ON A QUESTION OF V. I. ARNOL'D

I. BÁRÁNY ${ }^{1,2}$
${ }^{1}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, H-1364 Budapest, Pf. 127, Hungary
e-mail: barany@renyi.hu
${ }^{2}$ Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, UK

(Received August 1, 2011; revised November 14, 2011; accepted December 8, 2011)

Abstract

We show by a construction that there are at least $\exp \left\{c V^{(d-1) /(d+1)}\right\}$ convex lattice polytopes in \mathbb{R}^{d} of volume V that are different in the sense that none of them can be carried to an other one by a lattice preserving affine transformation.

1. Introduction and main result

In 1980 Arnol'd [2] asked the following question: How many convex lattice polytopes are there in \mathbb{R}^{d} ? Infinitely many, of course. So Arnol'd refined the question. He calls two convex lattice polytopes equivalent if one can be carried to the other by a lattice preserving affine transformation. This is an equivalence relation and equivalent polytopes have the same volume. Let $N_{d}(V)$ denote the number of equivalence classes of convex lattice polytopes in \mathbb{R}^{d} of volume V. Of course, $d!V$ is a positive integer. Arnol'd showed that

$$
V^{1 / 3} \ll \log N_{2}(V) \ll V^{1 / 3} \log V
$$

Actually, Arnol'd proved the stronger statement that $\log N_{2}^{+}(V) \ll$ $V^{1 / 3} \log V$ where $N_{d}^{+}(V)$ denotes the number of equivalence classes of convex lattice polytopes in \mathbb{R}^{d} of volume at most V. He asked what happens in higher dimensions and Konyagin and Sevastyanov proved [7] that $\log N_{d}^{+}(V) \ll V^{(d-1) /(d+1)} \log V$. This was subsequently improved to $\log N_{d}^{+}(V) \ll V^{(d-1) /(d+1)}$ by Bárány and Pach [5] (for $d=2$) and by Bárány

[^0]and Vershik [6] (for $d \geqq 2$). The proof of the lower bound $\log N_{d}^{+}(V)$ $\gg V^{(d-1) /(d+1)}$ is quite easy as we will see soon. The main result of this paper is the same lower bound for $\log N_{d}(V)$:

Theorem 1.1. $V^{(d-1) /(d+1)} \ll \log N_{d}(V)$.
In [2] Arnol'd proved this theorem for $d=2$. For higher dimensions he only says: "Proof of the lower bound: let $x_{1}^{2}+\cdots+x_{d-1}^{2} \leqq x_{d} \leqq A$ ". The construction for the lower bound to be presented here uses an idea of Arnol'd and several further ingredients. Of course Theorem 1.1 has the following

Corollary 1.1. $V^{(d-1) /(d+1)} \ll \log N_{d}^{+}(V)$.

A proof is sketched in [3], and another proof is given by Chuanming Zong [9]. We also give a short argument for this corollary.

Some remarks are in place here about notation and terminology. A convex polytope $P \subset \mathbb{R}^{d}$ is a lattice polytope if its vertex set, vert P is a subset of \mathbb{Z}^{d}, the integer lattice. Write \mathcal{P} or \mathcal{P}_{d} for the set of all convex lattice polytopes in \mathbb{R}^{d} with positive volume. The number of vertices of $P \in \mathcal{P}$ is denoted by $f_{0}(P)$. Throughout the paper we use, together with the usual "little oh" and "big Oh" notation, the convenient \ll symbol, which means, for functions $f, g: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$, that $f(V) \ll g(V)$ if there are constants $V_{0}>0$ and $c>0$ such that $f(V) \leqq c g(V)$ for all $V>V_{0}$. These constants, to be denoted by $c, c_{1}, \ldots, b, b_{1}, \ldots$ may only depend on dimension. The standard basis of \mathbb{R}^{d} is e_{1}, \ldots, e_{d}, and $|x|=\sqrt{x_{1}^{2}+\cdots+x_{d}^{2}}$ is the Euclidean norm of $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}$, and B^{d} is the Euclidean unit ball of \mathbb{R}^{d}, and $\operatorname{vol} B_{d}=\omega_{d}$. Also \mathbb{R}_{+}^{d} denotes the set of $x \in \mathbb{R}^{d}$ with $x_{i} \geqq 0$ for every $i \in[d]$. Here $[d]=\{1,2, \ldots, d\}$.

The paper is organized as follows. The integer convex hull and some of its properties are given in the next section. A quick proof of Corollary 1.1 is the content of Section 3. Section 4 presents some auxiliary results. The construction of many non-equivalent convex lattice polytopes is in Section 5 . We finish with concluding remarks.

2. The integer convex hull

Suppose $K \subset \mathbb{R}^{d}$ is a bounded convex set. Its integer convex hull, $I(K)$, is defined as

$$
I(K)=\operatorname{conv}\left(K \cap \mathbb{Z}^{d}\right)
$$

which is a convex lattice polytope if nonempty. One important ingredient of our construction is

$$
Q_{r}=I\left(r B^{d}\right)=\operatorname{conv}\left(\mathbb{Z}^{d} \cap r B^{d}\right)
$$

Trivially $\operatorname{vol} Q_{r} \leqq \omega_{d} r^{d}$. It is proved in Bárány and Larman in [4] that $\operatorname{vol}\left(r B_{d} \backslash Q_{r}\right) \ll r^{d \frac{d-1}{d+1}}$. The last exponent will appear so often that we write $D=d \frac{d-1}{d+1}$. The number of vertices of Q_{r} is estimated in [4] as

$$
\begin{equation*}
r^{D} \ll f_{0}\left(Q_{r}\right) \ll r^{D} \tag{2.1}
\end{equation*}
$$

The upper bound is a result of Andrews [1] stating that $f_{0}(P) \ll$ $(\operatorname{vol} P)^{(d-1 /(d+1)}$ for all $P \in \mathcal{P}_{d}$ with $\operatorname{vol} P>0$.

We are to establish further properties of Q_{r}, always assuming that r is large enough.

Lemma 2.1. $(r-\sqrt{d}) B^{d} \subset Q_{r}$.
Proof. A cap C of B^{d} is the intersection of B^{d} with a halfspace H. If int $C \cap \mathbb{Z}^{d}=\emptyset$, then int C cannot contain a translate of the unit cube, implying that the width of C is at most \sqrt{d}.

Lemma 2.2. $(r-2 \sqrt{d}) B^{d} \subset I\left(Q_{r} \backslash \operatorname{vert} Q_{r}\right)$.
Proof. The previous lemma implies that no vertex of Q_{r} lies in $(r-\sqrt{d}) B^{d}$. Consequently $(r-\sqrt{d}) B^{d} \subset Q_{r} \backslash$ vert Q_{r}. Taking the integer convex hull of both sides and applying Lemma 2.1 to $Q_{r-\sqrt{d}}=$ $I\left((r-\sqrt{d}) B^{d}\right)$ finishes the proof.

For a lattice polytope $P \in \mathcal{P}$ with $x \in \operatorname{vert} P$ we define

$$
\triangle(x)=P \backslash I(\operatorname{vert} P \backslash\{x\})
$$

It is evident that $\operatorname{vol} \triangle(x)$ is an integer multiple of $1 / d!$.
LEMMA 2.3. For every $x \in \operatorname{vert} Q_{r}$ vol $\triangle(x) \ll r^{\frac{d-1}{2}}$ and $\left|\triangle(x) \cap \mathbb{Z}^{d}\right|$ $\ll r^{\frac{d-1}{2}}$.

Proof. Set $P^{\prime}:=I(\operatorname{vert} P \backslash\{x\})$ and let F be a separating facet of P^{\prime} meaning that the hyperplane aff F strictly separates x and P^{\prime}. This hyperplane cuts off a small cap C_{F} from $r B^{d}$ whose width is less than $2 \sqrt{d}$ by the previous lemma. Then the diameter of C_{F} is at most

$$
2 \sqrt{(2 r-2 \sqrt{d}) 2 \sqrt{d}}<4 d^{1 / 4} \sqrt{r}
$$

It follows that all such caps C_{F} are contained in a cap C, centered at $r x /|x|$, and of radius $4 d^{1 / 4} \sqrt{r}$. Then $\triangle(x)$ is contained in C, and the volume of this cap is $\ll r^{\frac{d-1}{2}}$. The second statement follows from the fact that $\left|\triangle(x) \cap \mathbb{Z}^{d}\right|$ is at most the volume of the Minkowski sum of C and the unit cube. It is not hard to see that this volume is $\ll r^{\frac{d-1}{2}}$.

3. A quick proof of Corollary 1.1

We are to construct many non-equivalent convex lattice polytopes of volume at most V (when V is large). Choose r so big that vol $r B^{d}$ is slightly smaller than V and set $s=\lfloor r\rfloor$. Then Q_{r} has $\gg r^{D}$ vertices. Set $G=\left\{ \pm s e_{1}\right.$, $\left.\ldots, \pm s e_{d}\right\}$.

Here comes Arnol'd idea from [2]. For a subset W of vert $Q_{r} \backslash G$ define $Q(W)=I\left(Q_{r} \backslash W\right)$. This is $2^{\mid \text {vert } Q_{r} \mid-2 d} \geqq \exp \left\{c V^{(d-1) /(d+1)}\right\}$ convex lattice polytopes (with a suitable $c>0$, depending only on d). We show that at most $2^{d} d$! of the $Q(W)$ are in the same equivalence class.

Assume the lattice preserving affine transformation T maps $Q(W)$ to $Q\left(W^{\prime}\right) . T$ is of the form $T(x)=A x+a$ where A is an integral matrix of determinant ± 1 and $a \in \mathbb{Z}^{d}$. We claim $\left|A e_{i}\right|=1$ for all $i \in[d]$. Assume $A e_{i}=z \in \mathbb{Z}^{d}$, then either $|z|=1$ or $|z| \geqq \sqrt{2}$. As $\pm s e_{i} \in Q(W),\left|T\left(\pm s e_{i}\right)\right|$ $\leqq r$. Squaring and expanding gives $\left(\pm s A e_{i}+a\right)^{2}=s^{2} z^{2} \pm 2 s z \cdot a+a^{2} \leqq r^{2}$. Summing the two inequalities gives $s^{2} z^{2}+a^{2} \leqq r^{2}$. Here $s=\lfloor r\rfloor \geqq 0.9 r$, and if $z^{2} \geqq 2$, we have $1.62 r^{2}+a^{2} \leqq r^{2}$ which is impossible. So $|z|=1$ and then $z= \pm e_{j}$ for some $j \in[d]$. Thus there is a permutation π of $[d]$ with $A e_{i}=$ $\pm e_{\pi(i)}$. As $x_{i}= \pm s$ are supporting hyperplanes to both $Q(W)$ and $Q\left(W^{\prime}\right)$, $a=0$ follows. There are $2^{d} d!$ such lattice preserving affine transformations, so indeed the equivalence class of $Q(W)$ contains at most $2^{d} d!$ convex lattice polytopes of the form $Q\left(W^{\prime}\right)$.

REMARK. The same method works for the rotational paraboloid given by inequalities $x_{1}^{2}+\cdots+x_{d-1}^{2} \leqq x_{d} \leqq r^{2}$ from Arnol'd paper [2]. Its integer convex hull, P_{r}, is a convex lattice polytope with $\omega_{d-1} r^{d-1}(1+o(1))$ vertices, and its volume is of order r^{d+1}. Deleting all subsets W of the vertices gives many, namely at least $\exp \left\{c r^{d-1}\right\}$, convex lattice polytopes of the form $I\left(P_{r} \backslash W\right)$, and every equivalence class contains at most $2^{d-1}(d-1)$! of them.

4. Auxiliary results

We are going to use a beautiful result of Reizner, Schütt, Werner [8]. For a vertex x of a polytope $P \in \mathcal{P}$ we define $\triangle^{*}(x)=P \backslash \operatorname{conv}(\operatorname{vert} P \backslash\{x\})$.

ThEOREM 4.1. For every integer $d \geqq 2$ there are constants $b_{0}, b_{1}>0$ such that the following holds. For every $\varepsilon \in(0,1 / 2)$ and for every $P \in \mathcal{P}$ with $f_{0}(P) \geqq b_{0}^{d} / \varepsilon$ there is a set $X \subset$ vert P of size $|X| \geqq(1-2 \varepsilon) f_{0}(P)$ such that for every $x \in X$

$$
\frac{\operatorname{vol} \triangle^{*}(x)}{\operatorname{vol} P} \leqq b_{1}\left(\varepsilon f_{0}(P)\right)^{-\frac{d+1}{d-1}}
$$

Note that, for a lattice polytope $P, \triangle(x) \subset \triangle^{*}(x)$ so the last inequality holds with $\triangle(x)$ in place of $\triangle^{*}(x)$.

The main building block of our construction is $K_{r}=\mathbb{R}_{+}^{d} \cap r B^{d}$. The estimate (2.1) shows that $r^{D} \ll f_{0}\left(I\left(K_{r}\right)\right) \ll r^{D}$. Applying the above theorem to $P=I\left(K_{r}\right)$ with $\varepsilon=0.24$, say, shows that at least 52 percent of the vertices of $I\left(K_{r}\right)$ satisfy

$$
\operatorname{vol} \triangle(x) \leqq b_{1}\left(\frac{1}{4}\left|\operatorname{vert} I\left(K_{r}\right)\right|\right)^{-\frac{d+1}{d-1}} \operatorname{vol} I\left(K_{r}\right) \ll 1
$$

This implies that for this set of vertices vol $\triangle(x) \leqq \frac{b}{d!}$ where b is a positive integer that depends only on d. Let X be a subset of these vertices, excluding the origin (for reasons that will be clear later), with $|X|=\left\lfloor\frac{1}{2} f_{0}\left(I\left(K_{r}\right)\right)\right\rfloor$. So what we have now is that

$$
\begin{equation*}
\operatorname{vol} \triangle(x) \leqq \frac{b}{d!} \quad \text { for all } \quad x \in X . \tag{4.1}
\end{equation*}
$$

The next lemma is fairly simple.
Lemma 4.1. If a segment $[u, v] \subset 2 K_{r}$ contains more than $1.9 r$ lattice points, then it is parallel with some e_{i} or with some $e_{i}-e_{j}, i \neq j$. In the latter case $\left|\frac{1}{2}(u+v)\right| \leqq 1.5 r$.

Proof. Let z be the primitive vector in the direction of the segment $[u, v]$. Then $u-v=\lambda z$ with $\lambda>1.9 r$. Further,

$$
\operatorname{diam} 2 K_{r}=2 \operatorname{diam} K_{r}=2 \sqrt{2} r \geqq|u-v|=\lambda|z| \geqq 1.9 r|z|
$$

implying that $|z|<\frac{2 \sqrt{2}}{1.9}<1.5$. Such an integer vector can have one or two coordinates equal to ± 1, the rest of the coordinates is zero. It is easy to check that the case $z=e_{i}+e_{j}$ cannot occur. Equally easy is to see that if $z=e_{i}-e_{j}$, then u is close to $2 r e_{i}$ and v is close to $2 r e_{j}$, and then the midpoint w of $[u, v]$ is close to the midpoint of $\left[2 r e_{i}, 2 r e_{j}\right]$ which is at distance $2 r / \sqrt{2}$ from the origin. This implies $|w|<1.5 r$. We omit the straightforward details.

We need one more fact which is probably known. Let b be a fixed positive integer. Assume $k_{1}, \ldots, k_{m} \in[b]$ and $\sum_{1}^{m} k_{j}=M$. For $W \subset[m]$ define $\sigma(W)=\sum_{j \in W} k_{j}$. We want to give an exponential in m lower bound on the number of sets $W \subset[m]$ with $\sigma(W) \in[\beta M-b, \beta M]$ where $\beta \in(0,1 / 2)$. The interval $[\beta M-b, \beta M]$ contains b integers. Note that a shorter interval would not suffice in general, for instance when all $k_{j}=b$.

Lemma 4.2. For all positive integers b, m and for all $\beta \in(0,1 / 2)$ the following holds. Given a sequence k_{1}, \ldots, k_{m} with all $k_{j} \in[b]$ and $\sum_{1}^{m} k_{j}=M$,
the number of sets $W \subset[m]$ satisfying $\sigma(W) \in[\beta M-b, \beta M]$ is at least $\beta^{b} 2^{\beta m}$.

Proof. Fix $\beta \in(0,1 / 2)$. The sets $P_{i}=\left\{j \in[m]: k_{j}=i\right\}$ form a partition of $[m]$. Set $p_{i}=\left|P_{i}\right|$ and $q_{i}=\left\lfloor\beta p_{i}\right\rfloor$. We are going to choose q_{i}^{*} elements from P_{i} with $q_{i} \leqq q_{i}^{*} \leqq q_{i}+1$ for all i so that $\sum_{1}^{b} i q_{i}^{*} \in[\beta M-b, \beta M]$. As $\sum_{1}^{b} i q_{i} \leqq \beta M \leqq \sum_{1}^{b} i\left(q_{i}+1\right)$, and the difference of the upper and lower bounds here is $\binom{b}{2}$, there is such a choice of q_{i}^{*}. We fix such a choice.

The number of sets $W \subset[m]$ with exactly q_{i}^{*} elements from P_{i} is $\prod_{1}^{b}\binom{p_{i}}{q_{i}^{*}}$. Here $\binom{p_{i}}{q_{i}^{*}} \geqq\binom{ p_{i}}{q_{i}}$ since $\beta<1 / 2$, and $\binom{p_{i}}{q_{i}} \geqq\left(\frac{p_{i}}{q_{i}}\right)^{q_{i}}$. Moreover $\frac{p_{i}}{q_{i}} \geqq \frac{p_{i}}{\beta p_{i}}=\frac{1}{\beta}$. Thus

$$
\prod_{1}^{b}\binom{p_{i}}{q_{i}^{*}} \geqq\left(\frac{1}{\beta}\right)^{\sum q_{i}} \geqq\left(\frac{1}{\beta}\right)^{\beta m-b} \geqq \beta^{b}\left(\frac{1}{\beta}\right)^{\beta m}>\beta^{b} 2^{\beta m}
$$

5. The construction

The building block of the construction is the convex lattice polytope $I\left(K_{r}\right)=I\left(r B^{d} \cap \mathbb{R}_{+}^{d}\right)$. As r grows, more and more lattice points enter the ball $r B^{d}$ and so $I\left(K_{r}\right)$, sometimes many of them with the same r. That is why we modify our construction a little. Order the lattice points in \mathbb{R}_{+}^{d} as $x_{0}, x_{1}, x_{2}, \ldots$ with the only condition that $\left|x_{i}\right| \leqq\left|x_{j}\right|$ for $i \leqq j$. Define $K^{n}=\operatorname{conv}\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$.

Set $r=\left|x_{n}\right|$. Then K^{n} is close to K_{r} and $n=\omega_{d} r^{d}(1+o(1))$ and $\operatorname{vol} K^{n}$ $=\omega_{d} r^{d}(1+o(1))$. Moreover, all the estimates and lemmas of Section 2 remain valid for K^{n} because no proof (not even in [4]) considers whether a particular lattice point is on the boundary of $r B^{d}$ or not.

The function $n \rightarrow \operatorname{vol} I\left(K^{n}\right)$ is increasing, of order r^{d}, with jumps at least $1 / d$! and at most $O\left(r^{(d-1) / 2}\right)$ in view of Lemma 2.3. The function $n \rightarrow f_{0}\left(I\left(K^{n}\right)\right)$ is of order r^{D} with jumps at most 1 and at least $-c r^{(d-1) / 2}$ for a suitable $c>0$ depending only on d, again by Lemma 2.3. Consequently for every large enough V there is n such that with $r=\left|x_{n}\right|$

$$
0 \leqq 2^{d} \operatorname{vol} K^{n}-V-\frac{1}{5 d!} f_{0}\left(K^{n}\right) \ll r^{(d-1) / 2}
$$

We fix this n and the corresponding $r=\left|x_{n}\right|$ and define $Q=2 K^{n}$, which is a homothetic copy of K^{n} by blow-up factor 2 and center 0 . Further, x is a vertex of Q iff $x / 2$ is a vertex of $I\left(K^{n}\right)$. The estimate (2.1) shows that

$$
r^{D} \ll f_{0}(Q)=f_{0}\left(K^{n}\right) \ll r^{D}
$$

For $x \in \operatorname{vert} Q$ define

$$
\triangle(x)=\triangle_{Q}(x)=Q \backslash I(Q \backslash\{x\}) .
$$

$\triangle(x)$ is a translate of $\triangle_{K^{n}}(x / 2)$ (by the vector $x / 2$). This implies that for all $x \in \operatorname{vert} Q$

$$
\frac{1}{d!} \leqq \operatorname{vol} \triangle(x) \ll r^{\frac{d-1}{2}}
$$

The advantage of the blow-up factor 2 in the definition of Q is that for distinct $x, y \in \operatorname{vert} Q, \triangle(x)$ and $\triangle(y)$ are internally disjoint, that is, int $\triangle(x)$ $\cap \operatorname{int} \triangle(y)=\emptyset$ when $x, y \in$ vert Q are distinct.

We use next the Reizner-Schütt-Werner theorem in the form of (4.1): There is $X \subset$ vert $Q,|X|=\left\lfloor\frac{1}{2} f_{0}(Q)\right\rfloor$, and $0 \notin X$ such that vol $\triangle(x) \leqq b / d$! for all $x \in X$ where b is a positive integer depending only on d. Set $|X|=m$ and $M=\sum_{x \in X}$ vol $\triangle(x)$. Clearly $m / d!\leqq M \leqq b m / d!$.

Our target is to find many lattice polytopes contained in Q that have volume very close to, and slightly larger than, V. To this end we define \mathcal{H} as the collection of all $W \subset X$ with

$$
\operatorname{vol}\left(Q \backslash \bigcup_{x \in W} \triangle(x)\right) \in\left[V, V+\frac{b}{d!}\right]
$$

or, what is the same, $\sum_{x \in W} \operatorname{vol} \triangle(x) \in[\operatorname{vol} Q-V-b / d!$, $\operatorname{vol} Q-V]$.
Claim 5.1. There is $c>0$, depending only on d such that $|\mathcal{H}| \geqq$ $\exp \left\{c V^{(d-1) /(d+1)}\right\}$.

Proof. We are going to use Lemma 4.2, this time not with integral k_{j} but with vol $\triangle(x), x \in X$ instead. These numbers are not integers but positive integer multiples of $1 / d$! which makes no difference. We define β via $\beta M=\operatorname{vol} Q-V$ and check, first, that $\beta<1 / 2$.

$$
\text { As }(d-1) / 2<D=d(d-1) /(d+1) \text { for all } d \geqq 2, r^{(d-1) / 2}=o\left(r^{D}\right) \text {, and }
$$ we have

$$
\operatorname{vol} Q-V=\frac{1}{5 d!} f_{0}\left(K^{n}\right)+O\left(r^{(d-1) / 2}\right)=\frac{1}{5 d!} f_{0}\left(K^{n}\right)(1+o(1)) .
$$

On the other hand $M \geqq m / d!=\left\lfloor\frac{1}{2} f_{0}\left(K^{n}\right)\right\rfloor / d$!. Thus $\beta=(\operatorname{vol} Q-V) / M$ $<1 / 2$, indeed.

We show next that $\beta \geqq \frac{1}{3 b}$. Just as before

$$
\operatorname{vol} Q-V=\frac{1}{5 d!} f_{0}\left(K^{n}\right)(1+o(1)), \text { and } M \leqq b m / d!=b\left\lfloor\frac{1}{2} f_{0}\left(K^{n}\right)\right\rfloor / d!,
$$

showing that $\beta \geqq \frac{1}{3 b}>0$ indeed.

An application of Lemma 4.2 shows that $|\mathcal{H}| \geqq \beta^{b} 2^{\beta m} \geqq(3 b)^{-b} 2^{m / 3 b}$. We are done since b depends only on d and $m \gg r^{D} \gg V^{(d-1) /(d+1)}$.

Here comes the last step of the construction. Given $W \in \mathcal{H}$, let $t=t(W)$ be defined by

$$
\operatorname{vol}\left(Q \backslash \bigcup_{x \in W} \triangle(x)\right)=V+\frac{t}{d!}
$$

Then $0 \leqq t \leqq b$. The simplex $S(t)=\operatorname{conv}\left\{0, t e_{1}, e_{2}, \ldots, e_{d}\right\}$ has volume $t / d!$. We assume r is large, much larger than b. For $W \in \mathcal{H}$ define

$$
P(W)=\left(Q \backslash \bigcup_{x \in W} \triangle(x)\right) \backslash S(t)
$$

We have now constructed the set $P(W)$ for every $W \in \mathcal{H}$. It is evident that each $P(W)$ is a convex lattice polytope of volume V.

We show finally that a positive fraction of these convex lattice polytopes are non-equivalent. Let $s=\lfloor r\rfloor$. It is clear that Q has d edges, namely $\left[0,2 s e_{i}\right], i \in[d]$, that contain $2 s+1$ lattice points. Some of these edges become shorter in $P(W)$, yet each $P(W)$ contains an edge $E_{i} \subset\left[0,2 s e_{i}\right]$ with at least $2 s-b \geqq 1.9 r$ lattice points on it $(i \in[d])$.

Claim 5.2. $P(W)$ has no edge containing $1.9 r$ lattice points apart from E_{1}, \ldots, E_{d}.

Proof. If $[u, v]$ is such an edge, then its midpoint lies in $1.5 r B^{d}$, by Lemma 4.1. In view of Lemma 2.2

$$
2(r-2 \sqrt{d}) B^{d} \cap \mathbb{R}_{+}^{d} \subset P(W) \cup L(t)
$$

and so $[u, v]$ cannot be an edge.
Suppose now that $P(W)$ and $P\left(W^{\prime}\right)$ are equivalent $\left(W, W^{\prime} \in \mathcal{H}\right)$, and T is the lattice preserving affine transformation carrying $P(W)$ to $P\left(W^{\prime}\right)$. By the claim, T maps the edges E_{1}, \ldots, E_{d} of $P(W)$ to the edges $E_{1}^{\prime}, \ldots, E_{d}^{\prime}$ of $P\left(W^{\prime}\right)$. Thus T must permute these edges. Moreover, $T(0)=0$ follows from \bigcap aff $E_{i}=\bigcap$ aff $E_{i}^{\prime}=\{0\}$. Thus T is a lattice preserving linear transformation that permutes the elements of the basis e_{1}, \ldots, e_{d}. There are exactly $d!$ such lattice preserving linear transformations.

This proves that there are at most $d!$ convex lattice polytopes of the form $P(W), W \in \mathcal{H}$ that are equivalent. Consequently

$$
\log N_{d}(V) \geqq \log \left(\frac{1}{d!}|\mathcal{H}|\right) \gg V^{(d-1) /(d+1)}-\log d!\gg V^{(d-1) /(d+1)}
$$

6. Concluding remarks

There is a modification of this construction in which no two polytopes are equivalent, showing directly that $N_{d}(V) \geqq|\mathcal{H}|$. To describe it we define $G_{1}=\left\{s e_{1}\right\}, G_{2}=\left\{s e_{2},(s-1) e_{2}\right\}, \ldots, G_{d}=\left\{s e_{d}, \ldots,(s-d-1) e_{d}\right\}$. For each $W \in \mathcal{H}$ we consider the convex lattice polytope

$$
P^{*}(W)=I\left(P(W) \backslash \bigcup_{1}^{d} G_{i}\right)
$$

We claim that no two of these convex lattice polytopes are equivalent. Suppose T is a lattice preserving affine transformation carrying $P^{*}(W)$ to $P^{*}\left(W^{\prime}\right)$. Again, $E_{i}^{*}=I\left(E_{i} \backslash G_{i}\right)$ is an edge of $P^{*}(W)$, and the same way as before, $T(0)=0$ and T must permute the e_{i}. But now the last point (away from the origin) of the edge E_{i}^{*} is $(s-i) e_{i}$ and so T must carry E_{i}^{*} to $E_{i}^{\prime *}$ for all $i \in[d]$. Thus T is the identity, and then $W=W^{\prime}$.

We mention further that Arnol'd's suggestion, the paraboloid $x_{1}^{2}+\cdots$ $+x_{d-1}^{2} \leqq x_{d} \leqq A$, would work in a similar way. Also, an analogous construction applies to centrally symmetric (or, what is the same in this context, 0 -symmetric) convex lattice polytopes. Define $M_{d}(V)$ as the number of equivalence classes of 0 -symmetric convex lattice polytopes. In this case, of course, V is a positive integer multiple of $2 / d$!

THEOREM 6.1. $V^{(d-1) /(d+1)} \ll \log M_{d}(V) \ll V^{(d-1) /(d+1)}$.
Sketch of Proof. The upper bound follows from $M_{d}(V) \leqq N_{d}(V)$. For the lower bound let E be the ellipsoid

$$
x_{1}^{2}+\cdots+x_{d}^{2}-\left(\frac{1}{d}-\frac{2}{d^{3}}\right)\left(x_{1}+\cdots+x_{d}\right)^{2} \leqq \frac{2}{d}
$$

The longest axis of E is in direction $e=(1,1, \ldots, 1)$, and is of length \sqrt{d}. All other axes are of length $\sqrt{2 / d}$. Let K be the intersection of E with the cube $\left\{x \in \mathbb{R}^{d}:-1 \leqq x_{i} \leqq 1, i \in[d]\right\}$. The integer convex hull of $r K$ is the starting point of the construction. Theorem 5 of [4] shows that $r^{D} \ll f_{0}(I(r K))$ $\ll r^{D}$. Set $Q=2 I(r K)$. For an 0 -symmetric subset W of $\operatorname{vert} Q, I(Q \backslash W)$ is an 0 -symmetric convex lattice polytope and $r^{d} \ll \operatorname{vol} Q \ll r^{d}$. Choosing r carefully, and using Lemma 4.2, one can show again that exponentially many of them have volume between V and $V+b$. Each such $P(W)$ near the vertices $\pm\lfloor r\rfloor e$ looks like a coordinate octant. To reach exactly V volume one should delete copies of a suitable $S(t)$ at these vertices.

Acknowledgements. Support from ERC Advanced Research Grant No. 267165, and from Hungarian National Research Grants K 83767 and NK 78439 is acknowledged with thanks.

References

[1] G. E. Andrews, A lower bound for the volumes of strictly convex bodies with many boundary points, Trans. Amer. Math. Soc., 106 (1993), 270-279.
[2] V. I. Arnol'd, Statistics of integral convex polytopes, Funk. Anal. Pril., 14 (1980), 1-3 (in Russian). English translation, Funct. Anal. Appl., 14 (1980), 79-84.
[3] I. Bárány, Random points and lattice points in convex bodies, Bull. Amer. Math. Soc., 45 (2008), 339-365.
[4] I. Bárány and D. G. Larman, The convex hull of the integer points in a large ball, Math. Annalen, 312 (1998), 167-181.
[5] I. Bárány and J. Pach, On the number of convex lattice polygons, Combinatorics, Probability, and Computation, 1 (1992), 295-302.
[6] I. Bárány and A. Vershik, On the number of convex lattice polytopes, 24 (2004), 171185.
[7] S. Konyagin and S. V. Sevastyanov, Estimation of the number of vertices of a convex integral polyhedron in terms of its volume, Funk. Anal. Pril., 18 (1984), 13-15 (in Russian). English translation, Funct. Anal. Appl., 18 (1984), 11-13.
[8] Sh. Reizner, C. Schütt and E. Werner, Dropping a vertex or a facet from a convex polytope, Forum Mathematicum, 13 (2001), 359-378.
[9] C. Zong, On Arnold's problem on the classifications of convex lattice polytopes, manuscript (2011), arXiv:1107.2966.

[^0]: Key words and phrases: lattice, polytope, integer convex hull, statistics of convex lattice polytopes.

 Mathematics Subject Classification: primary 52B20, secondary 11H06.

