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Abstract In this paper we give sufficient conditions for a compactum in R
n to have

Carathéodory number less than n + 1, generalizing an old result of Fenchel. Then we
prove the corresponding versions of the colorful Carathéodory theorem and give a
Tverberg-type theorem for families of convex compacta.
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1 Introduction

The Carathéodory theorem [7] (see also [10]) asserts that every point x in the convex
hull of a set X ⊂ R

n is in the convex hull of one of its subsets of cardinality at most
n + 1. In this note we give sufficient conditions for the Carathéodory number to be
less than n + 1 and prove some related results. In order to simplify the reasoning, we
always consider compact subsets of R

n.
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There are results about lowering the Carathéodory constant: A theorem of
Fenchel [11] (see also [12]) asserts that a compactum X ⊂ R

n either has the
Carathéodory number ≤n or can be separated by a hyperplane into two nonempty
parts. By separated we mean “divided by a hyperplane disjoint from X into two
nonempty parts.” In order to state more results, we need formal definitions.

Definition 1.1 For a compactum X ⊂ R
n, we denote by convk X the set of points

p ∈ R
n that can be expressed as a convex combination of at most k points in X. We

denote by convX (without subscript) the standard convex hull of X.

Definition 1.2 The Carathéodory number of X is the smallest k such that convX =
convk X.

Remark 1.3 So, when X ⊂ R
n, Carathéodory’s theorem [7] is equivalent to the equal-

ity convX = convn+1 X. We will give an alternative definition for convk X in Sect. 4
as the k-fold join of X.

Definition 1.4 A compactum X ⊂ R
n is k-convex if every linear image of X to R

k

is convex.

We give some examples of k-convex sets. What is needed in Fenchel’s theorem is
1-convexity, and every connected set is 1-convex. The k-skeleton of a convex poly-
tope is k-convex (though for such k-convex sets, most results of this paper are trivial).
In [6] (see also [5, Chap. II, Sect. 14]) it is shown that the image of the sphere under
the Veronese map v2 : Sn−1 → R

n(n+1)/2 (with all degree 2 monomials as coordi-
nates) is 2-convex.

In [12, Corollary 1] the following remarkable result is proved:

Theorem 1.5 (Hanner–Rådström, 1951) If X is a union of at most n compacta
X1, . . . ,Xn in R

n and each Xi is 1-convex, then convn X = convX.

It is also known [5, 15] that a convex curve in R
n (that is, a curve with no n + 1

points in a single affine hyperplane) has Carathéodory number at most �n+2
2 �. It

would be interesting to obtain some nontrivial bounds for the Carathéodory num-
ber of the orbit Gx of a point x in a representation V of a compact Lie group G in
terms of dimV and dimG (or the rank of G). The latter question is mentioned in [18,
Question 3] and would be useful in results like those in [17].

In Sects. 2 and 3 of this paper we show that the Carathéodory number is at most
k + 1 for (n − k)-convex sets. In Sect. 4 we prove the corresponding analogue of the
colorful Carathéodory theorem, and in Sect. 5 we develop another topological ap-
proach to colorful Carathéodory-type results, which may be of independent interest.
In Sect. 6 we give a related Tverberg-type result.

We note that the content of Sects. 2–4 may be trivially generalized to positive
hulls in place of convex hulls, as was done, for example, in [2]. But we do not state
the corresponding results explicitly to simplify the exposition.
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2 The Carathéodory Number and k-Convexity

We are going to give a natural generalization of the reasoning in [12]:

Theorem 2.1 Suppose that X1, . . . ,Xn−k are compacta in R
n and p does not belong

to convk+1 Xi for any i. Then there exists an affine k-plane L � p that has empty
intersection with any Xi .

Remark 2.2 If we replace convk+1 Xi by the honest convex hull convXi , then the
result is simply deduced by induction from the Hahn–Banach theorem.

Remark 2.3 In [16] a somewhat related result was proved: For a compactum X ⊂ R
n

and a point p /∈ X, there exists an affine k-plane L (for a prescribed k < n) such that
the intersection L ∩ K is not acyclic modulo 2. Here acyclic means having the Čech
cohomology of a point.

The proof of Theorem 2.1 is given in Sect. 3. Now we deduce the following gen-
eralization of Fenchel’s theorem [11] (stated in the second paragraph of the introduc-
tion):

Corollary 2.4 If a compactum X ⊂ R
n is (n− k)-convex, then convk+1 X = convX.

Proof Assume the contrary and let p ∈ convX \ convk+1 X. Applying Theorem 2.1
to the family X, . . . ,X

︸ ︷︷ ︸

n−k

, we find a k-dimensional L � p disjoint from X. Now project

X along L with π : R
n → R

n−k . Since X is (n − k)-convex, π(L) must be separated
from π(X) by a hyperplane. Hence, L is separated from X by a hyperplane, and
therefore p cannot be in convX. �

Remark 2.5 In the above Corollary 2.4 and its proof we could consider n − k dif-
ferent (n − k)-convex compacta X1, . . . ,Xn−k and by the same reasoning obtain the
following conclusion:

n−k
⋃

i=1

convk+1 Xi =
n−k
⋃

i=1

convXi.

But this result trivially follows from Corollary 2.4 by taking the union.

Remark 2.6 For the image v2(S
n−1) of the Veronese map, the Carathéodory constant

is roughly of order n, see [5, Chap. II, Sect. 14, Theorem 14.3]. Hence, Corollary 2.4
is not optimal for this set.

3 Proof of Theorem 2.1

Let us replace Xi by a smooth nonnegative function ρi such that ρi > 0 on Xi and
ρi = 0 outside some ε-neighborhood of Xi . Let p be the origin.
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Assume the contrary: For any k-dimensional linear subspace L ⊂ R
n some inter-

section L ∩ Xi is nonempty. The space of all possible L is the Grassmann man-
ifold Gk

n. Denote by Di the open subset of Gk
n consisting of L ∈ Gk

n such that
∫

L
ρi > 0. Note that 0 cannot lie in the convex hull conv(L∩Xi) because in this case

by the ordinary Carathéodory theorem, 0 would be in convk+1(L∩Xi) ⊆ convk+1 Xi ,
contradicting the hypothesis. Hence (if we choose small enough ε > 0), the “momen-
tum” integral

mi(L) =
∫

L

ρix dx

never coincides with 0 over Di . Obviously, mi(L) is a continuous section of the
canonical vector bundle γ : E(γ ) → Gk

n, which is nonzero over Di . Now we apply
the following:

Lemma 3.1 Any n − k sections of γ : E(γ ) → Gk
n have a common zero because of

the nonzero Euler class e(γ )n−k .

This lemma is a folklore fact, see, for example, [9, 22]. Applying this lemma to
the sections mi , we obtain that the sets Di do not cover the entire Gk

n. Hence, some
L ∈ Gk

n has an empty intersection with every Xi .

Remark 3.2 In the proof of Theorem 1.5 in [12, the proof of Theorem 3] Hanner and
Rådström find a maximum of certain volume function over a convex subset of the
sphere Sn−1. This may also be done by an application of the Brouwer fixed-point
theorem similar to the above proof, thus exhibiting the topological nature of that
result.

4 The Colorful Carathéodory Number

Let us introduce some notation and restate the colorful Carathéodory theorem [2].

Definition 4.1 Denote by A ∗ B the geometric join of two sets A,B ⊆ R
n, which is

{

ta + (1 − t)b : a ∈ A,b ∈ B, and t ∈ [0,1]}.
This is actually the alternative definition of convk X as X ∗ · · · ∗ X

︸ ︷︷ ︸

k

.

Theorem 4.2 (Bárány, 1982) If X1, . . . ,Xn+1 ⊂ R
n are compacta and 0 ∈ convXi

for every i, then 0 ∈ X1 ∗ X2 ∗ · · · ∗ Xn+1.

It is possible to reduce the Carathéodory number n + 1 assuming the (n − k)-
convexity of Xi , thus generalizing Corollary 2.4:

Theorem 4.3 Let 0 ≤ k ≤ n. If X1, . . . ,Xk+1 ⊂ R
n are (n − k)-convex compacta

and 0 ∈ convXi for every i, then 0 ∈ X1 ∗ X2 ∗ · · · ∗ Xk+1.
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Proof We use the classical scheme [2] along with the degree reasoning used in [1, 4,
8, 19] in the proof of different generalizations of the colorful Carathéodory theorem.

First consider the case k = n − 1. In this case we have n sets and 1-convexity. Let
x1, . . . , xn be the system of representatives of X1, . . . ,Xn such that the distance from
S = conv{x1, . . . , xn} to the origin is minimal. If this distance is zero, then we are
done. Otherwise, assume that z ∈ S minimizes the distance.

Let z = t1x1 + · · · + tnxn, a convex combination of the xis. If ti = 0, then we
observe that 0 ∈ convXi , and we can replace xi by another x′

i so that new simplex
S′ = conv{x1, . . . , xi−1, x

′
i , xi+1, . . . , xn} is closer to the origin than S. So we may

assume that all the coefficients ti are positive and z is in the relative interior of S.
This also implies that S is (n − 1)-dimensional, i.e., there is a unique hyperplane
containing S.

Consider the hyperplane h � 0 parallel to S. Applying the definition of 1-convexity
to the projection along h, we obtain that there exists a system of representatives yi ∈
Xi ∩ h. The set

f (B) = {x1, y1} ∗ {x2, y2} ∗ · · · ∗ {xn, yn}
is a piecewise linear image of the boundary of a crosspolytope, which we denote
by B . Note that for every facet F of B , the vertices of the simplex f (F ) form a system
of representatives for {X1, . . . ,Xn}. In particular, S = f (F ) for some facet F of B .
The line � through the origin and z intersects the simplex S = f (F ) transversally, and
so it must intersect some other f (F ′) (where F ′ = F is a facet of B) because of the
parity of the intersection index. The intersection � ∩ f (F ′) is on the segment [0, z]
and cannot coincide with z. Therefore, f (F ′) is closer to the origin than S. This is a
contradiction with the choice of S. Thus, the case k = n − 1 is done.

The case k = 0 of this theorem is trivial by definition, and the case k = n

corresponds to the colorful Carathéodory theorem. Now let 0 < k < n − 1. Con-
sider again a system of representatives x1, . . . , xk+1 minimizing the distance
dist(0, conv{x1, . . . , xk+1}). Put S = conv{x1, . . . , xk+1}. As above, the closest to
the origin point z ∈ S must lie in the relative interior of S if z = 0.

Let L ⊂ R
n be the k-dimensional linear subspace parallel to S. As in the first

proof, using (n − k)-convexity, we select yi ∈ L ∩ Xi . Then we map naturally the
boundary B of a (k + 1)-dimensional crosspolytope to the geometric join

f (B) = {x1, y1} ∗ {x2, y2} ∗ · · · ∗ {xk+1, yk+1}.

Note that f (B) is contained in the (k + 1)-dimensional linear span of S and L, so by
the parity argument as above the image under f of some face of B must be closer to
the origin than S. �

Remark 4.4 In this proof in the case k < n − 1 we can choose some (k + 1)-
dimensional subspace M ⊂ R

n and a system of representatives {x1, . . . , xk+1} for
M ∩ X1, . . . ,M ∩ Xk+1. Then we can make the steps reducing dist(0, conv{x1, . . . ,

xk+1}) so that the system of representatives always remains in M .
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5 A Topological Approach to Theorem 4.3

Theorem 4.3 can also be deduced from the following lemma:

Lemma 5.1 Let ξ : E(ξ) → X be a k-dimensional vector bundle over a compact met-
ric space X. Let Y1, . . . , Yk+1 be closed subspaces of E(ξ) such that for every i, the
projection ξ |Yi

: Yi → X is surjective. If e(ξ) = 0, then for some fiber V = ξ−1(x),
the geometric join

(Y1 ∩ V ) ∗ · · · ∗ (Yk+1 ∩ V )

contains 0 ∈ V .

Remark 5.2 The Euler class here may be considered in integral cohomology or in the
cohomology mod 2. The proof passes in both cases, so we omit the coefficients from
the notation.

Reduction of Theorem 4.3 to Lemma 5.1 for k < n Take a linear subspace M ⊆ R
n

of dimension k + 1. For every k-dimensional linear subspace L ⊂ M , all the inter-
sections L ∩ Xi are nonempty. All such L constitute the canonical bundle γ over
Gk

k+1 = RP k with nonzero Euler class by Lemma 3.1. For any fixed i, the union of
sets L∩Xi constitutes a closed subset of E(γ ) that we denote by Yi . By Lemma 5.1,
for some L, the join

(Y1 ∩ L) ∗ · · · ∗ (Yk+1 ∩ L) = (X1 ∩ L) ∗ · · · ∗ (Xk+1 ∩ L)

must contain the origin. �

Now we prove Lemma 5.1 The proof has much in common with the results of [16].
The main idea is that fiberwise acyclic (up to some dimension) subsets of the total
space of a vector bundle behave like sections of that vector bundle.

Let Y = Y1 ∗X ∗ · · · ∗X Yk+1 be the abstract fiberwise join over X, that is, the set
of all formal convex combinations

t1y1 + t2y2 + · · · + tk+1yk+1,

where ti are nonnegative reals with unit sum, and yi ∈ Yi are points such that

ξ(y1) = · · · = ξ(yk+1).

Denote the natural projection η : Y → X. Any formal convex combination y ∈ Y

defines a corresponding “geometric” convex combination f (y) in the fiber ξ−1(η(y))

depending continuously on y. It is easy to check that f (y) can be considered as a
section of the pullback vector bundle η∗(ξ) over Y .

For any point x ∈ X, its preimage under η is a join of (k + 1) nonempty sets

(

Y1 ∩ ξ−1(x)
) ∗ · · · ∗ (

Yk+1 ∩ ξ−1(x)
)

,
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and therefore η−1(x) is (k − 1)-connected. Hence, the Leray spectral sequence for
the Čech cohomology H ∗(Y ) with E

∗,∗
2 = H ∗(X; H∗(η−1(x))) (the coefficient sheaf

is the direct image of the homology of the total space) has empty rows number
1, . . . , k − 1, and its differentials cannot kill the image of e(ξ) in E

k,0
r . Hence,

η∗(e(ξ)) = e(η∗(ξ)) remains nonzero over Y , and by the standard property of the
Euler class, for some y ∈ Y , the section f (y) must be zero. �

Remark 5.3 In this proof we essentially use the inequality k < n. So the colorful
Carathéodory theorem is not a consequence of Lemma 5.1, at least in our present
state of knowledge.

The subsets Yi in Lemma 5.1 can be considered as set-valued sections. The same
technique proves the following:

Theorem 5.4 Let B be an n-dimensional ball, and fi : B → 2B \ ∅ for i = 1, . . . ,

n + 1 be set-valued maps with closed graphs (in B × B). Then for some x ∈ B , we
have the inclusion

x ∈ f1(x) ∗ · · · ∗ fn+1(x).

Proof We may assume that all sets fi(x) are in the interior of B , because the general
case is reduced to this one by composing fi with a homothety with scale 1 − ε and
going to the limit as ε → +0.

It is known [14] that for a single-valued map f : B → intB (considered as a sec-
tion of the trivial bundle B × R

n → B), a fixed point (x = f (x)) is guaranteed by
the relative Euler class e(f (x) − x) ∈ Hn(B, ∂B). Then the proof proceeds as in
Lemma 5.1 by lifting e(f (x) − x) to the abstract fiberwise join of graphs of fi over
the pair (B, ∂B) and using the properties of the relative Euler class of a section. �

Corollary 5.5 Suppose that X1, . . . ,Xn+1 are compacta in R
n and ρ is a continuous

metric on R
n. For any x ∈ R

n, denote by fi(x) the set of farthest from x points in Xi

(in the metric ρ). Then, for some x ∈ R
n, we have

x ∈ f1(x) ∗ · · · ∗ fn+1(x).

Remark 5.6 If we denote by fi(x) the closets points in Xi , then this assertion be-
comes almost trivial without using any topology.

6 The Carathéodory Number and the Tverberg Property

Tverberg’s classical theorem [20] is the following:

Theorem 6.1 (Tverberg, 1966) Every set of (n + 1)(r − 1) + 1 points in R
n can be

partitioned into r parts X1, . . . ,Xr so that the convex hulls convXi have a common
point.
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From the general position considerations it is clear that the number (n + 1) ×
(r − 1) + 1 cannot be decreased. But we are going to decrease it after replacing
a finite point set by a family of convex compacta. Let us define the Carathéodory
number for such families.

Definition 6.2 Let F be a family of convex compacta in R
n. The Carathéodory

number of F is the least κ such that for any subfamily G ⊆ F ,

conv
⋃

G =
⋃

H⊆G, |H|≤κ

conv
⋃

H.

We denote the Carathéodory number of F by κ(F ).

Again, from the Carathéodory theorem [7] it follows that κ(F ) ≤ n + 1. Another
observation is that Corollary 2.4 guarantees that κ(F ) ≤ k + 1 if the union of every
subfamily G ⊆ F is (n − k)-convex.

Now we state the analogue of Tverberg’s theorem.

Theorem 6.3 Suppose that F is a family of convex compacta in R
n, r is a positive

integer, and

|F | ≥ rκ(F ) + 1.

Then F can be partitioned into r subfamilies F1, . . . , Fr so that

r
⋂

i=1

conv
⋃

Fi = ∅.

Remark 6.4 Note the following: If κ(F ) = n + 1, then taking a system of repre-
sentatives for F and applying the Tverberg theorem, we obtain a weaker condition:
|F | ≥ (r − 1)(n + 1) + 1.

Remark 6.5 This theorem originated in discussions with Andreas Holmsen, who es-
tablished the same result in the special case n = 2, κ(F ) = 2, and with |F | ≥ 2r (not
2r + 1), see [13]. Together with the previous remark, this shows that the condition on
|F | may be not tight, though we have no idea how to improve it in the general case.

Proof of Theorem 6.3 We again use a minimization argument, combined with
Sarkaria’s trick [21] in the more convenient tensor form, which is from [3].

Let |F | = m, κ = κ(F ), and

F = {C1,C2, . . . ,Cm}.
Put the space R

n to A = R
n+1 as a hyperplane given by the equation xn+1 = 1.

Consider a set S of vertices of a regular (r − 1)-simplex in some (r − 1)-dimensional
space V and assume that S is centered at the origin.

Now define the subsets of V ⊗ A by

Xi = S ⊗ Ci
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and consider a system of representatives (x1, x2, . . . , xm) for the family of sets G =
{X1,X2, . . . ,Xm}. Such a system gives rise to a partition {Ps : s ∈ S} of {1, . . . ,m}
in the following way. For s ∈ S, define

Ps = {

i ∈ {1, . . . ,m} : xi = s ⊗ ci for some ci ∈ Ci

}

.

Like in [1, Lemma 2], we observe that 0 ∈ conv{x1, . . . , xm} if and only if
⋂

s∈S conv{ci : i ∈ Ps} = ∅. Based on this, we choose a system of representatives
(x1, . . . , xm) of G so that the distance between 0 and conv{x1, x2, . . . , xm} is min-
imal. If this distance is zero, then the required partition of F is given by the sets
{Ci ∈ F : i ∈ Ps}, s ∈ S.

Assume that the minimal distance is not zero. Then it is attained on some convex
combination

x0 = α1x1 + α2x2 + · · · + αmxm.

We claim that αi > 0 for all i ∈ {1, . . . ,m}. Assume, for instance, that α1 = 0 and
x1 = s ⊗ c1 for some c1 ∈ C1 and s ∈ S. Now x1 can be replaced by t ⊗ c1 for
any t ∈ S as such a change does not influence x0. The distance minimality condi-
tion implies that all the points t ⊗ c1 are separated from the origin by a hyperplane
in V ⊗ A, which is the support hyperplane for the ball, centered at the origin and
touching conv{x1, . . . , xm}. Obviously,

∑

t∈S

t ⊗ ci = 0,

so the points t ⊗ ci , t ∈ S, are not separated from the origin. This contradiction com-
pletes the proof of the claim.

The above convex combination representing x0 can be written as

x0 =
∑

s∈S

s ⊗
(

∑

i∈Ps

αici

)

.

Assume first that none of Ps is the empty set. Define c(s) = ∑

i∈Ps
αici and α(s) =

∑

i∈Ps
αi > 0. Then c(s)/α(s) is a convex combination of elements ci ∈ Ci , i ∈ Ps .

Thus, c(s)/α(s) ∈ conv
⋃

i∈Ps
Ci . According to the definition of the Carathéodory

number, there is a subset P ′
s ⊂ Ps , of size at most κ , such that c(s)/α(s) ∈

conv
⋃

i∈P ′
s
Ci for every s ∈ S. This means that there are c′

i ∈ Ci for all i ∈ P ′
s such

that c(s)/α(s) ∈ conv{c′
i : i ∈ P ′

s}; in other words, c(s) = ∑

i∈P ′
s
α′

ic
′
i with positive α′

i

satisfying
∑

i∈P ′
s
α′

i = α(s). Thus,

x0 =
∑

s∈S

s ⊗
(

∑

i∈P ′
s

α′
ici

)

.

In this case the minimum distance is attained on the convex hull of no more that rκ

elements as each |P ′
s | ≤ κ . But m > rκ , contradicting the claim.
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Finally, we have to deal with the (easy) case where some Ps = ∅. The above ar-
gument works, with no change at all, for the nonempty Ps , implying that x0 can be
written as a convex combination of at most (r − 1)κ elements. Again, m > (r − 1)κ ,
and the same contradiction finishes the proof. �
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