Contents lists available at SciVerse ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

Note 2013 unit vectors in the plane

Imre Bárány^{a,b}, Boris D. Ginzburg^c, Victor S. Grinberg^d

^a Rényi Institute of Mathematics, Hungarian Academy of Sciences, PO Box 127, 1364 Budapest, Hungary

^b Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England, United Kingdom

^c 1695 Betty Ct, Santa Clara, CA 95051, USA

^d 5628 Hempstead Rd, Apt 102, Pittsburgh, PA 15217, USA

ARTICLE INFO

Article history: Received 6 March 2013 Accepted 8 April 2013 Available online 4 May 2013

Keywords: Unit vectors Norms Signed sum

ABSTRACT

Given a norm in the plane and 2013 unit vectors in this norm, there is a signed sum of these vectors whose norm is at most one.

© 2013 Elsevier B.V. All rights reserved.

Let *B* be the unit ball of a norm $\|.\|$ in \mathbb{R}^d , that is, *B* is an 0-symmetric convex compact set with nonempty interior. Assume $V \subset B$ is a finite set. It is shown in [2] that, under these conditions, there are signs $\varepsilon(v) \in \{-1, +1\}$ for every $v \in V$ such that $\sum_{v \in V} \varepsilon(v)v \in dB$. That is, a suitable signed sum of the vectors in *V* has norm at most *d*. This estimate is best possible: when $V = \{e_1, e_2, \ldots, e_d\}$ and the norm is ℓ_1 , all signed sums have ℓ_1 norm *d*.

In this short note we show that this result can be strengthened when d = 2, |V| = 2013 (or when |V| is odd) and every $v \in V$ is a unit vector. So from now onwards we work in the plane \mathbb{R}^2 .

Theorem 1. Assume $V \subset \mathbb{R}^2$ consists of unit vectors in the norm ||.|| and |V| is odd. Then there are signs $\varepsilon(v) \in \{-1, +1\}$ ($\forall v \in V$) such that $||\sum_{v \in V} \varepsilon(v)v|| \le 1$.

This result is best possible (take the same unit vector n times) and does not hold when |V| is even.

Before the proof some remarks are in order here. Define the convex polygon $P = \text{conv}\{\pm v : v \in V\}$. Then $P \subset B$, and P is again the unit ball of a norm, V is a set of unit vectors of this norm. Thus it suffices to prove the theorem only in this case.

A vector $v \in V$ can be replaced by -v without changing the conditions and the statement. So we assume that $V = \{v_1, v_2, \ldots, v_n\}$ and the vectors $v_1, v_2, \ldots, v_n, -v_1, -v_2, \ldots, -v_n$ come in this order on the boundary of *P*. Note that *n* is odd. We prove the theorem in the following stronger form.

Theorem 2. With this notation $||v_1 - v_2 + v_3 - \cdots - v_{n-1} + v_n|| \le 1$.

Proof. Note that this choice of signs is very symmetric as it corresponds to choosing every second vertex of *P*. So the vector $u = 2(v_1 - v_2 + v_3 - \cdots - v_{n-1} + v_n)$ is the same (or its negative) when one starts with another vector instead of v_1 . Define $a_i = v_{i+1} - v_i$ for $i = 1, \ldots, n-1$ and $a_n = -v_1 - v_n$ and set $w = a_1 - a_2 + a_3 - \cdots + a_n$. It simply follows from the definition of a_i that

 $w = -2(v_1 - v_2 + v_3 - \dots - v_{n-1} + v_n) = -u.$

Consequently ||u|| = ||w|| and we have to show that $||w|| \le 2$.

CrossMark

E-mail addresses: barany@renyi.hu (I. Bárány), boris.d.ginzburg@gmail.com (B.D. Ginzburg), victor_grinberg@yahoo.com (V.S. Grinberg).

⁰⁰¹²⁻³⁶⁵X/\$ – see front matter © 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.disc.2013.04.007

Consider the line *L* in direction *w* passing through the origin. It intersects the boundary of *P* at points *b* and -b. Because of symmetry we may assume, without loss of generality, that *b* lies on the edge $[v_1, -v_n]$ of *P*. Then *w* is just the sum of the projections onto *L*, in direction parallel with $[v_1, -v_n]$, of the edge vectors $a_1, -a_2, a_3, -a_4, \ldots, a_n$. These projections do not overlap (apart from the endpoints), and cover exactly the segment [-b, b] from *L*. Thus $||w|| \le 2$, indeed. \Box

Remark. There is another proof based on the following fact. *P* is a zonotope defined by the vectors a_1, \ldots, a_n , translated by the vector v_1 . Here the zonotope defined by a_1, \ldots, a_n is simply

$$Z = Z(a_1, \ldots, a_n) = \left\{ \sum_{1}^n \alpha_i a_i : 0 \le \alpha_i \le 1 \; (\forall i) \right\}.$$

The polygon $P = v_1 + Z$ contains all sums of the form $v_1 + a_{i_1} + \cdots + a_{i_k}$ where $1 \le i_1 < i_2 < \cdots < i_k \le n$. In particular with $i_1 = 2, i_2 = 4, \ldots, i_k = 2k$

 $v_1 + a_2 + a_4 + \cdots + a_{2k} = v_1 - v_2 + v_3 - \cdots - v_{2k} + v_{2k+1} \in P.$

This immediately implies a strengthening of Theorem 1 (which also follows from Theorem 2).

Theorem 3. Assume $V \subset \mathbb{R}^2$ consists of n unit vectors in the norm ||.||. Then there is an ordering $\{w_1, \ldots, w_n\}$ of V, together with signs $\varepsilon_i \in \{-1, +1\}(\forall i)$ such that $||\sum_{i=1}^{k} \varepsilon_i w_i|| \le 1$ for every odd $k \in \{1, \ldots, n\}$.

Of course, for the same ordering, $\|\sum_{i=1}^{k} \varepsilon_i w_i\| \le 2$ for every $k \in \{1, ..., n\}$. We mention that similar results are proved by Banaszczyk [1] in higher dimension for some particular norms.

In [2] the following theorem is proved. Given a norm $\|.\|$ with unit ball B in \mathbb{R}^d and a sequence of vectors $v_1, \ldots, v_n \in B$, there are signs $\varepsilon_i \in \{-1, +1\}$ for all i such that $\|\sum_{i=1}^{k} \varepsilon_i w_i\| \le 2d - 1$ for every $k \in \{1, \ldots, n\}$. Theorem 1 implies that this result can be strengthened when the v_i s are unit vectors in \mathbb{R}^2 and k is odd.

Theorem 4. Assume $v_1, \ldots, v_n \in \mathbb{R}^2$ is a sequence of unit vectors in the norm $\|.\|$. Then there are signs $\varepsilon_i \in \{-1, +1\}$ for all *i* such that $\|\sum_{i=1}^{k} \varepsilon_i w_i\| \le 2$ for every odd $k \in \{1, \ldots, n\}$.

The bound 2 here is best possible as shown by the example of the max norm and the sequence (-1, 1/2), (1, 1/2), (0, 1), (-1, 1), (1, 1).

The **proof** goes by induction on *k*. The case k = 1 is trivial. For the induction step $k \to k+2$ let *s* be the signed sum of the first *k* vectors with $||s|| \le 2$. There are vectors *u* and *w* (parallel with *s*) such that s = u + w, ||u|| = 1, $||w|| \le 1$. Applying Theorem 1 to *u*, v_{k+1} and v_{k+2} we have signs $\varepsilon(u)$, ε_{k+1} and ε_{k+2} with $||\varepsilon(u)u + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}|| \le 1$. Here we can clearly take $\varepsilon(u) = +1$. Then

 $\|s + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}\| \le \|u + \varepsilon_{k+1}v_{k+1} + \varepsilon_{k+2}v_{k+2}\| + \|w\| \le 2$

finishing the proof. \Box

Acknowledgments

The research of the first author was partially supported by ERC Advanced Research Grant no 267165 (DISCONV), and by Hungarian National Research Grant K 83767.

References

[1] W. Banaszczyk, On series of signed vectors and their rearrangements, Random Structures Algorithms 40 (2012) 301–316.

[2] I. Bárány, V.S. Grinberg, On some combinatorial questions in finite dimensional spaces, Linear Algebra Appl. 41 (1981) 1–9.