0$), the whole segment $[a, c]$ is contained in ∂B. Now let ℓ be the line through a and c and set $L=\ell \cap B . L$ is a segment on the boundary of B and so is $-L$. If every v_{i} is contained in $L \cup-L$, then $\sum_{1}^{n} v_{i}$ cannot be between in the strip delimited by ℓ and $-\ell$ as n is odd. Suppose now that some $v_{i} \notin L \cup-L$ and let L^{\prime} be the chord of B parallel with ℓ and containing v_{i}, see Fig. 1.

Here L^{\prime} is at least as long as L, while $a+b$ and $c+b$ are parallel with ℓ, they point in opposite directions, and both are shorter than L (because 0 is in the relative interior of the medial segment $[(a+b) / 2,(c+b) / 2])$. Consequently either $v=v_{i}+a+b$ or $v=v_{i}+c+b$ lies in int B, and so one of them has norm less than one. A contradiction.

The general case goes by induction on n. The starting case $n=3$ is trivial. In the induction step $n-2 \rightarrow n$ (when $n \geq 5$) $V=\left\{v_{1}, \ldots, v_{n}\right\}$ either satisfies the extra condition and we are done, or V contains an antipodal pair, v_{n-1}, v_{n} say. By induction, $\left\|v_{1}+\ldots+v_{n-2}\right\| \geq 1$, and the equality $\sum_{1}^{n} v_{i}=\sum_{1}^{n-2} v_{i}$ finishes the proof.

Fig. 1. If $h \in \partial \triangle$ then v is contained in int B.

Remark 4. Theorem 2 has no direct analogue in \mathbb{R}^{3}. For instance if V is the set of vertices of a regular tetrahedron centered at the origin and inscribed in the Euclidean unit ball, then every triple sum has (Euclidean) norm 1 yet the sum of the vectors is zero. A second example is when u is a unit vector in $\mathbb{R}^{3}, v_{1}, v_{2}, v_{3}$ are the vertices of a regular triangle in the plane orthogonal to u and center at u and $v_{i+3}=v_{i}-2 u(i=1,2,3)$, $V=\left\{v_{1}, \ldots, v_{6}\right\}$ and $B=\operatorname{conv}\left\{ \pm v_{1}, \ldots, \pm v_{6}\right\}$. The sum of any three vectors from V has norm at least one but $\sum_{1}^{6} v_{i}=0$. The same example works for Theorem 3, this time every 4 -sum has norm larger than one but $\sum_{1}^{6} v_{i}=0$ again.

4. Preparations for the proof of Theorem 3

We need a lemma about 6 vectors in the plane.
Lemma 5. Assume $z_{1}, \ldots, z_{6} \in B$ and $\sum_{1}^{6} z_{i}=0$. Then there are distinct i, j, k with $z_{i}+z_{j}+z_{k} \in B$.

Proof. Assume for the time being that there are two linearly independent vectors among the z_{i}. We will deal with the remaining case soon. Define $D=\operatorname{conv}\left\{ \pm z_{1}, \ldots, \pm z_{6}\right\}, D$ is a 0 -symmetric convex polygon with at most 12 vertices. Clearly $Z=\left\{z_{1}, \ldots, z_{6}\right\} \subset D$ and $D \subset B$. This implies that it suffices to prove Lemma 5 when $B=D$.

Let vert D denote the set of vertices of D. We distinguish two cases:

Case 1. When $|Z \cap \operatorname{vert} D|=2$. Then D is a parallelogram with vertices $a, b,-a,-b$ where $a, b \in Z \cap \operatorname{vert} D$. As the assumptions and statement of the lemma are invariant under a non-degenerate linear transformation we may assume that $a=(1,1)$ and $b=(-1,1)$. This is in fact the case of the max norm. We need the following

Claim 1. If the sum of real numbers z_{1}, \ldots, z_{6} is zero and all of them lie in $I=[-1,1]$, then there are at least 12 distinct triplets among them whose sum lies in I as well.

Fig. 2. There is a point $c=\left(c_{1}, c_{2}\right) \in Z \cap$ vert D with $c_{1} \in(-1,1)$ and $c_{2}>1$.

The proof is postponed to Section 6. We note first that Claim 1 justifies our assumption about the existence of two linearly independent vectors among the z_{i}. Indeed, if all the z_{i} are on a line through the origin, then they can be thought of as real numbers. Claim 1 says then that there are three among them with the required property (actually, 12 such triplets).

We show next how the claim finishes Case 1 . Both the first and the second components of the z_{i} satisfy the conditions of Claim 1 . So there are 12 triplets whose first component, and 12 further triplets whose second component, sum to a number in I. As there are 20 triplets altogether, there is a triplet whose first and second components sum to a number in I, that is, there are distinct i, j, k with $z_{i}+z_{j}+z_{k} \in D$.

Case 2. When $|Z \cap \operatorname{vert} D| \geq 3$. If there are $a, b, c \in Z \cap \operatorname{vert} D$ such that $a+b+c \in D$, then we are done. Otherwise Lemma 4 (together with Carathéodory's theorem) says that $0 \notin \operatorname{conv}(Z \cap \operatorname{vert} D)$. So we may assume that every point of $Z \cap \operatorname{vert} D$ is in the open upper halfplane. Let a be the first and b be the last vertex as we walk around ∂D in the upper halfplane in anticlockwise direction. By a non-degenerate linear transformation we can achieve $a=(1,1)$ and $b=(-1,1)$. Clearly, $[a,-b]$ and $[b,-a]$ lie on ∂D. Note that there is $c=\left(c_{1}, c_{2}\right) \in Z \cap \operatorname{vert} D$, different from a, b implying that $c_{1} \in(-1,1)$ and $c_{2}>1$ (see Fig. 2).

For simpler writing let u_{1}, u_{2}, u_{3} be the z_{i} distinct from a, b, c. We are going to show that $a+b+u_{i} \in D$ for some i. Otherwise $u_{i} \notin D-a-b$ for all i. In other words, $u_{1}, u_{2}, u_{3} \in D \backslash(D-a-b)$. It is easy to see that the second component of every vector in $D \backslash(D-a-b)$ is larger than -1 . Thus the second component of $u_{1}+u_{2}+u_{3}$ is larger than -3 . The second component of $a+b+c$ is $2+c_{2}>3$. This contradicts the assumption $z_{1}+\ldots+z_{6}=0$.

To close this section we prove Theorem 3 in the case when V does not contain two linearly independent vectors. In this case V can be thought of as real numbers x_{1}, \ldots, x_{n}
with $x_{1} \geq \ldots \geq x_{n}$. By symmetry and scaling we may assume that $x_{1}=1 \geq\left|x_{n}\right|$ and $B=[-1,1]$. There is nothing to prove if $x_{n} \geq 0$. Also, $x_{1}=-x_{n}$ is impossible since then $x_{1}+x_{2}+x_{n}=x_{2} \in B$, contrary to the conditions. Thus $x_{1}+x_{n}>0$ and $x_{n-1}>0$ as otherwise $x_{1}+x_{n-1}+x_{n} \in B$. Consequently $x_{1}+\ldots+x_{n} \geq x_{1}+x_{n-1}+x_{n}>1$.

5. Proof Theorem 3

The result is trivially true for $n=3$. Next comes the case $n=5$: Set $z_{i}=v_{i}$, $i=1,2,3,4,5$ and $z_{6}=-\left(v_{1}+\ldots+v_{5}\right)$. If $\left\|z_{6}\right\| \leq 1$ were the case, then Lemma 5 implies that a 3 -sum, $z_{i}+z_{j}+z_{k}$ say, lies in B. This contradicts the condition if z_{6} is not present among z_{i}, z_{j}, z_{k}. But if it is, then the complementary 3 -sum goes without z_{6}, and its norm equals $\left\|z_{i}+z_{j}+z_{k}\right\| \leq 1$, a contradiction again.

Assume now that the theorem fails and let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be a counterexample with the smallest possible n and let B be the unit ball of the corresponding norm. Here $n \geq 7$ clearly and V contains two linearly independent vectors. Define $v_{0}=\sum_{1}^{n} v_{i}$. Then $D=\operatorname{conv}\left\{ \pm v_{0}, \pm v_{1}, \ldots, \pm v_{n}\right\}$ is a 0 -symmetric convex body (actually a convex polygon) that is the unit ball of a norm $\|\cdot\|$. As $D \subset B, V$ is a counterexample with this norm. This means that $\left\|v_{i}\right\| \leq 1$ for all $i=0,1, \ldots, n$ and all 3 -sums have norm >1. From now on we keep this norm fixed and consider V a counterexample with this norm.

We choose $\lambda<1$ but very close to 1 so that $\lambda v_{1}, \ldots, \lambda v_{n}$ is still a counterexample, this time with $\left\|\sum_{1}^{n} \lambda v_{i}\right\|<1$. By continuity there is an $\varepsilon>0$ so that if $\left\|u_{i}-\lambda v_{i}\right\|<\varepsilon$ for all $i \in[n]$, then $U=\left\{u_{1}, \ldots, u_{n}\right\}$ is still a counterexample meaning that $\left\|u_{i}\right\|<1$ for all $i \in[n],\|\sigma(S, U)\|>1$ for all $S \in\binom{[n]}{3}$, and $\left\|\sum_{1}^{n} u_{i}\right\|<1$. Here of course $\sigma(S, U)$ stands for $\sum_{i \in S} u_{i}$.

Claim 2. One can choose U so that for all $S \in\binom{[n]}{3}$ and all $T \in\binom{[n]}{3} \cup\binom{[n]}{5},\|\sigma(S, U)\|=$ $\|\sigma(T, U)\|$ implies $S=T$.

The technical proof is postponed to Section 6 . Now we return to the proof by fixing U as in the claim.

The numbers $\|\sigma(S, U)\|$ with $S \in\binom{[n]}{3} \cup\binom{[n]}{5}$ are all larger than one. Let $\mu>1$ be the smallest among them. We claim that $\mu=\|\sigma(S, U)\|$ for some unique $S \in\binom{[n]}{3}$. Indeed, if the minimal S is a 5 -tuple, $S=\{1,2,3,4,5\}$ say, then the five vectors $\mu^{-1} u_{1}, \ldots, \mu^{-1} u_{5}$ are all in D, all of their 3 -sums are outside D but their sum is in D, contradicting case $n=5$ of the theorem.

Consequently $\mu=\|\sigma(S, U)\|$ for a unique $S \in\binom{[n]}{3}$. We assume w.l.o.g. that $S=$ $\{1,2,3\}$. Choose $\nu<\mu^{-1}<1$ so that $\nu\|\sigma(T, U)\|>1$ for all $T \in\binom{[n]}{3} \cup\binom{[n]}{5}$ except for $T=S$ and $\nu\|\sigma(S, U)\|<1$. Set $w_{0}=\nu\left(u_{1}+u_{2}+u_{3}\right), w_{i}=\nu u_{i}$ for $i>3$, and define $W=\left\{w_{0}, w_{4}, \ldots, w_{n}\right\}$.

We show finally that W is another counterexample with the norm $\|$.$\| . This would$ contradict the minimality of n as $|W|=n-2<n$ and so finish the proof.

It is clear that $W \subset D$ and $w_{0}+w_{4}+\ldots+w_{n} \in D$. All 3-sums of W that do not contain w_{0} are outside D since such a 3 -sum equals $\nu\left(u_{i}+u_{j}+u_{k}\right)$ with $4 \leq i<j<k$ which is outside D by the definition of ν. A 3 -sum of the form $w_{0}+w_{i}+w_{j}$ for $4 \leq i<j$ is equal to $\nu\left(w_{1}+w_{2}+w_{3}+w_{i}+w_{j}\right)$ which is again outside D because of the definition of ν.

6. Proofs of the claims

Proof of Claim 1. Write $x_{1}, x_{2}, \ldots, x_{s}$ resp $-y_{1}, \ldots,-y_{t}$ for the positive and non-positive elements of our set Z of real numbers, here $s+t=6$ and we assume w.l.o.g. that $s \leq t$. We assume further that $x_{1} \geq x_{2} \geq \ldots \geq x_{s}$ and $y_{1} \geq \ldots \geq y_{t}$. The case $s=0$ is trivial, and so is case $s=1$: then all 3 -sums of Z lie in $I=[-1,1]$.

If $s=2$, then $x_{1}-y_{i}-y_{j} \in I$ for all distinct i, j. Indeed, this is clear if $x_{1} \geq y_{i}+y_{j}$ since then $0 \leq x_{1}-y_{i}-y_{j} \leq x_{1} \leq 1$. Assume next that $x_{1}<y_{i}+y_{j}$ and $y_{i} \geq y_{j}$ say, then $-1 \leq-y_{i} \leq-y_{i}+\left(x_{1}-y_{j}\right)<0$ provided $x_{1} \geq y_{j}$. But case $x_{1}<y_{j}$ is impossible: then we'd have $x_{1}, x_{2}<y_{i}, y_{j}$ and $x_{1}+x_{2}<y_{i}+y_{j}$, so the sum of our six numbers cannot be zero. Thus there are $\binom{4}{2}=6$ distinct 3 -sums in I and no two of them are complementary. The 6 complementary 3 -sums lie in I, too.

Finally $s=3$. By symmetry we assume that $x_{1} \geq y_{1}$. If $x_{1}, x_{2} \geq y_{1}$, then $x_{k}-y_{i}-$ $y_{j} \in I$ for $k=1,2$ and for all distinct i, j. This follows in the same way as above. This is already 6 distinct 3 -sums in I (with no two complementary), giving 12 distinct 3 -sums that lie in I.

So suppose $y_{1}>x_{2}$. Again $x_{1}-y_{i}-y_{j} \in I$ for all distinct i, j and both $-y_{1}+x_{1}+x_{2}$ and $-y_{1}+x_{1}+x_{3}$ lie in I as both are non-negative and each smaller than x_{1}. This is five distinct (and non-complementary) 3 -sums. We only need to find one more.

The missing one is $-y_{1}+x_{2}-y_{2}$ if $x_{1} \geq y_{1}>x_{2} \geq y_{2}$, and $x_{1}-y_{2}+x_{2}$ if $x_{1} \geq y_{1} \geq$ $y_{2} \geq x_{2}$.

Proof of Claim 2. Our unit ball D is a 0 -symmetric convex polygon with edge set E. For an edge $e=[x, y]$ define ℓ_{e} as the (unique) linear function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $\ell_{e}(x)=\ell_{e}(y)=1$. It follows that for all $z \in \mathbb{R}^{2},\|z\|=\min \left\{\ell_{e}(z): e \in E\right\}$.

Recall the definition of $\binom{[n]}{k}$ and $\sigma(S, V)$ from Section 1. We are going to choose the vectors $u_{1}, u_{2}, \ldots, u_{n}$ in this order where u_{i} is in the ε-neighborhood $N_{\varepsilon}\left(\lambda v_{i}\right)$ of λv_{i} $(i \in[n])$ so that the following holds. The sets $U_{k}=\left\{u_{1}, \ldots, u_{k}\right\}$ for $k \in[n]$ satisfy
(1) $\ell_{e}\left(\sigma\left(S, U_{k}\right)\right) \neq \ell_{f}\left(\sigma\left(T, U_{k}\right)\right)$ for all distinct $e, f \in E$ and all $s, t \in\{0,1, \ldots, 5\}$ and all $S \in\binom{[k]}{s}$ and $T \in\binom{[k]}{t}$ with $S \neq T$,
(2) $\ell_{e}\left(\sigma\left(S, U_{k}\right)\right) \neq \ell_{e}\left(\sigma\left(T, U_{k}\right)\right)$ for all $e \in E$, for all $s, t \in\{0,1, \ldots, 5\}$ and all $S \in\binom{[k]}{s}$ and $T \in\binom{[k]}{t}$ with $S \neq T$.

These conditions guarantee that in $U=U_{n}$ all 3 -sums have different norms and no 3 -sum and 5 -sum have the same norm. This is the requirement in Claim 2.

The proof goes by induction. The first vector u_{1} is chosen from $N_{\varepsilon}\left(\lambda v_{1}\right)$ so that $\ell_{e}\left(u_{1}\right) \neq 0$ for all $e \in E$. So the forbidden region for u_{1} is the union of finitely many lines, and consequently there is a suitable u_{1}. Assume U_{k} has been constructed satisfying conditions (1) and (2) and $k \geq 1$.

We start with condition (1). For a fixed pair $e, f \in E(e \neq f)$, and for a fixed $S \in\binom{[k+1]}{s}$ and fixed $T \in\binom{[k+1]}{t}$, (1) says something for $u_{k+1} \in N_{\varepsilon}\left(\lambda v_{k+1}\right)$ only if $k+1 \in S \cup T$, otherwise it is satisfied by the induction hypothesis. If $k+1$ only appears in S (resp. in T), then (1) says that $\ell_{e}\left(u_{k+1}\right) \neq \alpha$ (and $\ell_{f}\left(u_{k+1}\right) \neq \alpha$) for a particular value of α depending only on e, f, S, T. So the forbidden region is a line $L=L(e, f, S, T)$. When $k+1 \in S \cap T$ then the condition is $\ell_{e}\left(u_{k+1}\right)-\ell_{f}\left(u_{k+1}\right) \neq \alpha$. So the forbidden region is a line again as $\ell_{e}-\ell_{f}$ is a non-identically zero linear function.

Checking condition (2) is similar. For a fixed $e \in E$, and for fixed $S \in\binom{[n]}{s}$ and $T \in\binom{[n]}{t}$, condition (2) says something for u_{k+1} only if again $k+1 \in S \cup T$, otherwise it is satisfied by the induction hypothesis. If $k+1 \in S \cap T$, then condition (2) says that $\ell_{e}\left(\sigma\left(S \backslash\{k+1\}, U_{k+1}\right)\right) \neq \ell_{e}\left(\sigma\left(T \backslash\{k+1\}, U_{k+1}\right)\right)$. This follows from the induction hypothesis. Finally, if $k+1$ is in $S \backslash T$, condition (2) says that $\ell_{e}\left(u_{k+1}\right) \neq \alpha$ with a particular value of α depending only on e, f, S, T. So the forbidden region is a line, again. The same applies when $k+1 \in T \backslash S$.

As there are finitely many such forbidden lines for u_{k+1}, the Lebesgue measure of the forbidden region is zero. Thus almost all choices of u_{k+1} avoid the forbidden region.

7. Characterization of central symmetry

Theorem 2 is about a norm whose unit ball is a 0 -symmetric convex body B. In the particular case $n=3$ it says that if a, b, c are unit vectors and their convex hull is separated from 0 , then their sum has norm at least 1 . The next theorem is a kind of converse.

Theorem 6. Let $K \in \mathbb{R}^{2}$ be a convex body with $0 \in \operatorname{int} K$. Then K is centrally symmetric with center at 0 under either one of the following conditions.
(i) For any three distinct vectors $a, b, c \in \partial K$ contained in a closed halfplane whose bounding line goes through 0 , the vector $a+b+c \notin \operatorname{int} K$.
(ii) For any three distinct vectors $a, b, c \in \partial K$ with $0 \in \operatorname{int} \operatorname{conv}\{a, b, c\}$, the vector $a+b+c \in \operatorname{int} K$.

Proof of (i). Suppose on the contrary that K is not centrally symmetric. Then we can choose a chord $a c$ (of K) containing 0 with $a+c \neq 0$. Further let b be a vector on ∂K, very close to a, and let $b w$ be the chord which is parallel to $a c$. It is very easy to see that $h=a+b+c \in \operatorname{relint}(b w)$ if b is close enough to a. This implies that $h \in \operatorname{int} K$, a contradiction (see Fig. 3).

Proof of (ii). Again, let $a c$ be a chord of K containing 0 such that $a+c \neq 0$ and further, let b be the point on ∂K where the tangent line ℓ at b to K is parallel to $a c$. We choose

Fig. 3. If K is not centrally symmetric then there are three points $a, b, c \in \partial K$ contained in a closed half-space with $h=a+b+c$ in int K.

Fig. 4. If K is not centrally symmetric then there are three points $a, b, c \in \partial K$ with $0 \in$ int conv K and such that $h=a+b+c$ is not in K.
a and c so that this b is a single point (on either side of the chord $a c$). This is clearly possible.

This way $h=a+b+c \in \ell$ and consequently h is outside K (see Fig. 4). Now, replace a resp. c, by a_{1} and c_{1} very close to a and c so that the chord $a_{1} c_{1}$ is parallel to ℓ and so that the line through a and c separates b and a_{1}, c_{1}. In this case $0 \in \operatorname{int}\left(\operatorname{conv}\left\{a_{1}, b, c_{1}\right\}\right)$. Since the norm of the sum of vectors is a continuous function, we have that $h_{1}=a_{1}+b+c_{1}$ is not in int K provided the line through $a_{1} c_{1}$ is close enough to the chord $a c$.

Acknowledgements

The authors are indebted to Viktor Grinberg for comments and discussions, and in particular for the question that led from Theorem 2 to Theorem 3. The authors acknowledge the generous support of the Hungarian-Mexican Intergovernmental S\&T Cooperation Programme TÉT_10-1-2011-0471 and NIH B330/479/11 "Discrete and Convex Geometry". Research of the first author was partially supported by ERC Advanced

Research Grant No. 267165 (DISCONV), and by Hungarian National Research Grant K 83767.

References

[1] I. Bárány, B. Ginzburg, V. Grinberg, 2013 unit vectors in the plane, Discrete Math. 313 (2013) 1600-1601.
[2] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann. 64 (1907) 95-115.
[3] E. Helly, Über Mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresber. Deutsch. Math.-Verein. 32 (1923) 175-176.
[4] L. Danzer, B. Grünbaum, V. Klee, Helly's Theorem and Its Relatives, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc., 1963, pp. 101-180.
[5] K.J. Swanepoel, Balancing unit vectors, J. Combin. Theory Ser. A 89 (2000) 105-112.

[^0]: * Corresponding author.

 E-mail addresses: barany@renyi.hu (I. Bárány), jesusjero@hotmail.com (J. Jerónimo-Castro).

